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The behavior of a randomly diluted network of nonlinear resistors, for each of which the voltage-

current relationship is
I

V
I
=r

I
I I, is studied with use of series expansions in the concentration p

of conducting bonds on d-dimensional hypercubic lattices. The average nonlinear resistance (R )
between pairs of sites separated by the percolation correlation length, scales as

I p —p, I

tt '. The
exponent ){a)was evaluated for 0&ay 00 and d=2, 3, 4, 5, and 6, found to decrease monotonieal-

ly from the exponent describing the minimal length, at a=0, via that of the linear resistance, at
a= 1, to the exponent characterizing the singly connected bonds, g{oo)—:l. Our results agree with

known results for a=O and o.=1, also with recent results for general a at d =6—e dimensions.

The second moment (R') was found to diverge as (R)' {for all a and d), indicating a scaling form

for the probability distribution of R.

I. INTRODUCTION

A few years ago, Kenkel and Straley' proposed a
model of a network of nonlinear resistors, each of which
obeys the generalized Ohm's law

V=r II I
sgnI,

where V is the voltage drop across it and I is the current
fiowing through it, r is the nonlinear resistance, and a is
the exponent characterizing the nonlinearity.

Consider now the (nonlinear) resistance R (L) between
two terminals, a distance L apart, on the same cluster.
Two of us recently showed that this resistance reduces to
the minimal ("chemical" ) path between these points, L
for u-O, and to the number of singly connected ("red")
bonds between them, Lsc, for a- oo. It trivially becomes
the linear Ohmic resistance at o, = 1.

In this paper we study the randomly diluted network on
d-dimensional hypercubic lattices, where each bond (with
resistance r) is randomly present with probability p or ab-
sent (with probability 1 —p). As p approaches the per-
colation threshold p„ the percolation correlation length g
diverges as

I p —p, I

", and all connected clusters are
self-similar on length scales L & g. For such distances one
expects the average resistance (Ra(L)) to behave as a
power of L:

(R.(L) }-L'".
As L approaches g, this crosses over to

(R (4}&-4" '-
I p p.I—

p(a) =(d —1)v+[((a)—v]/~ (1.4)

There exist many separate studies, using various tech-
niques, which estimated g(a} for a=O (Refs. 6—14) and
a=1.' Of particular interest is Coniglio's exact
proof, showing that g( oo) = 1. Table I lists some of
these previous estimates and compares them with our own
estimates and at these values. It is easy to convince one-
self that one always has g(0) & g(1) & g(ao); the resistance
of the minimal path decreases when more bonds are added
in the blobs, and the resistance of the singly connected
bonds increases when the blobs are added. Indeed, previ-
ous studies on various fractals showed that g(a) is always
a monotonically decreasing function of a. This was also
found in very recent e expansions for g(a), in d =6—e di-
mensions.

The aim of this paper is to use series expansions in p to
obtain estimates of g(a) for all d and a. This program is
a systematic generalization of the earlier series studies for
o = l. Up to this point we have discussed only the
auerage, (Ra(L)) or (R (g)). In real experiments one
should also worry about the fluctuations about this aver-

age, i.e., the distribution of resistances measured for pairs
of terminals at fixed distance L (or g). To address this
question, we also constructed series for the second mo-
ment (R

This paper is organized as follows. Section II describes

with g(a) =g(a)v. On larger length scales there is practi-
cally no conductance for p &p„while the link-node-blob
picture implies that the conductivity scales as
c7 (p —pq)u"', with
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TABLE I. Values of g{a) for a =0, 1.

1.49+0.02'
1.52+0.01"
1.38+0.1'
1.54~0.05"
1.46+0.07'
1.509+0.004
1.19+0.01~

1.361J0.007"
1.49'

1.50+0.08
1, .48+0.05"

1.19~0.04b

1.18+0.07'
1.20+0.03d

1.21'
1.134+0.004~
1.12~0.05"
1.20+0.03'
1.19+0.03"

1.297+0.007'
1.31+0.01
1.29+0.01"
1.31+0.1'
1.26+0.02''

1.20+0.005q

1.32%0.08j
1.31~0.05"

1.12+0.02'
1.16+0.07'
1.084+0.001q
1.06+0. 1'

1.15+0.03'
1.12+0 03"

1.11+0.07'
1.03+0.08'
1.083+0.001~
1.10+0.04'
1.10+0.02'
1.11+0.01"

1.02+0. 1'
1.038~
1.04+0.01'
1.04+0.01"

0.9+0.1

1.02+0.02'
1.00%0.01'
1.00' 0.01"

1.05+0.02'
1.03+0.09'
1.053q

1.08+0.02"

1.06+0.01"

1.02+0.02'
1.01+0.08'
1.025q

1.03+0.013

1.03+0.01"

1.01+0.02'
1.00+0.01~

1.00+0.01"

'Pike and Stanley, Ref. 6. Monte Carlo simulation.
Alexandrowicz, Ref. 7. Monte Carlo simulation.

