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We have studied the effect of an applied rf signal on the radiation emitted from a large-area
Josephson junction by means of a model based on the sine-Gordon equation. The rms value of the
voltage of the emitted signal has been calculated and a hysteresis loop found. An analysis shows
that the hysteresis is due to the nonlinearity in the system, i.e., the dynamics of the lower branch
can be described by a solution to the linearized system while the upper branch is described by a
breather mode. These solutions are frequency locked to the driving signal. Various characteris-
tics of the loop such as threshold value and level of the branch are predicted analytically.

The study of the dynamical behavior of large-area
Josephson junctions is of fundamental as well as practical
interest. On the one hand, the characteristics of Josephson
junctions have a rich content of nonlinear properties which
are suitable for detailed investigations of various areas
such as nonlinear wave dynamics? and chaotic states.>~’
Further, the system is suitable for testing of perturbation
approaches.® On the other hand, there have been sugges-
tions for applications of large-area Josephson junctions
within such diverse fields as microwave oscillators-ampli-
fiers and data processing systems.

In most experiments in Josephson physics one finds hys-
teresis phenomena. Thus, an understanding of the basic
dynamics behind the hysteresis is important. In the
present paper we focus on large-area Josephson junctions
(overlap tunnel junctions) irradiated by rf signals (without
applied dc current). The microwave pump signal is ap-
plied to one end of the junctions. This system is modeled
by a perturbed one-dimensional sine-Gordon equation with
approximate boundary conditions describing the influence
of the rf signal. Period doubling (i.e., the first steps in the
transition to chaos) has been found for the model and in
experiments in Refs. 6 and 7, respectively. We have exam-
ined this system by means of the model. In order to get an
understanding of the influence of the applied rf signal on
the emitted radiation we have calculated the rms value of
the emitted voltage as a function of the amplitude of the
applied signal.

This relation exhibits hysteresis. The dynamics describ-
ing the lower branch can be found linearizing the model
equation while the dynamics of the upper branch can be
well described as a breather mode frequency locked to the
driving signal. Application of a perturbation approach
gives expressions for the level and the lower threshold for
the upper branch.

The dynamics of a long Josephson tunnel junction is as-
sumed to be governed by a perturbed sine-Gordon equa-
tion

¢XX —¢” =Sil’l‘p+a¢, N (1)

where @ is the phase difference between the two supercon-
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ducting films. The spatial variable is measured in units of
the Josephson penetration depth A, =(h/2ed uoJ )'/? and
the time in units of the reciprocal plasma frequency wg !,
where wo=(2eJ/hC)'2. Here J is the Josephson current
density, d is the magnetic thickness of the barrier, and C is
the capacitance per unit area. The loss a is defined
through the relation a=G (k/2eJC)"?, where G is the
shunt conductance per unit area.

With an oscillating magnetic field H,sinw? applied to
one end of the junction, perpendicular to the length of the
junction and parallel to the plane of the barrier, the
boundary conditions for the phase difference ® at the ends
are

(2a)
(2b)

@, (/) =asinwt ,
®,(0)=0,

where a =H,/JA; and | =L/A; are the normalized mag-
netic field strength and junction length, respectively.

Equations (1) and (2) have been solved numerically. In
the numerical solution we have applied an approximation
based on a stabilized leap-frog scheme.’ Throughout this
paper the frequency @ =0.8, the loss parameter a=0.2,
and the normalized length / =5 are held fixed. In Fig. 1
we show the rms value of ®, in the right end of the junc-
tion as a function of the amplitude a resulting from nu-
merical simulations. In order to simulate an experimental
situation the curve has been obtained in the following way:
For a =0 we use flat initial conditions [i.e., ®(x,0) =0
and ®,(x,0) =0], a is then increased gradually by an
amount Aa (using a ramp function dew =aoq+ (Aa/50)¢
for the time 1 =50). When steady state is obtained the
computations are stopped, restarted (the initial conditions
now being the former obtained steady solution), and a
gradually increased. This procedure was continued for
a <0.8 with Aa =0.1, while for a > 0.8, Aa =0.05. The
steady state was typically obtained after 1 =500 and each
run has typically been continued to ¢ =2000.

In Fig. 1 it is seen that the rms value changes rapidly for
aym=0.87 and saturates at an almost constant level (re-
ferred to as the upper branch). This change corresponds
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2 with

|k | =[(0?—1)*+ 20?14, tan20= ;zw . (4b)
o
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The rms value of @, for this solution is given by
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(5)

The lower broken line in Fig. 1 is this expression which
shows that the mode sustaining the lower branch is well
described by the solution to the linear system.

