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Minimal spanning tree: A new approach for studying order and disorder
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%e develop a new approach for studying order and disorder in sets of particles. This approach
is based on a graph constructed from the set of points locating the positions of the particles. This

graph, which is called the minimal spanning tree, allows us to deduce two parameters, namely, the
average edge length m and the standard deviation cr, which are characteristic of the repartition to
be studied. The method is applied to particles of an aggregated lithium thin film deposited on a
dielectric substrate. These particles are found to be partially ordered. The use of a diagram in-

volving both m and a turns out to be a powerful tool for the determination of the degree of order
in very various systems.

Data in the form of a set of points, scattered within a re-
gion of space, arise in many fields such as astronomy, crys-
tallography, solid-state physics, biology, etc. It is often
possible to consider the objects to be studied (stars, ele-
mentary particles, aggregates, proteins, etc.) as points and
so to treat any such data set as a spatial point pattern. The
classification of patterns as regular, random, or aggregat-
ed may be an oversimplification at an early stage of the
analysis. Let us consider for instance very thin metallic
deposits. ' In general these deposits are not continuous but
made up of a population of small particles. Are these par-
ticles distributed at random, are they clumped or are they
set out according to a certain order that the eye cannot
detect? One way to tackle these questions is to compute
statistical moments that characterize the surface, particu-
larly the second-order moment, known as the autocovari-
ance function (ACF). However, the ACF is sometimes
difficult to interpret because it takes both the size of the
particles and their spatial distribution into account. If we
focus our attention only on the distribution of the particles,
it is preferable to use tests based on pattern recognition
techniques, applied to the particles considered as point ob-
jects. Generally these tests are statistical comparisons be-
tween the observed distribution of either interpoint dis-
tances or local density of points and corresponding distri-
butions obtained from some well-characterized model such
as a theoretical model or a Monte Carlo simulation. s This
comparison helps to distinguish between two main distri-
bution tendencies, clustered and regular. We have
developed a new approach which is more informative than
the above methods. It is based on a graph which is called
the minimal spanning tree (MST).

Basic definitions of the graph theory may be found
in Refs. 6-8. Let us recall that an edge-weighted lin-
ear raph G =(A',E) is composed of a set of points
X x~,x2, . . .) called nodes and a set of node pairs
E j(x;,x~)) called edges, with a number called weight (in
this paper the Euclidean distance) assigned to each edge.
A tree is a connected graph without closed loops. A MST

is a tree which contains all of the nodes and where the sum
of the edge weights is minimal.

Figure 1(a) shows the electron photomicrograph of a
shadowed surface replica of an aggregated lithium deposit.
This deposit has been prepared using experimental tech-
niques described in Ref. 9. It is possible to reconstruct the
surface profile by means of a technique developed by
Rasigni, Rasigni, Palmari, and Llebaria, ' namely, a mi-
crodensitometer analysis of the micrograph of the
surface-shadowed carbon replica. Then the quantized pro-
file allows us to deduce the positions of particles [Fig.
1(b)] from the maxima seen in the profile. " Figure 1(b)
may also be obtained from the micrograph density values.
Such a simplified process is used if the knowledge of the
quantized profile is not required for further computations.
For convenience only N 460 particles have been
represented in Fig. 1(b) whereas full computations were
based on X 2000. Figure 1(c) shows the MST of Fig.
1(b) computed using Prim's algorithm. '2 In this algorithm
the MST is grown from a single node by adding the closest
node to the current tree at each stage along with the edge
corresponding to that closest distance (smallest weight).
Bentley and Friedman' have performed an accelerated
version of Prim's algorithm. Depending on the starting
point there may be more than one MST for a given set of
points, but all of the MST's have the same edge-length his-
togram. It follows that statistical information deduced
from the histogram, such as the average edge length m and
the standard deviation a may be used as characteristics for
the corresponding distribution. The histogram of the MST
of Fig. 1(c) is represented in Fig. 1(d). From the full com-
putation the values m 0.800 and cr 0.190 are derived.
These values have been normalized according to the pro-
cess described by Hoffmann and Jain, ' which may be
summarized as follows. The area A of the sampling win-
dow is defined as the area H of the convex hull of the data
normalized by means of the relation
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~ 1~ 4FIG. 1. (a) Electron photomicrograph of shadowed surface

for an aggregated lithium thin film deposited on a dielectric sub-
strate. W-Pt shadow casting at an angle of 50'. The line
represents 0.5 pm. (b) Position ef lithium particles considered
as points. (c) Minimal spanning tree (MST) concerning the dis-
tribution of (b). (d) Histogram of edge lengths for the MST of
(c).

FIG. 2. (a) Set of 500 points ordered at the nodes of a per-
fectly triangular lattice. (b), (c), and (d) Randomization of ar-
rangement of (a) giving each point a new position deduced from
its previous one by means of a Gaussian distribution having the
standard deviation co. The co values are 0.1 and 0.2 for (b) and
(c), respectively. (d) corresponds to the random distribution.

in which N is the number of points in the window, and f is
the number of faces on the convex hull. The normalized
values of m and cr of the MST constructed from a given set
of data are obtained by dividing the original ones by the
expression

pling windo~ of area A; is asymptotically proportional to
expression (2).'

