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Phase fluctuations in Josephson junctions
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Thermal excitation and zero-point motion bring about fluctuations in the gauge-invariant phase
coupling across Josephson junctions. These fluctuations are studied in a simple picture incorporat-
ing both the resistively shunted junction (RSJ) model and the Ambegaokar-Baratoff theory. A
diagram of the parameter space of a junction delineating a boundary between the phase-coupled
and phase-decoupled regimes is obtained. Estimates of the root-mean-square voltage fluctuations
justify the use of the normal-state tunneling resistance rather than the temperature-dependent
quasiparticle tunneling resistance in the RSJ model at the boundary.

Recent experimental studies of the onset of supercon-
ductivity in ultrathin films as a function of thickness and
normal-state sheet resistance have revealed what appears
to be a universal threshold condition involving only the
normal-state sheet resistance. ' Superconductivity is found
at temperatures below or near the usual bulk transition
temperature in films for which the normal-state resistance
is below about 6000 Qg. At present, there is no generally
accepted theory for such a threshold. It may be possible to
understand its existence in films, however, if there were a
threshold for a single junction. This is a consequence of an
argument by Ambegaokar, Halperin, and Langer, 2 since a
film can be modeled as an array of junctions of randomly
distributed coupling strengths.

In this Rapid Communication we treat a simplified pic-
ture of the threshold for phase-coherent coupling (zero
resistance) across a junction where the threshold is a
consequence of macroscopic quantum zero-point motion
and thermal excitation. We treat the junction in terms of
the resistively shunted junction (RSJ) model, which has
been so successful in describing the classical behavior of
Josephson junctions. Previous work in the field of macro-
scopic quantum tunneling (MQT) has shown how to in-
clude dissipation in a quantum-mechanical treatment of
this model. 4

We consider a junction within the RSJ model in which
the Ambegaokar-Baratoffs theory is used to take into ac-
count the temperature dependence of the Josephson effect.
A diagram of the parameter space which exhibits the
boundary between the phase-coupled and phase-decoupled
regimes is obtained. Estimates of the root-mean-square
voltage fluctuations in this model enable us to address the
question of which resistance, i.e., normal-state tunneling
resistance or the quasiparticle resistance, governs the dissi-
pation in the RSJ model.

%ithin the RSJ model a Josephson junction is treated as
a parallel combination of a capacitance C, an effective
resistance R and a tunneling supercurrent channel. The
current through the latter is given by Iosin8, and the volt-
age across the junction obeys the Josephson relation
8 2eV/h. Here 8 is the gauge-invariant phase difference

across the junction. Current continuity gives an equation
of motion of the form

ft d 8+ h, I d8+ 8V(8)
2e dt 2e R dt 88

la

where the potential is

V(8) (It/2e)I [I —cos8] —(It/2e) 8I .

Here Io is the maximum Josephson current and I is the
external current supplied to the junction. According to the
Ambegaokar-Baratoff theory for an ideal junction,

Io(t) [2tth(0)/(4eRtv) ]F(t),
where

F(t) [d(t)/d(0)]tanh[d(t)/(2kttT)],

lJ.(t) is the energy-gap parameter, Rtv is the normal-state
tunneling resistance, and t T/ T, . It is convenient to
introduce the Josephson plasma frequency too =2
x (E,EJ)'t2/It, where E, e /C is the charging energy and
EJ Ioh/2e is the Josephson coupling energy. Equation
(I) can then be written as

8+2acoo8+ tao sin8 I/ [C(h,/2e)],
where a=(E,/EJ)'t /4r is the damping parameter and
r Re /t1 is the reduced resistance. Within our model we
describe an ideal junction in terms of the following param-
eters: a, r, rtv Rive /l't, and t Note that .in general
a-a(r, rN, C,t) and r =r(t)

The quantitative problem of the onset (or demise) of
phase coupling across the junction as a function of these
parameters involves the calculation of the mobility of the
phase "particle" in the tilted washboard potential V(8).
When the particle is localized in a well, the junction is
phase coupled and there is a zero-voltage dc current; i.e.,
the junction is fully superconducting. When the particle is
not localized, the junction is phase decoupled and the volt-
age is nonzero.