The mode sustaining the upper branch has been identi-
fied as a breather frequency locked to the driver signal and
placed symmetrically with respect to the right end of the
junction (x =/). Thus the mode describing the upper
branch is given by the stationary breather solution

| 1

05 1 14 — )12 sin(w? + 6y,)
a ®(x,1) =4tan"! Cd ) 5 1/;' .
212 L © cosh[(1 —?)V2(x—1)]
FIG. 1. The rms value ((®?))'? vs a. Full lines indicate nu-
merical results—broken lines indicate results obtained by ap- 6)
proximations.

We have compared this expression displayed in a phase
plane to the numerical solution of Egs. (1) and (2) and
to a change in the wave dynamics. The saturation level ~found an agreement within a few percent. Using this ex-
keeps almost constant up to a = 1.35.' From a =1.3 we  pression we get
start reducing a and find that the rms value decreases rap- 2/
idly and returns to the lower branch at a value a;, = 0.74 (@, (1)) =2 f X (1,0)dt =80(1 —w?) . (7)
<ay:. In the following we explain this hysteresis loop by 2 0
identifying the modes sustaining the lower and upper
branch, respectively. An approximate solution to Egs. (1)
and (2) was found in Ref. 6 for a <1 (or a>1) by linear-
izing the model. The solution is

From Eq. (7) we find the upper broken line in Fig. 1 which
models the saturation level. The agreement between the
numerical results and the analysis is good. In order to
determine an expression for the lower threshold value aj;h
®(x,t) = —aexp(—iot)coskx/(k sinkl) | (3) for the saturation level we apply the usual perturbation ap-

proach.!! Defining the energy,
where k (complex) is given by the dispersion relation

i
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FIG. 2. Voltage ®,(/,t) and applied rf signal ®,(/,z) vs time for @ =0.8. The steady-state solution on the upper branch (a) and
lower branch (b). The curves of smaller amplitude are the applied rf signal.
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Time differentiation of H and use of Eqgs. (1) and (2) yield

i
——==—af O dx + DD, |§ . ©
0

In this equation the first and second term represent energy
dissipation and energy input, respectively. The energy is
dissipated in the whole junction while energy is induced
through the external field.
The energy change in one period of oscillation is
2n/w ! b2 0%
AH==-—aj:) _f; Oldxdt+ | OO |xmidr . (10)
Now, in a stationary situation this change in energy is
zero. Close to the threshold value the energy input is at a
maximum forcing the phase angle 8, =0 in Eq. (6).
Inserting the breather solution in the right side of Eq.
(10) yields —16zasin~!(1 —?)"? for the first term
where we have neglected the influence of the left bound-
ary on the breather. The second term is evaluated as
87al(l —w)/(1+®)1"? using Eq. (2) and the breather
solution. Thus Eq. (10) can be written
. 1/2

)
11
l1tw n

AH = —16rasin~'(1 — 0?) "2+ 87a

Setting AH =0 in this equation gives an expression for the
lower threshold value

1/2

1to | Gn-1 -2,
l—ow

(12)

ajth =2a

For the parameter values used in this paper Eq. (12) yields
a ., =0.768— this is the vertical broken line in Fig. 1. The
agreement is seen to be very good.

Finally, we present numerical results which illustrate
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FIG. 3. Spatial variation of the phase difference ®(x,r) for
a =0.8— upper branch (a) and lower branch (b). Time intervals
as in Fig. 2.

the modes describing the dynamics on the branches. In
Fig. 2 we have shown the voltage ®,(/,¢) versus time on
the upper (a) and lower (b) branch for a =0.8. For refer-
ence we have also displayed the applied rf signal, ®,(/,t)
being the curves of smaller amplitude. In accordance with
the analysis we see that the phase difference between @,
and ®, is very small in Fig. 2(a). In Fig. 3 the spatial
variation of the modes is displayed in terms of @ for the
same time intervals as in the former figures.

In summary, our studies have shown that hysteresis in
the investigated system is indeed a nonlinear phenomenon.
The present work presents direct identification of the
modes sustaining the branches in the hysteresis loop. Fur-
ther, a simple perturbation analysis based on energy flow
is used to predict various characteristics of this loop. We
note that a variety of other interesting phenomena such as
intermittency-type chaos and period doubling transition
are known to exist in this system.
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