'Hong and Stanley, Ref. 8. Series expansion.
Havlin and Nossal, Ref. 9. Monte Carlo simulation.

'Herrmann et al. , Ref. 10. Monte Carlo simulation.
Grassberger, Ref. 11. Monte Carlo simulation.
Janssen and Cardy, Grassberger, Ref. 13. e expansion. The er-
ror bars for these e-expansion results were obtained using dif-
ferent Pade estimates. Errors less than 0.001 in the e expansions
were ignored.
"Edwards and Kerstein, Ref. 14. Monte Carlo simulation.
'Ray, Ref. 12. Real-space renormalization.
)This work {g&).

This work {gp/2).
'Zabolitzky, Ref. 15; Lobb and Frank, Ref. 16. Transfer matrix.

Herrmann et al. , Ref. 17. Transfer matrix.
"Hong et al, , Ref. 18. Monte Carlo simulation.
'Adler, Ref. 20. Series expansion.
Essam and Bhatti, Ref. 21. Series expansion.

qHarris et al. , Lubensky and Wang, Ref. 19. e expansion. The
error bars for these e-expansion results were obtained using dif-
ferent Pade estimates. Errors less than 0.001 in the e expansions
were ignored.
'Fisch and Harris, Ref. 22. Series expansion.
'Derrida et al. , Ref. 23. Transfer matrix.
'Mitescu and Greene, Ref. 24. Monte Carlo.

the construction of the series, and Sec. III presents the re-

sults of their analysis, which are summarized in Fig. 1

with specific results listed in Table III. In Sec. IV we

analyze and discuss our results for (R ). Our con-
clusions are summarized in Sec. V.

X,(a;I )= g g R,,(a)
iFI jEI

(2.3)

in terms of which Xs (a) is obtained by summing over all
clusters, weighting each cluster by its probability of oc-
currence. This is best done in terms of cumulants, where-

by we may write

II. SERIES CONSTRUCTION

In this section we follow closely Ref. 20. The percola-
tion susceptibility is defined by

X„(a)=+W(l;d)p ' X'„(a;I ), (2.4)

{2.1)

where v,j is 1 if the two sites i and j belong to the same
cluster and zero otherwise, and [ ],„denotes an average
over all configurations of occupied and unoccupied bonds.
The resistive susceptibility is defined by

where nb{I ) is the number of bonds in the diagram I,
W(I;d) is the number of ways per site a diagram topo-
logically equivalent to I can be realized on a hypercubic
lattice in d dimensions, and the sum is over all topologi-
cally inequivalent diagrams 1. Also XR(a;I ) is the cu-
mulant, defined by

Xs (a) = QR,J (a)v;J.
l

(2.2) X'„(a;r)=X (a;r) —QX'(a;y),
yeI

(2.5}

where R;i(a} is the (nonlinear) resistance between sites i
and j.

~e define X„(a;I ) for a cluster of sites, I, via

where the sum is over all subdiagrams, y, of I .
nb(I ),

The factor p in Eq. (2.4) implies that the evaluation
of X up to order p" involves only clusters with up to n
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TABLE II. The coefficients 3 (k, I) for o.'=0.5 and 5.0. Numbers enclosed in square brackets denote scale factors of powers of 10.

A (1,1)=0.10000000000000[+1]
A (3, 1)=0.30000000000000[+1]
A(4, 1)=0.12688419841526[+2]
A (4,4)=0.32000000000000[+2]
A (5,3)=0.33246320633893[+2]
A (6, 1)= —0.2749101653015S[+3]
A (6,4)=0.15973896190169[+3]
A (7, 1)=0.25038973378158[+4]
A (7,4)=0.684 721 758 204 65[+3]
A (7,7)=0.448 00000000001[+3]
A (8,3)=0.252 849 85025765[+4]
A ( 8,6)=0.244 092 641 267 79[+4 j
A (9, 1)= —0. 1S8601 998 71993[+6]
A (9,4)=0.701750095 38485[+5]
A (9,7)=0.812 382 339042 75[+4]
A (10, 1)= —0. 184379 783 33160[+7]
A ( 10,4) = —0. 105 371 458 782 25[+6]
A (10,7)=0.409 652 346 888 39[+4]
A (10, 10)=0.51199999999998[+4)
A (11,3)=0.395 741 204 383 10[+8]
A (11,6)=0.277 502 604 11933[+6]
A (11,9)=0.73791058082275[+5]