There have been a number of rather different ap-
proaches which describe the transition to the finite voltage
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state. We limit our discussion to the case of small exter-
nal current I and determine the threshold criterion as fol-
lows. We first replace 1 —cos8 by 8 /2 and thus approxi-
mate the potential near the bottom of the well by a para-
bolic potential. %e then compute the mean-square phase
fluctuations (8 ) within the harmonic approximation.
Under those conditions for which (8 ) ((1, this approxima-
tion is self-consistent and the junction remains phase cou-
pled. On the other hand, under those conditions for which
(8 ) ) 1, the harmonic approximation breaks down, be-
cause the phase particle then probes the anharmonic part
of the potential. In the same spirit as the Lindemann cri-
terion for the melting of solids, we therefore define
(8 ) =8,' as the threshold criterion for phase decoupling.
For simplicity we assume here 8, 1; a larger value of 82

would yield a proportionally larger value of the critical
resistance at the phase-decoupling boundary. The above
procedure gives only approximate results when the escape
is dominated by quantum-mechanical effects that depend

I

(8') - rN r,ff—(a,r/rtv, t)8

and

E 3/2E 1/2

(8') =— '
X(a,r/rfv, t),

Ã 2

where

(3a)

(3b)

in detail upon either the shape of the potential barrier or
the periodicity of the potential (macroscopic quantum tun-
neling and macroscopic quantum coherence or Bloch os-
cillations ). Nevertheless, our approximation is useful in
revealing the general behavior of the system as a function
of junction parameters.

Within our approximation Eq. (2) becomes that of a
damped harmonic oscillator whose quantum-mechanical
behavior in the presence of dissipation has been treated by
a number of workers. 9 Using the results of these calcula-
tions, we can express mean-square fluctuations of the
phase and its time derivative in the form

and

r,ff(a, r/rfv, t) = (2a r/rN) dx x coth — —x /[(1 —x ) +4a x ]
~J 0 2 f~ t (4a)

),(a,r/re, t) 2a dxx3coth — —x /[(1 —x ) +4a x ] .
2 rfv

(4b)

(8') = rN r -ktt T/EJ—,
8

(8')-(4k T/h, ')E, .

(6a)

(6b)

At an arbitrary reduced temperature, r,ff(a, r/rtv, t) is a
measure of the fluctuations due to both thermal and zero-
point energies. We now define an effective reduced tem-
perature t,ff by equating the mean-square fluctuations in 8
due to both thermal and zero-point energies [Eq. (3a)] to
those obtained in the classical limit [Eq. (6a)] at the re-
duced temperature t,ff. Using Eq. (5) we obtain

ff(a,r/r~, t) = F(t) r,ff(a, r/rfv, t)2~(0)
8Tc

In the limit of t = 1, t,ff reduces to the temperature t, but
for t ((1 and small damping t,ff=hfoo/kttT„a result
found previously by a number of other workers.

Since the condition (82) =1 delineates the phase-coupled
region from the decoupled region, the decoupling bound-
ary can be determined by applying this condition to Eq.
(3a) with r =rjv as justified below. The resulting critical
reduced resistance r, =R,e /h is shown in Fig. 1 versus
the reduced coupling energy E, =(e /C)/2d, (0) for a
number of different reduced temperatures t. It is helpful
to visualize the corresponding phase-decoupling boundary,
r, (E„t)as the surface shown in Fig. 2. In this diagram a
junction of normal resistance R~ and capacitance C at a

Here the parameter r is given by.=k, T/2~(0)F( )t.

In the limit of high reduced temperatures (t 1) the in-
tegrals simplify, and we find the classical expressions

I

temperature T is represented by a point. If that point lies
below the surface, then (82) & 1 and the junction is essen-
tially phase coupled and superconducting. If, however, the
phase point lies above the surface, the junction is decou-
pled and resistive.

Qualitatively different regions on the boundary surface
of Fig. 2 can be distinguished. For small values of E, and
a, the decoupling process is dominated by thermal fluctua-
tions except for very small t. As seen from Eq. (6a) the
decoupling in this region (light shading) is determined by
the normal-state resistance rN and is independent of the
reduced damping resistance r. The plane defined by t 0
is the quantum plane. A junction in this plane is decou-
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FIG. 1. Reduced critical decoupling resistance r, =R,e'/h vs
reduced charging energy E, =(e /C)/2A(0) at various reduced
temperatures t T/ T, .
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pled solely by quantum-mechanical zero-point energy.
The plateau emerging from this plane defines a region
(dark shading) dominated by quantum-mechanical de-
phasing.

