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In a unified treatment we have studied the role of fluctuations in uniaxial random systems at mar-

ginal dimensionality d =4 with the n =1 component order parameter being coupled to elastic de-

grees of freedom. Depending on the ratio of the nonuniversal parameters of quenched disorder b,o

and of elastic fluctuations vo, a first- or second-order phase transition is found to occur, separated

by a tricritical point. A complete account of critical properties and of macroscopic as well as of mi-

croscopic elastic stability is given for temperatures T & T, . Universal singularities of thermodynam-

ic functions are determined for t ={T —T, )/T, ~O including the tricritical point: for vp/Lop —2,
they are the same as in a rigid random system; for vo/60 ———2, they are different due to lattice
compressibility being related, however, to the former by Fisher renormahzation. Fluctuation correc-
tions in one-loop approximation have been evaluated in a nonuniversal critical temperature range,
t„ggt ~~1, sufficiently far from the universal critical regime. The latter apparently becomes ex-

tremely narrow due to the order of magnitude being obtained for t„whose origin is in a peculiar de-

generacy of the renormalization-group (RG) equations in leading order. In solving these RG recur-
sion relations in the nouutuvcrsal regime exactly, analytic expressions for thermodynamic functions
have been obtained improving a recent approach for rigid random systems. The nonuniversal criti-
cal behavior can be characterized by effective exponents varying continuously with LEO and vo. We
have also estimated numerically hmits of the validity of the one-loop approximation. The tempera-
ture dependence of the elastic constants has been obtained for the entire region of temperatures.
The critical behavior of random compressible systems, unlike that of pure compressible systems, is

finally shown to remain stable against weak lattice anisotropy.

I. INTRODUCTION

A sensible assessment of the importance of fluctuations
at phase transitions can apparently be obtained by the
concept of the upper critical (marginal) dimensionality d'
introduced in the renormalization-group (RG) theory of
critical phenomena. ' For a given system of spatial dimen-
sionality d the marginal dimensionality d' serves as a
borderline between classical mean-field (d p d') and non-
classical critical (d ~ d') behavior. The RG equations at
d' turn out to be solvable exactly in the asymptotic criti-
cal limit with the result that mean-field (MF) or Landau-
type behavior is only modified by singularities weak-
er than any power of the reduced temperature
I =(T T, }/T„where T—, denotes the true critical tem-
perature. It is extremely important, however, that the
marginal critical behavior of pure and rigid systems may
be changed significantly by perturbations somehow typi-
cal for real materials, e.g., by randomness in the local MF
transition temperature or by lattice compressibility, pro-
vided t'hc spcclfllc heat of tllc unperturbed system dlvcI'gcs.
The marginal dimensionality d' is assumed to remain un-
changed under this type of perturbation.

Particularly interesting in that context are uniaxial di-
polar ferromagnets and uniaxial ferroelectrics, where the
spontaneous magnetization M and the spontaneous polari-
zation P, respectively, act as n= 1 component order pa-
rameters. The anisotropic interaction of dipoles aligned
along a single axis leads to a marginal dimensionality
d' =3 which thus coincides with the actual spatial
dimensionality, i.e., d =d =3. The theory of these uni-
axial dipolar systems therefore provides for direct experi-
mental verification of rigorous results obtained by RG
methods.

It is well established by now that critical fiuctuations in
pure uniaxial dipolar systems on a rigid lattice give rise to
fractional powers of logarithmic correction factors
displayed in the asymptotic critical behavior, e.g., of the
o«er-param««suscepti»»ty &"
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Clear evidence for logarithmic corrections in the specif-

ic heat apparently came first from experiments on LiTbF4
as a model system for uniaxial dipolar ferromagnets.
Logarithmic corrections in the order-parameter suscepti-
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bility have recently also ben observed unambiguously in
trissarcosine calcium chloride (TSCC), a model system for
uniaxial ferroelectrics. Since work directed towards
detecting logarithmic corrections in the electric suscepti-
bility, in the specific heat, and in the spontaneous polari-
zation of unaxial ferroelectrics remained inconclusive for
a long time, it was pointed out that the nonhnearity coef-
ficient f2 (8——E/BP ), &O.E 0 in the equation of state is
more favorable for observing such logarithmic corrections
in agreement with data on the uniaxial ferroelectric trigly-
cine sulfate (TGS). In replacing the electric field E conju-
gate to the polarization P by the magnetic field H conju-
gate to the magnetization M an analogous behavior is to
be expected for f2 ——(8 H/BM ), &O.H 0 in the equation
of state of pure uniaxial dipolar ferromagnets, which was
indeed found with a remarkable accuracy in recent experi-
mental studies on LiTbF4.

The role of fluctuations in random uniaxial systems on
a rigid lattice at d'=d=4 has aroused interest, ' since a
new type of marginal critical behavior could be anticipat-
ed from the logarithmically diverging sperific heat of the
pure rigid system owing to a general argument by Harris"
as well as subsequent RG calculations. 'i By using such
RG methods Aharony'i has shown that these systems
with quenched random disorder indeed exhibit a new
asymptotic critical behavior characterized by exponential
rather than logarithmic corrections to the MF behavior.
Thus, the order-parameter susceptibility for t&0, e.g.,
behaves as Xcc ~t

~

'exp[(D (1n(t
~ [

)'~ ], where the
difference of the values of D = —,', for uniaxial short-
ranged d=4 systems and of D =9/[811n(4/3) + 53) for
uniaxial dipolar d=3 systems is small numerically. The
specific heat remains finite exhibiting a cusplike singulari-
ty only. Theoretical studies in the limit of small impurity
concentrations' ' apparently suggest the asymptotic crit-
ical behavior with exponential singularities to occur in a
temperature range, t « t„with some extremely small
characteristic temperature t„ the origin of which is in the
peculiar degeneracy of the RG scaling relations to leading
(one-loop) order.