a=0.5
A (2, 1}=—0.20000000000000[+1)
A (3,2)= —0. 12000000000000[+2]
A (4,2) =0.731 158 01S 84742[+ 1]
A (5, 1)= —0.71753679366102[+2]
A (5,4) = —0. 15999999999999[+3]
A (6,2) =0.117860244799 50[+3]
A (6,5)= —0.48000000000000[+3]
A (7,2)= —0.507 730 236069 14[+4]
A (7,5)=0.665 970565071 26[+3]
A ( 8, 1 ) =0. 191 518 545 71807[+5]
A (8,4) =0.322202 539284 38[+4]
A (s,7)= —o.35s 4oooooooooo[+4]
A (9,2)=0.392 704 713 022 59[+6]
A (9,5) =0.336038 820271 34[+4]
A (9,8)= —0.92160000000002[+4]
A (10,2) =0.34208551362945[+7]
A (10,5 }=0.138 535 815 80808[+6]
A (10,8)=0.251635 87910994[+5]
A (11,1)=0.13116569060052[+8]
A (11,4)= —0. 169 921 937 818 34[+8]
A (11,7)= —0.248 144519 178 89[+5]
A (11,10)= —0.563 20000000003[+5)

A (2,2)=0.40000000000000[+1]
A (3,3)=0.12000000000000[+2]
A (4, 3)= —0.48000000000000[+2]
A (5,2) =0.123 507 358 73221[+3]
A (S,5)=0.79999999999996[+2]
A (6,3)=0.29131095860036[+3]
A (6,6)=0.19200000000000[+3]
A (7,3)=0.212 571 269 959 98[+4]
A (7,6)= —0.13440000000000[+4]
A (8,2) = —0.262959627957 87[+5]
A (8,5)=0.152065 791 588 22[+4]
A (8, 8)=0.10240000000000[+4]
A (9,3)= —0.31179070949993[+6]
A {9,6)=0.294977 406 563 81[+4]
A (9,9}=0.23040000000001[+4]
A (10,3)=—0. 16198544533298[+7]
A (10,6)= —0.169731 805 435 38[+4]
A (10,9)= —0.230 39999999999[+5)
A (11,2) = —0.37967231039374[+8]
A (11,5)=0.198 815 19972098[+7]
A (11,8)= —0.828 88464725437[+3]
A {11,11 }=0.11264000000001[+5]

A (1,1}=0.10000000000000[+1]
A (3, 1)=0.30000000000000[+ 1]
A (4, 1)=0.158 324 580 83073[+2]
A (4,4) =0.32000000000000[+2]
A (S,3)=0.20670167667705[+2]
A (6, 1)= —0.344147 549 312 37[+3)
A (6,4)=0.12201050300312[+3]
A (7, 1)=0.30626673225891[+4]
A (7,4)=0.77935788315774[+3]
A (7,7)=0.44800000000001[+3]
A (8, 3) =0.390871440345 12[+4]
A (8,6)=0.218940335 33542[+4]
A (9, 1)= —0. 19687566215244[+6]
A {9,4)=0.881391653345 87[+5]
A (9,7)=0.752 016804 805 03[+4]
A (10, 1)= —0.229269 583 23602[+7]
A ( 10,4}=—0.93630195912018[+5]
A (10,7)=0.629 107 363 91353[+4]
A {10,10)=0.511 99999999998[+4]
A (11,3)=0.490241472 587 84[+8]
A (11,6)=0.318 194 13081642[+6]
A {11,9)=0.705 715 629 229 37[+5 l

