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Distribution of shortest path lengths in percolation on a hierarchical lattice
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Some characteristics of the shortest paths connecting distant points on a percolation network are
studied. Attention is focused on the probability distribution of the lengths of shortest paths, espe-

cially on the manner in which this distribution changes as the distance between the two points is in-

creased. Calculations are performed on a bored-diluted hierarchical lattice of the Wheatstone-bridge

type. The evolution of the probability distribution is followed numerically. At the critical percola-
tion concentration, the distribution is seen to approach a nontrivial function under proper rescaling
of its argument. Away from criticality, the scaled distribution approaches a 6 function whose loca-

tion 1/U is a measure of how tortuous the shortest paths are. Here v is the wetting velocity. As the

bond occupation probability is increased, there is a second phase transition when the shortest paths
coincide with directed paths whose lengths are the smallest possible (U =1). This occurs at the

directed percolation concentration. It is conjectured that the variation of u near the directed thresh-

old is governed by the exponent v~I which describes the divergence of the parallel correlation length

in directed percolation.

I. INTRODUCTION

In bond percolation, a certain fraction (1—p) of the
bonds of a lattice are removed at random, and two points
are said to be connected if there is at least one unbroken
chain of bonds between them. It is then of interest' to ask
for the length (measured by the number of links 1) of the
shortest connections which bridge, say, the opposite faces
of the cube enclosed by the planes (+x, +y, . . . )= —,'R.
The Cartesian separation of opposite planes is R and the
limiting ratio

U = lim R/1
R -+ c)e

provides a quantitative measure of how tortuous these
shortest paths are. U is called wetting velocity. '

v is unity
for the most direct possible connections, whereas U =0
corresponds to extremely tortuous connections.

Besides the limiting ratio U, it is important to know
how the probability distribution P(1) of shortest path
lengths 1 behaves as a function of the Cartesian separation
R. For instance, at the critical percolation concentration

p =p„the scaled distribution approaches a characteristic
function P which is universal in the same sense that criti-
cal exponents are. In this paper we follow the evolution
of P as R increases. Our calculations are performed on a
diluttxl Wheatstone-bridge hierarchical lattice defined
below. We study the probability distribution I'(I) numeri-
cally both for p =p, and for p&p, . We find that, al-
though the percolation recursion relations exhibit perfect-
ly smooth fiows as p is varied between p, and 1, there is a
second phase transition associated with the distribution
P(1) alone. For p &p„the distribution for 1/R evolves,
as R~ ac, into a 5 function located at 1/U. The second

transition is associated with the p dependence of the posi-
tion of the 5 function —it reaches U = 1 as p ~p&, and
does not move for larger values of p. Here, pd is the
directed percolation threshold, and the transition signals
the proliferation of the most direct possible ( u = 1) paths
for p &pd.

The wetting velocity U is singular near both p, and p~,
but while the vicinity of p, has been studied in detail
for various lattices, not many studies exist of the full
range of p. ' We find that it is crucial to keep track of
the full probability distribution not only in order to obtain
reliable values of critical exponents, but also to correctly
obtain even such qualitative features as the saturation of U

at 1 for values of p exceeding pd, approximations which
do not keep the full distribution can lead to U ~ 1 for all p
between p, and 1. Finally, we discuss the range 0 &p &p, .
In this case, the probability of connections drops exponen-
tially as R increases, and U describes the nature of the
most probable of these infrequent connections.

II. THE MODEL AND PROCEDURE

The hierarchical lattice we consider is of the
Wheatstone-bridge type and is defined recursively (out-
ward) through the prescription indicated in Fig. 1. At the
nth stage, we obtain a construct whose top and bottom
nodes T„and B„areseparated by 8 =2" bonds. These
nodes are analogous to faces of a cube on a regular lattice.
Now consider the percolation problem on the hierarchical
lattice where each bond of the lattice is present with prob-
ability p. Let p„bethe effective probability that nodes
T„and B„areconnected. Then p„+lcan be determined
in terms of p„,
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5 4 3 2
5'n+] =2pn —5pn+&pn+&5'n-

This is the same recursion relation as the approximate
position-space renormalization-group transformation of
Reynolds, Stanley, and Klein' for the square lattice, illus-
trating the point that such approximate recursions are
often exact on hierarchical lattices. ' Equation (2) has an
unstable fixed point at p, = —,'. The correlation length ex-
ponent v is found on linearizing Eq. (2) around p, . Expli-
citly, we have

which yields v=1.428.
In a particular realization of the lattice, let I be the

length of the shortest path between nodes T„and 8„;it
lies in the range 2"& I & 3" if the nodes are connected. If'

they are not connected, we say I is infinite. Sampling over
all configurations of the bonds will generate a probability
distribution P„(l)describing the relative frequency of oc-
currence of different shortest path lengths l. The sum
over P„(l)for all finite I yields the connection probability