Thorough experimental studies'5 ' of the magnetic
susceptibility in randomized uniaxial dipolar ferromagnets
as, e.g., LiTb~ Yi ~F4, indeed failed to detect exponential
corrections. In a region 10 i & t & 10 ', a better fit was
achieved' using X ~t, where at low impurity concen-
trations the effective nonuniversal exponent y,tt exhibits
a clear concentration dependence. ' A fluctuation-
dominated temperature range t„«t «1, sufficiently far
from the asymptotic critical region t « t„explored re-
cently by Vause and Bruno, ' actually seems to belong to
this experimentally accessible regime. Nonasymptotic
forms of the equation of state, of the specific heat, etc.,
parametrized by the impurity concentration are seemingly
consistent with the experimental data.

The role of elastic degrees of freedom in the critical
behavior of pure systems has long been a subject of de
bate. At present, however, modifications of the marginal
critical behavior of pure rigid systems under elastic fiuc-
tuations being coupled electro(magneto)strictively to the
order parameter are believed to be understood. It is
known, for instance, that an isotropic compressible n= 1,

d =d' system becomes elastically unstable under
enhanced fluctuations due to the logarithmically diverging
specific heat, and the phase transition becomes weakly
first order quite analogous to pure compressible Ising
models of dimensionality d &d' with an infinite specific
heat. ' Depending on boundary conditions and certain
physical properties of the systems, either ideal marginal
critical behavior or changes in the fractional powers of the
logarithmic correction factors are found in a pseudocriti-
cal region ' resulting, e.g., in a type of Fisher-
renormalized cusplike singularity of the specific heat
C~ /lnftf f

In the present paper RG methods are used to study the
combined effect of quenched disorder and of elastic fluc-
tuations on phase transitions at marginal dimensionality,
being somehow typical for real uniaxial dipolar materials
exhibiting elastic anisotropy. We will consider the
behavior of thermodynamic functions and of elastic prop-
erties both in the true critical region t~0 and in a
fluctuation-dominatal nonuniversal regime t, « t « 1

with t„being related to a peculiar degeneracy of the RG
recursion relations in leading order. RG methods have
previously been apphed in order to investigate effects of
the competition of quenched disorder and of elastic de-
grees of freedom on the critical behavior of systems with
short-range interaction in d =4—e dimensions. All our
calculations in the main part of this paper will be per-
formed for a short-range random compressible Ising
model at d =d'=4, and therefore the results do not rely
on the e expansion, although certain analogies with the
case d =4 emay b—e expected to exist. Moreover, many
of the present results can be applied or easily extended to
uniaxial dipolar systems at d =d'=3, due to a close
correspondence existing between the fluctuation correc-
tions to leading order in these two cases. Some of our re-
sults being presented here have been contained, either im-
plicitly or explicitly, in earlier work; however, it is certain-
ly useful to give a unified presentation of the role of fluc-
tuations on random compressible systems at marginal
dimensionality, also to focus the attention of experimen-
talists on their importance.

In Sec. II of this paper, the underlying model is intro-
duced and the RG equations are presented. The solutions
of these equations for d =d'=4 are analyzed in Sec. III.
Depending on the ratio up/6p of the strength of elastic
fiuctuations to quenched disorder, a first-order or
second-order transition is found to take place, 27 being
separated by a tricritical point. A complete account of
critical properties and of elastic stability is given for
T & T, . In the asymptotic vicinity of the phase transition
including the tricritical point, e.g., the universal singulari-
ties of the order-parameter susceptibility and of the
specific heat are determined. In Sec. IV we calculate fluc-
tuation corrections outside the asymptotic critical region
in one-loop approximation, thus, finding an improvement
upon a recent approach by Vause and Bruno' for rigid
random systems in solving the RG recursion relations ex-
actly. These results are expected to be of relevance in in-
terpreting experimental data. Elastic properties are dis-
cussed in Sec. V in the nonuniversal and the universal
critical region. In particular, the first-order transition
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occurring for uo/ho ~ —2 is shown to be associated with
a macroscopic elastic instability. A microscopic instabili-

ty due to weak lattice anisotropy developing in pure
compressible systems, however, is shown not to occur in
random compressible systems. We analyze the effect of
boundary conditions on critical properties, particularly at
the tricritical point using the concept of Fisher renormali-
zation. Section VI finally is devoted to a brief summary
of our results and to a short discussion of their relevance
for uniaxial dipolar systems at d=3, also with respect to
the applicability to real uniaxial dipolar materials.

An effective Hamiltonian for the order-paraineter fluc-
tuations can be obtained by inserting the deformations
which minimize (2.1) at a given random-field configura-
tion. Since deformations are included in harmonic ap-
proximation, this procedure is equivalent to Fourier-
transforming and integrating over deformations in the
partition function. As a result we obtain the effective
Hamilton an

H.rr= 1 g(r+k') 1&k I'+
4V

g«')k«') k
k k

II. MODEL HAMILTONIAN
AND RECURSION RELATIONS

%e mill consider a random compressible system with
short-range interactions at the marginal dimensionality
d*=d=4. The one-component order parameter is cou-
pled to elastic deformations of the lattice and to quenched
disorder. In the long-wavelength limit the Hamiltonian of
such a system can be written in terms of continuum vari-
ables as

0= x —,
' r+yx a + —,

' Vo + —,'uo

1

Aapyseapeys+ g Pap(x)eap
a, P, y, 5 a, P

(2.3)

[0«)]=o
(2.4)

+ g P(k)(cr ) k
— g u(k)(cr )k(cri)

V k 4vk(~o)

g I~k I'
k

where ok and (cr )k are the Fourier components of cr(x)

and cri(x ), respectively, and k =k/
I
k

I
.

Quenched disorder is now represented in H, fr by the
random field (|((k) which can be expressed as a linear com-
bination of the random fields in the original Hamiltonian
H. Assuming q&(x) and P p(x) to be Gaussian random
fields with zero means and 5 correlations, we fin (I)(k)
also to be governed by a Gaussian distribution, specified
by

+ ggapeapcr 2

a,P
(2. 1) 6(0), k =0 „

[(t((k)y( -k)]=
b(k), k&0 .

