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Effect of dissipation on the phase transition in granular superconductors
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The phase diagram of the self-charging model of an array of resistively shunted junctions is cal-
culated in the mean-field approximation using the functional integral formulation. The dissipation
tends to diminish the effects of the charging energy U on the phase boundary: The degree of
reentrance decreases and the boundary approaches the classical (U 0) limit as g

There has recently been a great deal of interest in the
problem of phase ordering in Josephson junction arrays,
taking into account the effects of the electrostatic charging
energy. ' 7 In general, the quantum phase fluctuations, as-
sociated with the charging energy, tend to inhibit the
long-range phase order leading to the possibility of a
fluctuation-driven phase transition. 34 Calculations of the
transition temperature for this phase ordering have been,
until now, confined to the case of the arrays of undamped
junctions. It is well known that dissipation tends to
suppress the quantum fluctuations. This effect has been
thoroughly investigated in connection with the problem of
macroscopic quantum tunneling. Applying this concept
to a Josephson junction, we see that the phase fluctuations
in a damped junction are reduced, compared to the un-
damped case. In an array of junctions, it is the competi-
tion between the phase fluctuations and the Josephson
coupling energy which determines the phase-ordering
transition temperature. Consequently, we expect some
changes in the phase diagram to take place in the presence
of dissipation in the junctions. Quantitative predictions of
such modifications are of interest especially in view of the
possibility of the reentrant phase transition in granular su-
perconductors. '~ 6

The purpose of the present work is to calculate the
modifications of the mean-field phase diagram of an array
of Josephson junctions caused by the dissipation. We con-
sider the simplest possible model, namely, the self-
charging model with a diagonal term for the charging en-
ergy. 36 To calculate the transition temperature, we use
the Feynman functional integral formulation of the mean-
field theory, introduced recently by one of us. 7 The parti-
tion function of the array is given by

pp
Z - Dttt(z)exp — L(ttt)d z, (1)4 PCr 40

where the subscript on the path integral indicates that the

paths must satisfy the periodic boundary condition
p(0) 1'(p). The function L (p) is obtained by incorporat-
ing the dissipative term (derived for a single junction in
Ref. 10) into the diagonal model of Ref. 7:
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where p;I p;
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pj is the phase difference of the nearest-

neighbor superconductors in the array, which are coupled
by the Josephson energy E,. The charging energy, propor-
tional to the inverse capacitance, is denoted by U. The
function a;I(z) describes the effect of the dissipation pro-
duced by quasiparticle tunneling or by the shunting resis-
tance. 'o We proceed by introducing the mean-field ap-
proximation which replaces the interactions between the
ith and jth superconductors in Eq. (2) by an effective Gor-
kov field and an effective damping acting on a single su-
perconductor with phase p;(z). Formally, this can be
achieved by generalizing the approach of Ref. 7 to include
the damping. We start from the variational principle for
the free energy:"
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The trial action So Lodz is defined by the follow-
ing choice for Lp..
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where z is the coordination number in the array. The vari-
ational parameters y and I (z) are determined from
Eq. (3), by requiring that bF, -O as y y+hy and
I I +BI. This yields

y- Dpexp( —So[&])cosp 2&cosp&, (7)
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and
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Near the transition temperature T, P, ' the quantity

&cosP) is small and the path integral (7) can be calculated
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by expanding S0 in y.
This results in the self-consistent equation for T, of the

form

i-zs, „dz~(.),
where R (z) is the phase correlator given by

fO
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The action S„ f 'L„(p)d z is obtained from Eq. (6) by
discarding the Josephson coupling term, so that

Because of the non-Gaussian form of the dissipative
term in Eq. (11), further approximation is needed to per-
form the path integrals (10) and (12). One possibility is
to replace Eq. (11)directly by a harmonic functional. Re-
cent calculations' of the phase correlator for a normal
junction, however, have shown that the harmonic approxi-
mation overestimates the role of the damping term, if com-
pared with the self-consistent harmonic approximation
(SCHA). Hence, we employ the latter approximation to
treat Eqs. (10)-(12). This is done by replacing L„as fol-
10ws:

'2
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where G(z z') is th—e SCHA "variational parameter"
given by

G(t t') exp[ 2 &[p(z) p(z')1 )scHAj . (14)

Consistent with the ansatz (13), we obtain I sc"A from
Eq. (12) by replacing S„by Ssc"A, so that

I " (z —z') -2&cos[—,
' [y(z) —y(z')] j)sc„„

=2exp[ ' &[p(z) p(z')] )sCHAj . (15)
Equations (14) and (15) can be combined to define a

single SCHA parameter II(z —z'):

I

Equations (16) and (17) are coupled self-consistent equa-
tions from which the phase correlator R (z) can be deter-
mined, with the use of Eq. (10), as follows:

R(z) &exp[i [p(z) —p(0)]j)s(:HA

-exp[ —
2 &lp(z) —p(0)]')scHAj - [II(z)]4 ' . (l8)

The path integral in the exponent of Eq. (16) can be
done by expanding p(z) into a Fourier series"
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Using Eq. (16) in Eq. (13), we have
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)]' . where r0„2'/p, . Performing the multiple Gaussian in-
tegrations over the coefficients p„, we obtain from Eqs.