a=5.0
A (2, 1)= —0.20000000000000[+1]
A (3,2) = —0. 12000000000000[+2]
A (4, 2) =0.416 754 191692 68[+1]
A (5, 1)= —0.843 298 323 322 90[+2]
A (5,4) = —0. 159999999 99999[+3]
A (6,2) =0.182 302 827021 35[+3]
A (6, 5)= —0.48000000000000[+3]
A (7,2)= —0.622 844475 811 10[+4]
A (7,5)=0.565 361 341 341 72[+3]
A (8, 1)=0.23736390657232[+5]
A (8,4)=0.403 269 847 79026[+4]
A (8,7)= —0.358 400000 00000[+4]
A (9,2) =0.485 19320485708[+6]
A (9,5)=0.429 710 161 25204[+41
A (9,8)= —0.921 60000000002[+4]
A (10,2)=0.427 223 680789 27[+7]
A (10,5)=0.165 98S 863 922 39[+6]
A (10,8)=0.237550S8778781[+5]
A (11,1 )=0. 163 754 837 238 00[ +8]
A (11,4) = —0.21108334933638[+8]
A (11,7)= —0.26703133660239[+5]
A (11,10)= —0.563 20000000003[+5]

A (2, 2)=0.40000000000000[+1]
A (3,3)=0.12000000000000[+2]
A (4, 3)= —0.48000000000000[+2]
A {5,2) =0.14865966466458[+3]
A (5,5)=0.79999999999996[+2]
A (6,3)=0.333 83421928791[+3]
A (6,6}=0.19200000000000[+3]
A (7,3)=0.272405 82110225[+4]
A (7,6)= —0.13440000000000000[+4]
A (8,2) = —0.330786 208 76749[+5]
A (8, 5)=0.177941 39848088[+4]
A (8, 8)=0.102 40000000000[ +4]
A (9,3)= —0.38505984076506[+6]
A (9,6)=0.370686 306 526 28[+4]
A (9,9)=0.23040000000001[+4]
A (10,3)= —0.206284351 16012[+7]
A (10,6}= —0. 116926435 957 38[+4]
A ( 10,9}=—0.23039999999999[+5]
A (11,2)= —0.471 715 78430761[+8]
A (11,5}=0.25579634248059[+7]
A (11,8}=0.53233969301120[+4]
A (11,11)=0.11264000000001[+5]

bonds. We constructed the series for {2.1} and (2.2} up to
11th order in p. %Phile computing the percolation suscep-
tibility for each cluster is trivial, the resistive susceptibili-
ty involves the nontrivial task of solving the nonlinear
Kirchoff's equations based on Eq. (1.1). For reasons of
computational efficiency eve solved the set of Kirchoff's
equations differently for a ~ 1 and for a ~ I. For a ~ 1 we
solved the equations for the potentials at the sites (node
analysis ), while for a &1 we solved for the currents
through the bonds (loop analysis ). In both methods the
equations mere solved iteratively, where as an initial guess
we used the solution for the neighboring a. In the vicinity

of a = I, where both methods were used, we find the same
results.

Writing

XR (a }=gA (k, l)d'p
k, l

(2.6)

the coefficients A (k, l) for a=0.5 and 5.0 are shown in
Table II. For a= 1 the coefficients are the same as in
Refs. 20 and 22, while for a=0 and a~ ao (the coeffi-
cients seem to be essentially constant for a & 10), they are
the same as the coefficients for the minimal chemical
length and the length of the singly connected bonds in
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Ref. 8.
The average resistance (R~ & is defined by

«.&= —Ip —p, I

Xp
(2.7)

In order to find g(a) we analyzed the series for both Xz
and Xr, and g(a) was found as the difference of the two
corresponding exponents, g=yit —y. The series for the
ratios Xit/X~ were less well behaved than those for Xx or
Xp +

III. ANALYSIS AND DISCUSSION

We analyzed the series using the "nonhomogeneous dif-
ferential Pade method. " By this method we obtain
20—60 estimates for p, and the critical exponent y. The
estimates for y and yz were plotted as a function of the
estimates for p, . The resulting smooth functions y(p, )

and yet(p, ) were fitted by linear curves. By interpolating
to the known value of p, (see Table III) we obtained esti-
mates for y and yx. The error bars in the exponents were
taken as those of the interpolation procedure, where we
have taken into account the uncertainty in the values of
p, . Explicit values of g(a) for a=0.5 and 5.0 in 2—6 di-
mensions are shown in Table III, along with the error
bars. The errors seem to decrease with increasing dimen-
sionality. For d &6 the blobs become irrelevant, and
g(a) = 1 for all a. ' '

The results in the literature for a=0 and 1 (discussed
previously) are shown in Table I, where they are also com-
pared with the estimates found by our analysis. The
agreement suggests that our estimates for other values of
a are also quite reliable. Figure 1 shows g(a) as a func-
tion of a/(a+ 1) for d =2,3. We see that g(a) decreases
monotonically and continuously from g(0), which corre-
sponds to the minimal-chemical length, through g(1),
which corresponds to the linear resistance, to the exact
g(oo )=1, which corresponds to the length of the singly
connected bonds.