Here o(x) denotes the one-component order parameter
fiel (spin density in the case of magnetic phase transi-
tions, polarization density in the case of ferroelectrics,
etc.), while eap(x), a,P=1,2,3,4, are the components of
the strain tensor In (2.1)., A. p s are bare values of the
elastic moduli and the g p denote coupling constants be-
tween the order-parameter field and elastic deformations.
Quenched disorder is introduced by the local shifts of the
mean-fleld transition temperature and via induced local
stresses, represented by the random fields ()u(x) and
P p(x), respectively. The probability distribution of these
two quantities will be specified later. The temperature
dependence of r ~(T —To) is linear, as usual, where To is
the averaged mean-field transition temperature. All other
parameters in (2.1) are taken to be temperature indepen-
dent. Spatial variations are allowed for wave numbers
smaller than the cutoff A= l.

Due to long-range spatial correlations of elastic defor-
mations the critical behavior of compressible systems is
known to be sensitive to the boundary conditions used. In
the present work we choose free boundary conditions and
separate the homogeneous deformations from the micro-
scopic modes (acoustic waves) by writing

Here [ ) denotes averaging over random-field configu-
rations.

The last two terms of (2.3) represent effective interac-
tions due to acoustic waves and homogeneous deforma-
tions, respectively. The coefficients of these couplings are

u(k)=2 g [D '(k)] pg ykygpsks
a, P, y, 5

(2.5)

um =2 g gap(~ )apysgys ~

a, P, y, 5

where [D '(k)] p is the inverse of the dynamical matrix

(2.6)

[D(k)) p= g Aaypskyks (2.7)

and (A, ')apys are the elastic compliance constants.
Note, that b, (k ) and u ( k ) depend only on the direction

of the wave number and u, b, (k), u(k), and u are all
positive. Furthermore, the quartic part of H, rr must be
positive definite in order of H, rr to have a finite absolute
minimum. Considering homogeneous variations of the
order parameter [cr(x) =~VP] we thus find the condition

eap(x)=cap+ g i[k up(k)+kpu (k))e'
V k(~oi

Q —U~)0. (2.8)

(2.2)

where V is the volume of the system. Shape-dependent
sllrfacc lilodcs ale 1g11orccl.

Here, instead of a field-theoretical approach applied be-
fore, ' the critical properties of the model will be deter-
mined using a %&lson-type renorrnal~zation-group ap-
proach to the effective Hamiltonian H, ff. A similar pro-
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tt =u —(u), (2.9)

where (( ))=Qq' JdQ&( ) refers to the angular
average with the surface area Q~ of the unit sphere in d
dimensions. The recursion relation for v can be ob-

tained from that for u (k ) in simply replacing u (k ) by u

at each place where k is the external wave number. In
summary, the one-loop recursion relations can finally be
written in the form of the following differential equations:

r Kg

dl
=2r+(3u —(5&+&u& —u )Nl,

I

" = —3u(3u —2&6, &)K4+5(&u &' —&u'&)K4

(2.10)

(2.11)

dl
= —2b(k)[3tt —(b ) —u(k)+(v)]K4

+2(S')K, , (2.12)

gram was also carried out before, where our model was
studied under periodic boundary conditions in d =4—e
dimensions. The choice of free boundary conditions
causes 'only minor changes in the derivation of recursion
relations. Fluctuating homogeneous deformations merely
induce an effective interaction of infinite range as given
by the last term in (2.3) which affects properties at k=0
in the thermodynamic limit. In the diagrams of the per-
turbation expansion the vertex U~ appears only as a tree-
like decoration with zero wave number. Consequently, u

does not modify the transformation of u, h(k), and u(k):
their recursion relations are the same as in the case of
periodic boundary conditions. It is convenient, however,
to eliminate u in favor of

for a given random-field configuration. Here, this aim
may be achieved by integrating the recursion relations to
one-loop order up to I =I', where I' is defined by the
condition

t(1')=1 . (2.17)

u(k)=u, b,(k)=b, . (3.1)

We will return to the discussion of the general case at the
end of this section.

Conditions given by (3.1) are realized in models with
isotropic elastic properties. In this case g tt

——g5~ti and
there are only two independent elastic constants, namely,
C» ——A, and C44 ——4A, ~tt tt (a&P). Relations
(2.5)—(2.6) then are reduced to

Hence, to one-loop order the following expressions are ob-
tained for the susceptibility

(2.18)

and for the singular part of the free energy

~s,„g
———

4 E4 e -"t' (2.19)

The value of 1' depends on the physical temperature
tu = t (0) via (2.17) serving as a matching condition.

III. UNIVERSAL BEHAVIOR
CLOSE TO THE CRITICAL POINT

%eak elastic anisotropy does not alter the critical
behavior of random compressible systems, in contrast to
pure compressible systems, 222 if k-independent fixed
points of Eqs. (2.10}—(2.14) remain stable under k-
dependent perturbations. Therefore, we first focus on the
case, when the parameters of H,tt do not depend on k,
i.e.,

u=2g /Cii and u =2g /8, (3.2)

1
=u(k)[ —6u +2(b, )+u(k) —2(u)]K4, (2.13) where 8 =Cii —[(d —1)/2d]C44 ——Ci~ ——,C44 is the bulk

modulus. The recursion relations can now be written as
dum

=u [—614+2(h)+u —2(u)]K4. (2.14) d lnt =2 —(3tt —b, +u —u )K4, (3.3)

Here I =lnb and K4 1/8vr arises fr——om angular integra-
tion. In one-loop approximation g =0.