All distributions can be plotted in the (m, o) plane and
easily compared with well-characterized distributions (for
instance, perfectly ordered or random ones) due to the nor-
malization process. For example, consider [Fig. 2(a)] the
set of points ordered at the nodes of a lattice (triangular
for instance). The edge-length histogram of the corre-

Indeed the expected length of a randomly chosen edge of a
MST related to N uniformally distributed points in a sam-
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sponding MST provides the normalized values cr=0 and
m =1.075. The null value of a is obviously characteristic
of a periodic lattice whereas the m value may vary accord-
ing to the selected periodic lattice. For instance, m is
equal to 1 for the square lattice. In addition to the two
previous lattices, there may be other arrangements in the
plane for which cr 0, in particular, the arrangements
called mosaics, which are composed of an infinite set of
regular polygons. ' ' Figure 3 shows the eleven possibili-
ties permitting the arrangement of a set of points on a
plane along regular or semiregular mosaics. The m values
corresponding to each model are also reported in this fig-
ure. The arrangement in Fig. 2(a) may be randomized by
giving each point a new position deduced from its previous
position using a Gaussian distribution with a standard de-
viation of ro. Figures 2(b) and 2(c) show two steps corre-
sponding to two increasing values of ru. For a value of co of
the order of the initial m value, the uniform random distri-
bution is reached as it can be seen in Fig. 4 which shows
the variations of rn and a vs ro. The corresponding values
of this uniform random distribution, namely, m 0.662
and a 0.311, have been corroborated by Monte Carlo
simulations of random distributions generated using the
linear congruential method. '

The values of (m, a) for different values of ro [from
ru 0 (perfect arrangement) to ro much greater than the
initial m value (random arrangement)], in the case of the
triangular lattice, are plotted (solid line) in Fig. 5. If we
had chosen a different initial arrangement we would have
obtained another path leading to the same random ar-
rangement. This is demonstrated in Fig. 5 by representing

FIG. 4. Average edge length m and standard deviation o vs m,

for the MST's of the different arrangements obtained by ran-

domizing the set of points ordered at the nodes of a triangular
lattice.

the values of (m, cr =0) corresponding to the models
represented in Fig. 3 and two paths whose initial m values
are 0.705 and 1. It has to be noted that the path leading to
the disorder also varies slightly with the uniform randomi-
zation process.

Actually the sizes of particles may not be small com-
pared to their separations. So we have considered an im-
proved model called the inhibition model. s It consists of
randomly distributed points with the constraint of a
minimal interpoint distance d, related to the diameter of a
hard disk that represents the particles. The dashed curve
in Fig. 5 represents the values of m and cr deduced from
this model for increasing values of d.

If we plot the values of m and a found for the lithium
particles repartition in Fig. 5, we conclude that these parti-

m =1.075 m =0.877

Uniform
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FIG. 3. Eleven possibilities permitting the arrangement of a
set of points on a plane along regular or semiregular mosaics.
The m values corresponding to each model are also reported on
this figure.
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FIG. 5. Solid lines: values of (m, a) for several values of co

ranging from zo 0 (perfect arrangement) to zu much greater
than the initial m value (uniform random distribution). The ar-

rows on the m axis are related to the m values reported on Fig. 3.
Dashed line: values of (m, o) deduced from the inhibition model

for increasing normalized values of the minimal interpoint dis-

tance d ranging from d 0 (random distribution) to d 0.780
(which corresponds to a packing intensity z 0.48). The point o
characterizes the lithium particles distribution.
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cles are not randomly distributed. Moreover, we note that
the corresponding point appears to be far from the inhibi-
tion curve. That means that the partial order observed on
this distribution is not due to the constraints dictated by
the sizes of particles. This result may be significant in the
context of a more general study of thin-film nucleation.

The method presented above offers several advantages
when compared to conventional statistical approaches. In
particular, the existence of fast MST algorithms and the
ease with which the two parameters m and cr can be de-
rived lead to a low computation time. This allowed us to
investigate a large number of points (N )2000) easily
and thus to reduce statistical errors. Moreover, the use of
normalized variables permits the comparison of different
distribution types regardless of sample density and size.
Lastly, the use of two distinct parameters, namely, m and
cr, leads to a more informative two-dimensional classifica-

tion which then permits the comparison of distributions by
taking a simple reading in the m, a plane. The previous
study of this plane is far from exhaustive. For instance,
the areas marked I, II, III on the diagram of Fig. 5 corre-
spond, respectively, to cluster structure~ (small m, ow0),
gradients of concentration (large cr), and two-dimensional
quasiperiodic tilings ' ' (large m, ere 0). Accurate simu-
lations to quantisize these areas are currently under way.

Though this paper demonstrates the utility of the MST
method only for lithium particles, we believe that it could
be applied more generally and be proved to be a powerful
tool for the study of various physical, chemical, and bio-
logical structures.

We are indebted to Dr. M. Cadhilac for fruitful discus-
sions.
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