I

Tn+ I

Bn " ~n+I
Bn+t

FIG. 1. The construction of an (n+1)th level bond of the
hierarchical lattice from nth level bonds is indicated. The
length of the shortest path between B„+~and T„+&depends
only on the five level-n shortest path lengths I~, I2, . . . , I5.

p„.For a given realization, it is clear that the shortest
path length I between 8„+iand T„+i is a function
5(/i, /2, /3 lg /5) only of the shortest path lengths
li, l2, . . . , /5 (Fig. 1) of the nth order connections. Expli-
citly we have

&(I, , . . . , 15)=min[/, +/2, 13+/4 I +i/5+/3 /i+I, +/4] .

Consequently, the probability distribution P„+i(l ) is
determined by P„(/). We have

P„,(/)= f ff dl;P„(I;) 5(I —6(1, . . . , I )) . (4)

For any finite value of n, the distribution P consists of a
series of 5 functions at integers between 2" and 3", and one
at oo corresponding to no connection. Consequently, in-
tegrals on the right-hand side of Eq. (4) reduce to finite
suDls.

At the start ( n =0) we have either I = 1 (with probabil-
ity P) or no connection (with probability 1 —p). At the
first stage ( n =1), I may be equal to 2 or 3 (with probabil-
ities Zp —P and ZP —4P +ZP, respectively) or the
bond may be absent (corresponding to I = ca with proba-
bility 1 —

p&
——1 —Zp +5@ —Zp —Zp ). We have carried

out the calculation by hand for n =2 (when I ranges from
4 to 9, or is infinite), but as n increases, it becomes pro-
gressively more tedious to generate recursions analytically.

For the next two orders (n =3,4) we carried out exact
calculations on the computer, in accordance with Eq. (3).
For instance, to find Pi(/) we generated all 7 configura-
tions I I;]= t/i, /2, /i, /4, /q j of level-2 bonds. With each
such configuration was associated a weight [ff, , P2(l; )]
and a shortest path length I=A,(I/;]). Summing over
every configuration I/;I of level-2 bonds finally yields
P3(l), as in Eq. (4).

For larger n (up to n =11 for p =P, and 13 for p&p, )
we used a Monte Carlo method to study the evolution of
P„(l}.Rather than generating each nth level length con-
figuration I I; ] and weighting it appropriately, we used a
random number generator to select each I; (i =1.. .5}
with relative frequency P„(1;).For each such try, the
( n + 1)th level I was determined from Eq. (3), and a histo-

l

giam iepiesentjiig P„+i(/) was built up by repeating the
procedure many times (between 2 million and 20 million
times for each n ~n +1). We checked our Monte Carlo
procedure against exact results for n =1 to 4 and found
good agreement [with differences in the fourth significant
figure for individual probabilities P(l), and in the fifth
figuie for averaged quantities like the mean length].

III. p =p, : SCALING FORM

At the critical percolation concentration p =p„the
probability distribution P„(/) is expected to approach a
scale-invariant form for large enough n:

P„(1)=A„'P(l/A„)
„

where the scale factor A„is given by

A„=A," .

In Eq. (5}, P is a function characterizing the distribution
of shortest paths at criticality, and is expected to be
universal, e.g., independent of many details of the initial
(n =0) distribution Po(/), provided only that the system
is at the critical point. Similar scaled probability distribu-
tions for other quantities have been studied before in relat-
ed contexts, e.g., the conductivity distribution in a random
resistor network' and the bond-strength distribution of
diluted Potts models. ' ' I' is also analogous to the
universal effective-block-spin weight functions studied in
spin systems at criticality.

Our numerical results for the distributions of shortest
paths verify the scaling form Eq. (5}. The function P, as
determined from the data for n =7,8,9, 10 is shown in
Fig. 2.

In order to extract an estimate of the scale factor A, we
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l.75— scaled function P defined in Eq. (5). We have

p(x)

5

I,25—

O. 25—

075 l.25 l.5 k.75

Ci ——f dx xP(x), (8a)

Ci ——f dxx P(x) . (Sb)

In view of Eqs. (6) and (7), the ratios (1„+i)/(1„)and

((1„+i)/(1„))' should both approach A, as n~00. We
have determined (1)„and((1 )„)'~from our numerical-
ly generated distributions P„(1)and have plotted the ratios
versus 1/n in Fig. 3. We estimate A, =2.103+0.001.