Finally, instead of r we introduce

Egt= r+ (3—tt —(5)+(u) —u )[1 rln(1+r)], —
2

(2.15)

which, in one-loop order, measures the distance from the
critical surface. Equation (2.10) may then be replaced by

dtt

I
= —3u (3u 2b, )K4, —

dI
= —2b, (3u 2b, )K4, —

GfU

dl
= —u (6u 2b, +u)K4, —

6fU~
IFl

= —u (6u —2b, +2u —u )K4 .78

(3.4)

(3.5)

(3.6)

(3.7)

d lnt
dI

=2—(3u —(b, )+(u) —u }K4 . (2.16)
Fixed points of these equations are located along two

lines in parameter space:

The renormalization-group equations vvi11 then be used
to calculate the contributions of critical fiuctuations to
physical quantities of interest, like the free energy,
F= —[lnZ&], the inverse of the order-parameter suscepti-
bility X ' = limk u (5 F/5[o k]5[a k ]), etc. , where

Zy =I I 5(T I exp( —H@tt ) dellotes the partition fllnct1011

(i) 3u* —25'=0, u'=u' =0,
(ii) 3u' —2b. =0, u'=0, u~ =26.*, (3.8)

which will be referred to as fixed lines, i.e., rigid fixed line
and renormalized fixed line, respectively. At each fixed
point critical exponents can be defined in the familiar
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way. Thus from (3.3) we get, e.g., for the inverse of the
exponent of the correlation length

d
dl
—(u+2b, ) = —(u+26)(6u 4—6+v)E4 . (3.15)

1 1+
+rig +ren

(3.10)

which implies that the exponents of these fixed points are
related by Fisher renormalization.

Although the degeneracy, indicated by the existence of
fixed lines, is an artifact of the one-loop approximation
and will be lifted by higher-order corrections, the study of
the one-loop trajectories and fixed points clearly provides
useful information about the global fiow.

The domains of attraction of the fixed lines can be ex-
plored introducing a new combination of the parameters,

(3.11)

which also appears in Eq. (3.3) for t. The transformation
of u is described by

U

dl
= —u(6u —2b, + u )E4, (3.12)

which is the same as Eq. (3.6) for u. Since Cii & B & 0, an
important difference follows, however, from Eq. (3.2)
which implies that u&0, while u&0. At the fixed point
we have

(3.13)

The fixed lines in the reduced parameter space (u, b, u)
are shown in Fig. 1. The renormalized fixed line together
with the line u=h=O defines a plane the equation of
which is given by

(3.14)

Combining (3.5) and (3.12) we obtain

f ixed lines

—=2—(Tu —u )E4 .
V

For a given value of u' the exponents v of the rigid and
renormalized fixed points satisfy the relation

This implies the plane defined by (3.14) to be an invariant
plane of the renormalization-group transformation.
Linear stability analysis shows that rigid fixed points are
locally stable. Renormalized fixed points, however, are
unstable against variations which make the system leaving
the invariant plane.

Therefore, we conclude that the asymptotic character of
a renormalization-group trajectory is determined by its
position relative to the invariant plane. The following
three cases are possible (see also Fig. 1):

(i) In the region aboue the inuariant plane (0& u & —2b, )

trajectories go to the rigid fixed line, where all couplings
to elastic degrees of freedom vanish. Systems with bare
parameters in this region behave at the transition point
like random systems on a rigid lattice.

(ii) On the inuariant plane (u = —2b, ) trajectories are at-
tracted by the renormalized fixed line, where the coupling
to homogeneous deformations is relevant (u '= —u" &0)
and leads to a new (renormahzed) behavior.

(iii) Below the inuariant p/ane (u & —2b, ) large negative
values of u and u~ are generated and the trajectories run
away to infinity. This is an indication of a first-order
transition similar to the case of pure compressible sys-
tems. A complete analysis of this region not being our
present concern may require more suitable matching tech-
niques. (See also the discussion in Sec. V.)

In the case of rigid random systems at the marginal
dimensionality it was pointed out' that the one-loop ap-
proximation breaks down in the vicinity of the fixed line,
where 3u —2b becomes comparable with b, . The degen-
eracy is already lifted on the two-loop level and only the
trivial fixed point survives. The same happens in
compressible random systems. Fixed lines have their ori-
gin in the degenerate structure of the one-loop equations
for u and b, . In isotropic systems the transformation of u

and b, is independent of u and u at all orders of the per-
turbation expansion, and so their recursion relations coin-
cide with those in a rigid random system. Consequently,
we may take the asymptotic solutions for u and 5 from
the two-loop calculation by Aharony. ' After appropriate
change of the notations (u =4uzh, „„,5= —gush„, „„)
we obtain

' 1/2
2 3

K4u =—
3 53I

' 1/2

+0 (1/I),

+O(1/I) .

(3.16)

+ 26, =0;
variant plane

(3.17)

After the insertion of these expressions, (3.12) becomes
' 1/2

dU 3——2 U —E4,U
dl 53I

FIG. 1. Schematic views of typical renormalization-group tra-
jectories of an isotropie system for given nonuniversal bare pa-
rameters {uo ho} and various values Uo i.e. (1) Uo=o (2)
uo~ —2ao (3) Uo= —Z~o* (4} Uo~ —2ao

For I—mao we find three kinds of asymptotic solutions,
which also indicate how trajectories are modified close to
the fixed lines of the one-loop equations.

(i) If
~

u
~

&&6, (3.17) can be linearized and we get

u ~exp[ —4(31/53)'~ ] . (3.18)
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(3.19)

This is characteristic of trajectories lying in the invariant
plane. They arrive at the trivial fixed point along the re-
normalized fixed line.

(iii) If Esv & —2(3/531)'~ = —2Xqb„ trajectories run
away to minus infinity.

Returning to (3.6) we find that positive solutions decay
faster than u and h. Linearization yields

This behavior is exhibited by trajectories running above
the invariant plane. Two-loop corrections drive them to
the trivial fixed point along the rigid fixed line.

(ii) If v is of order 1 '~, the right-hand side of (3.17)
must vanish, and we have

~ 1/2

Kgv= —2 +0(l/1) .3
531

point. It is obvious from (3.22), that the results are
correct to logarithmic accuracy, i.e., up to a factor of
some power of Ilnt I

{Ref.30).
It is clear from (3.8) that condition (2.8) is not satisfied

at the renormalized fixed line, i.e., this line is located in
the domain where H,tt has no finite absolute minimum
and it has to be stabilized by higher-order terms. We ex-
pect, that these terms wiH modify the invariant surface
separating the regions of first-order and second-order
transitions, the asymptotic behavior on this surface will,
however, not be changed. Arguments, supporting this ex-
pectation will be exemplified later in Sec. V.