In the quantum regime there are two distinct types of
behavior depending on damping. In the limit of weak
damping (a & 1) Eq. (4a) can be expressed as

r a
eff(a «/~N f)

1 —a

2x 1 ——tan
g

For a(& 1 this leads to

(1 —a') '~'

(e') -(Z /Z )'"(I -2a/~+ —'a'+ " )

so that the condition for phase coupling essentially reduces
to that of Anderson i.e., the Josephson coupling energy
EJ has to be less than the charging energy E,. On the oth-
er hand, in the limit of strong damping (a ) 1) we find

r 2a a+(a' —1)' '
'rcff(a, r/rfv, f)

2 f J2
ln z &&2, (9)

which for c&&1 gives

&e'&- —r In(2a) . (10)

In using the RSJ model one faces the question of wheth-
er the damping resistance should be taken to be the quasi-
particle resistance rqz(f) as determined from the I-V
characteristic as V 0, or the normal-state resistance r~.
This question can be answered by computing the mean-
square fluctuations in 8 using Eq. (3b). Since r is the ef-
fective resistance corresponding to voltage fluctuations
(V ) (fs/2e) (8 ) across the circuit, we must have r = r~
if e&V )~~ )2A(f) and r rqp if e&V &

J & 2a(t). The
reason for this is that, when voltage fluctuations are the

)0 Ec

FIG. 2. Junction decoupling surface, defined by (8) 1, is

plotted as a function of reduced temperature t, charging energy
E„andresistance r~. This surface covers the same range of r,
and E, as in Fig. 1. If the values of t, E, and r~ for a junction
lie below this surface, the junction is phase coupled; if they are
above, then it is phase decoupled. Quantum fluctuations dom-
inate the destruction of phase coherence in the heavily shaded re-

gion, whereas thermal fluctuations dominate in the lightly shad-
ed area.

order of or greater than the gap energy, the junction
responds essentially as if it were in the normal state.

The integral in Eq. (4b) diverges logarithmically. This
is a consequence of treating the damping parameter
arun I/(2RC) in Eq. (2) as frequency independent. For
a real junction, however, this parameter will be greatly di-
minished above some frequency fo, . We will in the follow-

ing adopt the simplest possible modification and set
arun(co) aron ((fu —fu, ), where g is a step function and
fu, is chosen much larger than both fun and afnn. Then
A, (a,r/rfv, f ) becomes

2 a+(a' —1)' ' COg

k(a, r/rfv, t) 2,f In, f
+2a ln

For a» 1 this leads to

4fra (r /rfv )ln(fn, /2acun) . (12)
2d 0

Using Eq. (10) in this expression, we see that at the decou-
pling transition the rms voltage fluctuations exceed twice
the gap, and, self-consistently, the appropriate resistance
entering Eq. (10) should therefore be set equal to rfv. The
above result, that the normal resistance for decoupling
r, x/8 ln(2a) is only weakly dependent on capacitance, is
in qualitative agreement with the results of earlier work-
ers. '

In summary, we have presented the results of an
analysis, based on the resistively shunted junction model
and the Ambegaokar-Baratoff theory, of the simplest con-
dition for the destruction of phase coherent coupling across
a single Josephson junction. The results are relevant to the
description of the behavior of ultrathin films which can be
modeled as networks of junctions, as well as to ultrasmall
junctions prepared using the current technical limits of
lithography. We have obtained a map of the parameter
space in resistance, capacitance, and temperature of the
threshold which delineates rather clearly the various re-
gimes. By describing the quantum fluctuations in terms of
an effective temperature, we find the latter can be remark-
ably large for sufficiently low-capacitance junctions. Fi-
nally, by an analysis of the fluctuations of the time deriva-
tive of the phase which are related to the voltage fluctua-
tions in this model we can understand what to use as the
shunting resistance in the RSJ model at the phase bound-
ary. Under those conditions (quantum limit, a»1) for
which the damping resistance affects the placement of the
phase boundary, the appropriate value is the normal-state
resistance rather than the quasiparticle resistance. This
result has important implications for more detailed model-
ing as well as for the interpretation of a number of experi-
ments.
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