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Nonuniversality of diffusion exponents in percolation systems
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%e study diffusion on the incipient infinite percolation cluster in d 2 with a power-law distri-
bution of transition rates P {W)-W ', a & l. Using the exact enumeration method we find that
the diffusion exponent d (a) sticks at its a —~ value for a~0. For a) 0, d is bounded by

df + 1/[{1 —a) vl =d (a) =d &
—~)+a/I(1 —a) vl. Specifically, for small a our numerical re-

sults are close to the upper bound, while for larger a they are close to the lower bound.

Recently, it has been shown by Halperin, Feng, and
Sen' that continuum random systems such as the random-
void models can be mapped onto random percolation net-
works2 with a distribution of bond conductivities cr,

P(o)-a ', a(l,
where by definition cr ~ 1. For the random-void model one
has a —1 ind 2anda —,

' ind 3.
Discrete percolation systems with a random distribution

of conductivities, Eq. (1), have been studied recently by
Kogut and Straley, s Ben-Mizrahi and Bergman, Straley, s

and Sen, Roberts, and Halperin. It was found that the
conductivity exponent p is nonuniversal and depends on
the parameter tz, but different predictions for the a depen-
dence have been made. Using a nodes-link-blob scaling
analysis, Halperin et al. ' presented arguments that the
predictions of Kogut and Straley3 and Straleys yield upper
and lower bounds for it, respectively, i.e.,

1+(d —2)v+ tt/( I —
tz ) ~p ~p+ a/(I —a ), 0~ tt & 1,

dom walker from its starting point. For uniform transition
rates (8' 1, corresponding to a —~) it has been
showns from the Nernst-Einstein relation that d„
=d ( —~) is related to p by

d. -2+"

where P is the percolation order parameter exponent. 7 Us-
ing similar arguments it can be shown that Eq. (5) holds
also in the more general case of random transition rates,
where d„and p are substituted by d„and p. Thus, from
(2) we obtain bounds for d„,

df + 1/(1 —a) v ~d„~d + a/(1 —a) v,

where df d —P/v is the fractal dimension of the incipient
infinite percolation cluster. A similar relation can be ob-
tained for d, since both d„and d' are related to each
other by

d ' /d „dt/df,
where p is the standard conductivity exponent for percola-
tion systems with constant-bond conductivities and v is the
correlation-length exponent.

In this note we study how the diffusion exponents
change on the incipient infinite percolation cluster (in
d 2) when the transition rates W between nearest-
neighbor sites follow from a power-law distribution

and W~ 1, analogous to Eq. (1). The diffusion exponents,
d and d„', are defined by

&r'(t)&-t", &l(t)&-t" ",
where &r (t )& is the mean-square displacement and &1(t )&

is the mean chemical ("topological" ) distance of a ran-

where vt=vdf/dt is the "chemical correlation exponent"
(see Ref. 8). Relations (6) and (8) are easily accessible to
a direct numerical test. To this purpose we applied the ex-
act enumeration method (see, e.g., Ref. 10), which allows
us to calculate exactly the distribution function P (r, t ) of a
random walker on a given percolation cluster for a fixed
starting point ro. First we generated a percolation cluster
on a square lattice at criticality. The transition rates
8'„+~ between neighboring cluster sites r and r+8 are
chosen according to

pr ~ I ~ 1j(l a)
r,r+4 r+b, r 4 (9)

where dt is the topological ("chemical" ) dimension. This
yields

dt+ ll(1 —a) vt «d„'~d„'+a/(1 —a) vt,
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103- TABLE I. The diffusion exponents d and d' extracted from
Figs. 1 and 2 for five values of a, compared with upper and lower
bounds from Eq. (6); d and d' are related to each other by Eq.
(7), where di ~ and d~=1.64 in d 2 percolation. The error
bars were estimated from a least-squares fit of &r~(t )& and &I (r )&

in the asymptotic regime.

Upper
bound

d

Lower
bound

d1S

I

105

FIG. 1. Plot of &r (t )& vs t for various a. For our calculations,
we generated clusters up to 150 shells (typically 10000 sites) us-

ing the Leath algorithm (Ref. 12). To determine &r2(t)&, we

used the exact enumeration for the "blind ants, " Eqs. (9)-(11).
For each value of e we averaged over 400 configurations each.
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2

2
3
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2.85 +' 0.04

2.90+' 0.05

3.60+' 0.10

4.12+' 0.10

4.80+' 0.20

2.47 +' 0.04

2.50+' 0.05

3.13 +' 0.06

3.51 + 0.08

4.00+ 0.15

2.87

2.87

3.62

5.12

2.65

2.65

3.40

4.15

4.90

where R is a random number between 0 and 1. By (9), the
rate distribution Eq. (3) is generated. Then the time evo-
lution of P(r, t) is calculated as follows: At t 0, the
walker starts in the origin, i.e., P(r,0) b, n. At t 1, the
walker steps with probability Won+s to the neighboring
cluster sites 8. Here

of the random walker with starting point at the origin for
the considered cluster. In order to obtain the correspond-
ing configurational averaged quantities one has to average
over many clusters. From P(r, t) it is easy to calculate
P(I,t), which is defined as the probability to find the
walker in topological distance / from the origin. To each
cluster site r a certain topological distance I is associated
and, thus,

8'os for r
po, r ) -g"'P(r, t), (12)

P(r, 1)-
1
—QWosforr 0 .

b

(10)

&r'(r ))-gr'P(r, r )

For r&0 and rWb, P(r, 1)=0. By iterating this procedure
we find P(r,2), etc. From P(r, t) we obtain the mean
square displacement

where g,&l& denotes a sum over all sites with the same topo-
logical distance I from the origin. From P (l, t ) we obtain
(I).

For our actual computations, we generated clusters up
to 150 shells and averages over 400 configurations have
been made. " The results for (r (r )) and (I (t )) are shown
in Figs. 1 and 2 for various values of a. From the asymp-
totic slopes'3 we obtained the diffusion exponents d„and
d„', which are presented in Table I. Our results strongly
support the inequalities (2) and (6) and thus also support
the scaling arguments leading to these relations.

The lower bound has been derived' by employing the
one-dimensional nature of the backbone of the percolation
cluster which consists of single-connected bonds and multi-
connected bonds ("blobs"), ' and neglecting the contribu-
tion of the blobs to the resistivity. It is interesting to note
that our results are close to the upper bound for small a,
a (—,', while they are close to the lower bound for larger a.
This result is consistent with very recent findings of Lu-
bensky and Tremblay'5 when using the s expansion and of
Machta, Guyer, and Moore' for a hierarchical network.
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FIG. 2. Plot of &l (t )& vs r for various a.
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