Finally, we turn to the discussion of the general case,
when 6(k ) and v (k ) are anisotropic. Assuming weak an-
isotropy, we lineiirize the recursion relations (2.11)—(2.13)
with respect to the deviations from angular averages

v ~ exp[ —4(31/53) '~2] as 1~ao . (3.20)

In order to find the leading singularities in the suscepti-
bility and the specific heat the procedure sketched in the
previous section will be used. Since t (1) is needed only for
1 ~y 1, it is permissible to insert the asymptotic form of u,
b„and v into (3.3). We obtain

ln[t (1)/t] =21+2 +0 (lnl),
31

(3.21)

1'= + Ilnt
I

Ilnt I
3

+0 (ln
I
lnt

I
) . (3.22)

Now it is straightforward to calculate the susceptibility
and the singular part of the specific heat,

2
&sing =

2+sing /t (3.23)

using (2.17) and (2.18). The results are summarized in
Table I. Expressions for rigid behavior were previously
known from the studies by Aharony. ' The present
analysis shows in addition, that this behavior is stable
against not too large coupling to elastic deformations.
Both in the rigid and the renormalized case, mean-field
behavior is modified by weak exponential corrections.
Singularities are, however, stronger in the latter case.
Especially in the specific heat, the finite cusp of rigid
behavior is replaced by a weak divergence at the critical

where t =to cc (T—T, )/T, . The upper (lower) sign refers
to rigid {renormalized) behavior. Integration is stopped at
1 =1' defined by t (1')=1. Under this condition (3.21)
can be solved by iteration and we find

' 1/2

5v(k) =v(k) —(v ),
56(k)=b, (k) —(I) .

(3.24)

In this approximation u, (6), and (v ) obey the isotro-
pic recursion relations (3A)—(3.6), whereas

—5v (k )= —5v(k )(6u —2(h) )K4,
dl

dl
—5d(k)= —M(k)(6u —2(h))E +25v(k)(h)E

(3.25)

IV. NONUNIVERSAL BEHAV1OR

As pointed out by Aharony" and later exploited in de-
tail by Vause and Bruno, ' in rigid random systems at
marginal dimensionality, one-loop equations may be
relevant in weakly random systems in spite of the fact
that the asymptotic behavior can be determined only in a

Inserting the asymptotic solutions (3.16) for u and (5),
we find that both 5v (k ) and M,{k ) decay like
exp[ —4(31/53)'~ ] when /~ao. (In order to be con-
sistent, polynomials multiplying the exponential function
have been ignored. ) In view of (3.16) and (3.20) we con-
clude, that the assumption of weak anisotropy remains
valid in the course of renormalization. Anisotropy decays
much faster than u and (5), so that it cannot influence
critical behavior. We expect this to be also true in sys-
tems of finite degree of anisotropy, although the opposite
case is not ruled out by our present considerations.

TASI.E I. Anomalous temperature dependence t =(T—T, )/T, of the inverse of the susceptibihty
and of the singular part of the specific heat C„.„~ for T—+ T', in the case of rigid and of renormal-

ized behavior with uo ~ 0 and 60~ 0.

Non universal

parameters Csing

I t Icxp& —{+~I»It I
I)' ) exp[ —2{ s'3 I»It I I

}'")
I

t IexpP —' I»It I I
}'") exp[&{—,', I»It I I

}'")
First-order transition

RG behavior

Rigid

Renormalized

Runa%vap
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higher-order approximation.
One-loop trajectories end at a point on one of the two

fixed lines. The point is determined by the initial (bare)
values of the parameters in H, rr. If one-loop equations
were exact, this would imply nonuniversal asymptotic
behavior. Nevertheless, in the vicinity of a fixed line,
higher-order corrections make the trajectories turn toward
the trivial fixed point at the origin (u'=6'=0), the only
real one in the model. The renormahzation-group flow
bears some recollection of familiar crossover phenomena
at multicritical points: the initial enhancement of critical
fluctuations are governed, to a good approximation, by
the fixed points of the one-loop equations instead of the
trivial one. Note, however, an essential difference: in the
present case, one-loop fixed points stop to act as a fixed
point as soon as trajectories come close to them, and so
there exists no scaling region dominated by their ex-
ponents.

Now we are going to calculate fluctuation corrections
in the region, where one-loop equations provide a good
approximation. At first the isotropic case is considered.
The recursion relations for u and b„Eqs. (3.4) and (3.5),
are the same as those in a rigid system. Solving them, we
follow Vause and Bruno. ' The projection of the trajecto-
ry on the ( u, 5) plane is determined by

u (x)=x, b, (x)= —,ax

Combining (3.11) and (4.6) we obtain

(4.8)

8V 2X —0 U
U+

dx x(x —0} 3X (x —g)
(4.9)

The solution is given by

xo(xo —a) Xo —X-+ 2
Uo 3xox (xo —a)

(4.10)

where Uo is the initial value of it. It can easily be verified
that this solution for U(x), indeed, is consistent with three
different regions of RG flow (Fig. 2) as was discussed in
the preceding section following Eq. (3.15).

The solution of (3.3) can also be expressed as a function
of x:

Instead of constructing interpolating formulas and thus
introducing further approximations, as done by Vause and
Bruno' in the rigid case, we proceed with the exact solu-
tion of the one-loop equations. From now on we shall
parametrize the trajectories by x, instead of l. In view of
(4.2) and (4.5), we have

db, 2b,

du 3Q

which yields
3 T

(4.1)

(4.2)

ln[t(x)/to]=21(x) K4 f—[3u(x') —b(x')

g)]
dl(x )

(4. 1 1)

(4.3)

where uo and b,o are the initial (bare) values of the param-
eters. The fixed line is intersected at the point

'3

u'=-', b, '= 2 :—Q
Qo

where I(x) is defined by (4.7). Using Eqs. (4.8) and (4.10)
the integration on the right-hand side of (4.11) can be car-
ried out and we obtain

Inserting (4.2} into (3.4), we obtain

du 2/3

I
= —9u(u —au )Kq .