(17) (16) and (17) the following integral equation for II(z):

II(z) =exp—5UP, I —cos (ro„z)
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In what follows we confine ourselves to the case where the dissipation is due to the shunting resistance RAt across the
junctions. Then the function a(z) is given by'0

&o xa(z) = (2i)2«rv P sin (xz/P)

where R0 h/e' 4.11 k Q.
Introducing this expression into Eq. (20) and changing the variable z to x =2+z/p we obtain

II(x) =exp —a g 2

1 —cos(nx )
, n2+ag f dx II(x) [1 cos(nx)]/[I —cos(x—)] (22)
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This equation has been solved numerically for II(x ) by
the method of successive approximations. ' In view of the
slow convergence of the Fourier series in the exponent of
Eq. (22), the number of terms was taken n -10, thus
ensuring the overall accuracy of II(x ) of the order of I /o.

Using the relation (18) in Eq. (9), we obtain the implicit
equation for T, :

1 P IT( )/sdz

z

Following Ref. 3, we introduce the parameter a zEJ/U
and rewrite Eq. (24) as follows:
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where the integral is an implicit function of a and g.
This equation is to be solved for a a„regarding a and

g as parameters. The transition temperature T, for the
phase ordering is determined from the roots a, using the
following relation:

Tc 5

T; 2m a, a
(26)

where T, zEJ is the transition temperature in the classi-
cal (U 0) limit. The results of the calculations are plot-
ted in Fig. 1 for several values of the coupling parameter g.
On increasing g, the phase boundaries move toward small-
er values of a in keeping with the general expectation that
dissipation diminishes the importance of the quantum
phase fluctuations. We note that the phase diagram is
rather sensitive to the presence of large shunting resis-
tances. For instance, taking z 6, we see from Eq. (23)
that the g 1 case corresponds to a shunting resistance
Rjv 97 kQ and a significant change in the phase bound-
ary. The asymptotic limit of g ~ is also correctly
reproduced, as the phase boundaries tend to the classical
limit T,/T; 1 for g ~. More interesting is the depen-
dence of the reentrant protrusion on g. There is a continu-
ous narrowing of the "reentrant bulge" for 0 (g (2,
which is followed by a more rapid transition toward the
case without reentrance. Such a transition would be ex-
pected in view of our recent results for the effective con-
ductance in normal tunnel junctions. '2 We note that the
conductance is determined by the phase correlation
through a relation similar to Eq. (24). Moreover, the
self-consistent integral equation for the phase correlator of
Ref. 12 has the same form as Eq. (22). Thus, the rapid
crossover toward metallic conduction taking place in a
normal junction in the region 2~g «3 should be reflected
in the phase diagram of the present work.

%e have recently learned that Chakravarty, Ingold,

FIG. 1. Phase-ordering temperature ratio T,/T; plotted as a
function of the parameter a zE, /U from Eqs. (25) and (26).
The dimensionless parameter g given by Eq. (23) is inversely
proportional to the shunting resistance R~.

Kivelson, and Luther' had also studied the role of the dis-
sipation in the phase transition of Josephson junction ar-
rays. In their work the dissipative term in the trial action
is taken in the harmonic form and the Josephson coupling
is treated within the SCHA. Nevertheless, the resulting
zero-temperature phase diagram seems to substantiate our
conjecture regarding the critical value of the damping pa-
rameter g. Specifically, taking z =2d, where d is the
dimensionality of the array, Eq. (23) yields g =8n/5(ad),
where tz corresponds to the parameter a of Ref. 13. The
important conclusion of the latter work is that the zero-
temperature phase diagram exhibits a vertical boundary at
a critical value (ad )„;,=1, corresponding to g„;,= 5. At
this critical dissipation the system enters a regime in which
the phase transition is dictated entirely by the parameter
g, so that the resistance R~ becomes the only relevant
Uariable for the onset of the global phase coherence. ' The
qualitative change in the T,/T, curves obtained in the
present work may be related to this criticality of g. There
is a difference in the present mean-field approach as com-
pared with the SCHA method of Ref. 13. The MFA
phase diagram is determined by the phase correlator of the
isolated normal junction, and the criticality of g stems
from the anharmonin ty of the diss'ipatiue action. On the
other hand, the criticality of a seems to originate from the
anharmonic Josephson term in conjunction with the dissi-
pative term in the harmonic form. The latter is related to
the crossover from diffusion to localization which has been
previously demonstrated for the quantum Brownian parti-
cle with harmonic dissipation in a periodic potential. ' '
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