In Table III we also compare our calculations at d =5
with the recent e-expansion results. For large a, where
g(a) is close to unity, our results do not provide a very
sensitive test. For a~ 1 the situation is more favorable
and at a= —,

' our results agree with the e-expansion re-
sults. Longer series will probably be able to provide a de-

TABLE III. Values of p, and results for a=0.5 and 5.0.

a=5.0

2 —, (exact) 1.41+0.08 1.40+0.05 1.02+0.08 1.02+0.02
3 0.2486' 1.18+0.04 1.15+0.04 1.02%0.02 1.01+0.02
4 0.1601 ' 1.09+0.02 1.11+0.02 1.02%0.02 1.01+0.01
5 0.1181 ' 1.04J0.01 1.04J0.01 1.02+0.01 1.01%0.01

1 035 1 035 1.001 1.00
6 0.0941' 1.01+0.01 1.02+0.02 1.00+0.01 1.0020.01

'Grassberger, Ref. 29.
"Fischt and Harris, Ref. 20.
'Adler et al. , Ref. 30.

e expansion, Harris, Ref. 26.

l, 25—

I.00
0 0.5

al {I+a)
I.O

FIG. 1. Series results for g(a) and g(a)/2.

IV. SECOND MOMENT AND SECOND CUMULANT

We now consider the behavior of the second moment of
the resistance, (R &. The corresponding susceptibility is
defined by

2X 2 gR Jv J
J

(4.1)

and we expect it to diverge at p, with exponent gz. By the
same method as above we constructed and analyzed series
for X„,. Figure 1 also shows our results for gz/2 versus

a/(a+1) for d =2,3 and Table III contains explicit
values of g2 for a=0.5 and 5.0 in 2—6 dimensions. We
see that within our accuracy, the exponents g and gi obey
the relation

gi(a ) =2$(a ) .

We also studied the second cumulant, defined by

(4 2)

(4.3)

A series for the second-cumulant susceptibility can be ob-
tained by the susceptibilities discussed above, by

(Xg )X'2=X 2-
R R

P
(4.4)

(An interesting quantity to study is g.X',J
' where

X;'J'=[vJ(R;J.—(R;J. &) ],„where (R;J & =[vJR,&],„/
[vj],„. However, this quantity is not one for which one
can easily develop a series expansion. } This series is less
well behaved than the other series we studied and the er-
ror bars for gz are quite large. However, within the limits
of our accuracy, we can say that the relation

P2(a) =2/(a) (4.5)

finitive numerical test of the e expansion. We also deter-
mined dg(a)/da for a= 1 and d =5, from a plot similar
to those in Fig. 1. Our result dg(a}/da= —0.012 is quite
close to the value, —e/72, for this quantity in Ref. 26. It
would be desirable to test the predictions for dg(a)/da
for a not near unity in order to distinguish between the
predictions of Refs. 26 and 33, which differ only for
a&1.
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is consistent with our results.
Let I'(R, x,p) denote the conditional probability that

the (nonlinear) resistance between two sites separated by a
displacement x assumes the value 8, subject to the two
sites being in the same cluster. Then the relation gk =kg,
implies that P has the scaling form

P(R,x,p) =f(R/rx&, x/g)/rx&, (4.6)

where r is the resistance of a single resistor. For the
linear case, this form was found numerically, and is im-
plied by the scaling behavior of the resistive correlation
functions in the field theories. ' For the nonhnear ease
considered here this relation is robably also implied by
the field-theoretic formulation. The present work pro-
vides the first numerical evidence in support of Eq. (4.6}
for a& l.

Equation (4.2) suggests that $2/2 should also serve as
an estimate for g. These estimates appear in Tables I and
III. Series estimates for gk/k for different k's, which give
much better estimates for g, will appear elsewhere.

V. CONCLUSION

In this paper we studied the nonhnear resistance prob-
lem. ' s We confirmed by the series-expansion method

that this problem interpolates smoothly between two
known topological problems: the minimal-chemical
length (for a=0) and the singly connected bonds (fora~ ao). We studied the second moment and the second
cumulant of the resistance, and concluded that the critical
exponents corresponding to these two are the same and
equal to twice the critical exponent of the resistance, g(a).
This equality suggests that even for a&1, the probability
function for the resistance between two points has the
scaling form written in Eq. (4.6).
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