Introducing the new variable

the fractional power can be eliminated:

dx
I

=3x (a —x)K4 .

Elementary integration gives

(4.4)

(4.5)

(4.6)

0,004 0.012 0.016

1 x (xo —a)
I = ln +Q

3g 3K4 xo(x —a) v"'=-0.0S -2S
0 g

' go

a 1 I

Xo X
(4.7)

Here, xo=—uo is the initial value of x. As l increases, x1/3 ~

approaches the value of a monotonously.

FIG. 2. RG flow in the (u, U) plane as obtained in one-loop
approximation for fixed values uo ——0.2 and 50——0.02 together
with various values of Uo, i.e., u 0"g —250 and attraction by the

(2)
rigid fixed line, uo ———2bo and attraction by the renormalized

W3)
fixed line, and uo ~ —250 and runaway behavior.
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t (x)
ro

=21(x)+—ln
1 x(x —a)
2 xo(xo —0 }

3u —26-0(u ). For computational purposes we fix the
limit by

3u(x') —26(x')=. 10u (x'), (4.17)

5U(k) u(k) —(v &

Using the expressions given by (4.8) for u and (6&, we
obtain from (3.25)

5U(k }=5Uo(k )
xo(xo —a)

(4.14)

and (u& is transformed by (3.6), which coincides with
(3.12), the equation for K Hence, (U & is given by (4.10)
on inserting the appropriate initial value. With that ini-
tial value, the ratio (4.13}then takes the form

Uo(x —xo )—ln 1+ (4.12)
3x o(Q —xo )x

The effect of the coupling to elastic deformations is
represented by the last term of (4.12) which vanishes in
rigid systems where Uo ——0. Hence, for Uo=O and a~O,
Eqs. (4.7) and (4.12) reproduce the formulas describing a
rigid pure system.

The results derived for isotropic systems remain vahd
when weak anisotropy is included. The only modification
is that 5 and U in this case represent the angular averages
(6& and (u&, respectively. This follows from the fact
that in the case of weak anisotropy angular averages are
transformed by the isotropic equations. However, it
remains to be checked that anisotropy will not become
strong due to the renormalization even if it is weak at the
beginning. We shall characterize the degree of an-
isotropy by the ratio

which, supplemented by the condition r (x') =1, defines a
characteristic temperature t, . The one-loop description is
reliable only for t ~ t, T.herefore, r, has been computed
for several sets of the bare parameters. The results are
summarized in Fig. 3. In accord eath related previous es-
timates' ' of a characteristic temperature t„we find in
weakly disordered systems (b,oguo) t, being separated
from the noncritical region ( t = 1) by orders of magnitude.
Consequently, in these systems only the one-loop region
r ~ t, seems to be accessible experimentally.

(ii) H, ti has a stable minimum only in the region where
u +U ~ 0. Trajectories leaving this region are followed up
to the plane of instability. Our approach works only for
i &t+, where the characteristic temperature t+ is to be
determined by the condition

u (x')+U(x') =0 . (4.18)

1

a inr
(4.19)

Using (4.7), (4.12), and (4.16) we can evaluate (4.19) expli-
citly to obtaiil

One should note, however, that this second limitation be-
comes effective only if uo is sufficiently large, whereas in
the opposite case, trajectories do not leave the region of
stability.

We may now characterize the effect of fluctuations on
the order-parameter susceptibility by the effective ex-
ponent

5U(k)»o«) &oo& xo —x
1+ 2

&oo& 3X~ xo —u
(4.15}

This ratio remains finite as x varies from xo to a and

5U(k) decreases about as fast as (U&. The value of that
ratio at x =a diverges, however, in the limit of vanishing
disorder (a~O}: the region where linearization with
respect to anisotropy is allowed shrinks with decreasing
strength of disorder. In a pure system any amount of an-
isotropy drives the system away from isotropic be-
havior 22, 24

The temperature dependence of the susceptibility is now
derived in using the solutions of the renormalization-
group equations, as outlined in Sec. II already. Under the
condition t (x )=1 the susceptibility is thus given by

0.1
regions, where 1- loo

0.05-

Bl(x') t}lnt
jeff=

=1+—,
' [3u (x') —6(x')+ u(x')]K4, (4.20)

(4.16)

and x ' is related to the reduced temperature
t=ro~(T T, )/T, via (4.12)—. Due to the complicated
structure of the resulting expressions, however, here the
remaining analysis has to be carried out numerically. In
practice, it is convenient, first to choose the value of x in
the interval a ~x' ~xo and then to calculate the corre-
sponding values of t from (4.12) and of X from (4.16).
There are two limitations to this approach:

(i) The one-loop approximation breaks down when

0
0 0.05

0
0.1

FIG. 3. Characteristic temperatures t+ as functions of the
bare parameters (uo, +). Lines connect points of the same
value of t+. The one-loop approximation is valid only outside
of the shadowed area.
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I

t =(T-Tc}/T~
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40
-log, t
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=O. l and various values of Up.

FIG. 4. Effective exponent y@q of the or -p
f {u 4 ); {c)for fixed values Ap=Qp=O. a{b) for U = —0.025 and various values o up, p, cous values of ( up, hp); ~bI or Up ———.

y

where the upper (lower) sign refers t g'o the ri id (renormal-
i . 4(c)]. The same result could have been ob-

ameter susceptibil-taln or eed f th exponent of the order-parame e
These limits,9) sin the scaling law y =2v. Thea

in the resent con-homever, have no physical relevance &n t e p

on the ri ht-hand side of (4.20) only terms hnear m
the cou ling parameters have been re ain
cien f h striking deviations in ydrcientl small values o 0, no s ri

'

e as corn ared to the case of pure (ho ——0) loga-
[

' . d 4(b}]. It is also in-[Fi s. 4(a} an
teresting to note that in the limit x'~a, r.e., c ose
fixed line, we would obtain from (4.20):

(4.21)eff' 'V= &+ 4&

the temperature reg~rne t && „t where theytext, since
validit of the one-could be observed is far beyond the va i i y

loop approximation they are based on.

V. ELASTIC PROPERTIES

I in the renormalizatron-group tran
0 0

nsformation to
11 Hamiltonian (2.1) provides the recursion

h f ld f the order-parameter
o x and the elastic deformations e~)i x . n a i

'

f the displacement field are successive y e im'tIons o e
s of the displacementtoo, and the remaining components of e
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C;J = —2K4gtgj s (5.1)

field are then rescaled like lengths, i.e., u~(k}~u (bk)/b,
so that elastic moduli are not affected by rescaling. It is
convenient to introduce Voigt's notation and express k~pz~
and g p as a matrix C,J and a vector g;, respectively,
where i,j =1,2, . . . , d(d+1)/2=10. The particular way
in which pairs of subscripts (a,P) are grouped together to
subscripts i, is irrelevant in the following considerations.

In one-loop approximation the recursion relations can
be written as

—ln(det
i CJ i

) = —K4v
dl

(5.9)

Now, we are in a position to investigate elastic stability
using the results obtained in Sec. III. Depending on the
bare values of the parameters, three possibilities are
found.

(i) Rigid behavior A.nisotropy in v(k) and h(k) rapid-
ly decays and the trivial fixed point is approached along
the rigid fixed line. Combining (3.11), (3.18), and (3.20)
we get, for 1~Op,

' = —g;(3u —(&)+(v)}K4. (5.2) v~ ~ exp[ —4(31/53)'i ] . (5.10)

Close to the trivial fixed point (u'=6'=0), alon, the
fixed lines, the integral of (5.2) ln(g;/g; )=—K4 (3u
—(b, ) + (v ) )dl' can easily be evaluated using the asymp-
totic solutions (3.16) and (3.20) for u, (6), and (v ). ~e
then find

' lj'2

ln(g;/gi )=—2p 31 (5.3)

vm =2+gigj(C 41 .
f,J

Using the identity

—det
i C;,. i

=det
[ C;J f

d

(5.7)

(5.8)

and thus from (5.1)

C,"—C,& ccg;g&exp[ —4(31/53)' ], (5 4)

where g; is the initial (bare) value of the coupling con-
stant g; and CJ" = limt „C;)are the values at the critical
point. The physical values of the elastic constants are
given by

(5.5)

where I ' is determined by the matching condition
t(l')=1. According to (3.22}, I'= —,

'
~
lnt

~

close to the

critical point. Thus, the singular parts of the elastic con-
stants behave as

(Cfj~"')„~~g;g)exp[ —2[(6/53) (
lnt

~

]'~zI . (5.6)

This is the same cusplike singularity as the one of the
specific heat in the case of rigid behavior. Note, however,
that (5.6) remains valid also in the case of renormalized
behavior.

The system is stable against homogenous deformations
if the eigenvalues C~;~ of the matrix of elastic constants
Cz are all positive. The eigenvalues can be classified ac-
cording to the irreducible representations of the symmetry
group of the system. Since g; has the full symmetry, it is
clear froin (5.1) that only eigenvalues associated with the
identity representation are changed by the renormal-
ization-group transformation.

An elastic instability manifests itself also in the be-
havior of Um~ the effective coupling due to homogeneous
deformations. In Voigt's notation, expression (2.6) for v

simplifies to

The integral of the right-hand side of (5.9) thus converges
when /~ao. Consequently, det

~ Cj ~

does not vanish
along the trajectory, elastic stability is preserved.

(ii) Renorrnalized behavior. The trivial fixed point is
approached along the renormalized fixed line, where, in
view of (3.19) and (3.20),

'
]./2

3
Kqv =—K4v= —2 (5.1 1)

The integral of the right-hand side of (5.9) diverges when
1~ao, hence

det
~

C~
~

a:exp[ —4(31/53}'~ ] . (5.12)

An eigenvalue of the elastic constants matrix, say, C~i~,
vanishes at the fixed point. The temperature dependence
of the physical eigenvalue is obtained, close to the critical
point, by inserting I =I' = —,

'
~

lnt
~

into (5.12)

CPP(' ~expI —2[(6/53)
i
Int

i

]'i
I . (5.13)

~m —K4vm ~ (5.14)

which implies, that v diverges at some finite value I =I,
as v cc(/, —I) '. It follows from (5.9) that an eigenvalue
of C;1 changes sign at /=I, and the system becomes un-
stable against the associated homogeneous deformation.
Since this deformation transforms as the identity repre-
sentation, the elastic instability is not accompanied by the
softening of an acoustic mode. In the physical system
the elastic instability leads to a first-order transition.

In the isotropic case, systems with parameters on the
invariant plane, U

—=U —U = —25, exhibit renormalized
behavior, while rigid behavior and first-order phase tran-
sitions are observed above and below this plane, respec-
tively. The eigenvalue, changing sign when the instability
appears, is proportional to the bulk modulus 8. Our re-
cursion relations (5.1) and (5.2) can be integrated in the
whole region of I. As a result, the elastic constants are
given by

C1( I}=C1 2K4g; gj Q ( I), —

where C,& denotes initial (bare) values and

(5.15)

(iii) Runaway The reno.rmalization-group transforma-
tion generates large values for v~. The recursion relation
(3.7) reduces to
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I ll

Q(l):—I dl'exp E—q J (6u —2(h)+2(U })dl"

Q [l (x)]= Xo —X

xpup —x [Up —3xp(xp —a))2 (5.17)

On the basis of (5.15) and (5.17) one may now calculate
the physical elastic constants numerically just as it was
done in Sec. IV in the case of the susceptibility.

The elastic instability cannot be observed if we exclude
homogeneous deformations by choosing periodic boun-
dary conditions instead of free boundary conditions as-
sumed up to now. In this case the term proportional to
u is absent in H, rr. As a consequence, U does not ap-
pear in the recursion relations for r and t, i.e., Eqs. (2.10)
and (2.16). Apart from this change, recursion relations
(including those for the elastic constants, too} remain
valid. Since U js no longer an expansion parameter, its
runaway does not influence the physical behavior at
periodic boundary conditions. It follows immediately
from the discussion in Sec. III that a continuous transi-
tion and rigid critical behavior can be observed for any set
of the bare parameters which is consistent with @-

expansion results obtained before.
Periodic and fro: boundary conditions simulate systems

at fixed volume and Axed pressure, respectively. The
phenomenological theory of constrained systems as de-
veloped by Fisher ' can be used to relate the critical singu-
larities observed in the two cases. For the sake of simpli-
city only isotropic systems will be considered. The first
step is to derive a relation between the reduced tempera-
tures tv [T—T, ( V)]/T, ( V——) and rp ——[T—T, (P)]/
T, (P},where V and P denote the volume and the pressure
of the system. Following the particularly simple formula-
tion of Achiam, we find

r~ ~8(iv)tv (5.18)

where 8 (tv } is the bulk modulus.
(i) Above the invariant plane, 8(tv) is finite for tv~0

and

fp (x. ty . (5.19)

The critical behavior is insensitive to a change of external
conditions.

(ii) On the invariant plane the temperature dependence
of 8 (tv) is given by (5.13). The reduced temperatures are
related by

tI ~exp[ —2[(6/53)
I
inrv

~

]'~ ]tv .

This can be inverted by iteration, i.e.,

tv ~ expI2[(6/53)
~
lntp

~

]'~ ]tp .

(5.20)

(5.21)

(5.16)

If the anisotropy is weak, this expression can be evaluated
explicitly using the solutions of the isotropic one-loop
equations, which provide a good approximation far from
the Axed line. Proceeding just as in Sec. IV, we eliminate
I in favor of x:—u'/. The solutions for u, 5, and U are
given by (4.8) and (4.10), in the latter Up replaced by Up,

the bare value of u. Thus, we finally obtain

At periodic boundary conditions (fixed V) the susceptibil-
ity behaves as

1
exp[(6/53)

~

Intv
~

]'~
ty

(5.22)

(see Table I). The susceptibility at free boundary condi-
tions (Axed P) is obtained by substituting (S.21),

X ~ —exp[ —[(6/53)
~

1ntp
~

]'
tp

(5.23)

in agreement with the results listed in Table I. In order to
get the modification of the specific heat, this substitution
has to be performed in the entropy

Stains- «v+—brvexp[ —2[(6/53)
~

1ntv
~

]'~2I, (5.24)

where a and b are constants. Derivations before and after
the substitution reproduce C„„s in the rigid and renormal-
ized cases, respectively, again in agreement with Table I.

This transformation is an example of Fisher renormali-
zation in a system with finite specific heat. ' A further
peculiar feature of this example is the appearance of ex-
ponential singularities.

VI, DISCUSSION AND CONCLUSIONS

We have investigated phase transitions in a random
compressible uniaxial system at marginal dimensionality
1'=1=4 by analyzing solutions of the RG recursion re-
lations. Effects of a competition between quenched disor-
der and elastic fluctuations are shown to affect signifi-
cantly the marginal critical behavior of these systems.
Depending on the relative strength of disorder and of elas-
tic fluctuations being measured by nonuniversal parame-
ters b,p and Up, respectively, a first-order or second-order
transition turns out to take place, being separated by a tri-
critical point. We found that the lattice compressibility
gradually vanishes as T~T„ if up/bp& —2+0(hp),
leading to the same critical behavior as in the rigid lattice
case. For up/bp ———2+0(bp), however, a new critical
behavior occurs due to lattice compressibility. In the
asymptotic vicinity of the transition including the tricriti-
cal point, we have determined the universal singularities,
i.e., of the order-parameter susceptibility and of the
specific heat. The temperature range where these univer-
sal singularities might be observable, however, seems to be
extremely narrow.

Therefore, we have focused our attention on calculating
fluctuation corrections by using the one-loop approxima-
tion in a temperature range t„«t «1 sufficiently far
from the asymptotic critical region t « t„with t, being
related to the peculiar degeneracy of the RG recursion re-
lations to leading order. In the course of these investiga-
tions we succeeded in improving a recent approach by
Vause and Bruno' for rigid random systems by solving
the recursion relations exactly. It has been shown how a
convenient and adequate representation of the results can
be obtained in terms of nonuniversal effective exponents
varying continuously as functions of up and Ap. Due to
the close correspondence existing between the lowest-order
fluctuation corrections of uniaxial d=4 systems and of
uniaxial dipolar d=3 systems, ' this nonasyrnptotic criti-
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cal behavior should also be important for analyzing and
understanding experiments in random-diluted uniaxial di-
polar ferromagnets such as, e.g., LiTb» Yi &F4, or uniaxi-
al ferroelectrics such as, e.g., partially deuterated trigly-
cine sulfate.

We have also investigated the elastic properties of an-
isotropic sohds in the vicinity of these phase transitions.
Specifically, the first-order transition which occurs for
uo/a« —2 has been associated with a macroscopic elas-
tic instability. The influence of boundary conditions on
critical properties has been revealei, in particular at the
tricritical point using the concept of Fisher renormaliza-
tion. A microscopic instability due to weak elastic an-
isotropy which develops in pure corn ressible systems
leading to a first-order phase transition, " however, does
not occur in random compressible systems. Our results
suggest effects of weak lattice anisotropy to become negli-
gible as the critical point is approached in random sys-
tems.

In conclusion, our unified theoretical approach provides
the calculational tool for a sensible assessment of the im-
portant role of fluctuations at phase transitions in random
compressible systems of marginal dimensionality. In ad-
dition, it should also simplify the experimental verifica-
tion of the role of these fluctuations in a much wider class
of uniaxial dipolar materials exhibiting such transitions,
i.e., in various real anisotropic compressible solids of some
sort of random dilution. In that context, experiments on
such materials for estimating our nonuniversal parameters
Uo and bo measuring elastic fluctuations and quenched
disorder, respectively, would be invaluable.
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