The dependence of the mean shortest path length (1)„
on n at p =p, is

(1)„-R', (9)

where R =2" on the hierarchical lattice and d, is a criti-
cal exponent. From Eqs. (6) and (7) we find

d, =(in', )/ln2= 1.072+0.001 . (10)

proceed as follows. From Eq. (5), the mean and root-
mean-squared shortest path length "at the nth level obey

( l)„=CiA„,
((1')„)'"=C,A„,

(7a)

(7b)

where the constants Ci and C2 involve moments of the

FIG. 2. Scaling function describing the distributions of
shortest path lengths at criticality is sho~n. Data was obtained
from a run in which 20 million Monte Carlo trials were per-
formed at every iterative step. The fact that data for n =7
(solid line), 8 (squares), 9 (triangles), and 10 (diamonds) all fall
on the same curve for a particular value of A, (=2.1037) provides
evidence for the scaling form Eq. (5).

Note that the dependence of (1) on R at p =p, [Eq. (9)]
is consistent with v =0.

IV. THE REGION p, (p (1: WETTING VELOCITY

For p ~p„the appropriate scale to measure shortest
path lengths 1 at the nth stage is set by the internodal
separation R =2". The probability distribution for the
variable 1/R is found, numerically, to approach a 5 func-
tion as R~ao. Identifying the location of the 5 function
with 1/v ensures consistency with the definition of v [Eq.
(1)]. Defining a scaled distribution P'(x) by

P'(x) =RP(Rx),

we find the asymptotic form

P„'(1/R)=p„5(l/R —1/v) . (12)

2.I08—

2.I06—

Monte
t orto

The probability p„ofconnections between nodes B„and
T„(Fig.1) approaches unity as n ~ ao.

The wetting velocity v obtained from the numerically
determined asymptotic form of P„'is plotted as a function
of p in Fig. 4. It varies between 0 and 1 as p moves from
p, =0.5 to pd ——(v 5 —I )/2=0. 618, and remains saturated
at v =1 for p &pd. The wetting velocity is singular near
both p, and pd

2.I04—
e fse

v-(p pe)—8

1 —v-(pd —p)
8'

(13)

(14)

I I I

O. 05 O. IO O. I5
I I

G. 20 0.25

lg~
FIG. 3. An estimate of the scale factor A, is obtained from the

ratios of mean- and root-mean-squared shortest path lengths at
p =p, . These are shown as solid and open circles, respectively.
Results of four different runs are shown, in each of which 20
million Monte Carlo trials were performed at every stage in the
iteration.

It is difficult to estimate either 8 or 8' directly from the
data plotted in Fig. 4, but 0 can be related to the exponent
d, by arguing that the crossover from Eq. (5) to Eq. (12)
occurs as R crosses the correlation length g. Arguments
presented in detail elsewhere ' ' then lead to
8=v(d, —1). For the dilute hierarchical lattice, we thus
find 8=0.103.

Turning now to the behavior of v near pd [Eq. (14)], we
conjecture that the critical exponent 8' is equal to vl~, the
exponent which characterizes the divergence of the paral-
lel correlation length g~~ as the directed percolation con-
centration pd is approached. Consider the shortest paths
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probability distribution of the shortest connecting paths.
The "percolation recursion" Eq. (2) exhibits a smooth
flow from p =P, =0.5 to P =1, with no inkling of the
anomaly at Pq. It is essential to track the evolution of
P„(l)in order to obtain the singularity of u at P =Pd. In
this connection it is of interest to ask how an approximate
treatment of P„(l)would fare. A commonly used approx-
imation ' (in this and related contexts} is to replace P„(l)
(for /&00 ) by a 5 function. The weight of the 5 function
is the probability of connection p„and its location is fixed

by matching first moments (excluding I = 0o }. At P =p„
this approximation yields'6 d, =1.16, which is not too far
from the correct value =1.07. However, it misses the
second transition (at P =P~) altogether. U, as predicted by
this approximate theory, is plotted in Fig. 4. It varies
smoothly from 0 to 1 as p changes from p, to 1, in con-
trast to the correct behavior in which U = 1 for all p &pd.

FIG. 4. The wetting velocity U is plotted versus p (solid

curve). Results w'ere obtained by evolving the full probability
distribution. An approximate treatment of the probability dis-
tribution (discussed in Sec. IV) leads to an estimate (dashed
curve) which misses the transition at pq.

between two faces a distance R apart, when p is just below

pd and R is much greater than g~~. We imagine that the
shortest path will have many directed segments of mean
length g~~

and that these segments are connected by
bridges of mean length b. An estimate of u is then
—g~~/(/~~+5), which leads to

"II
1 U-b/g~(-b—(pg p) ' . — (15)

Assuming that b remains finite as p~p~, we may read
off 8'=v~~ from Eqs. (14) and (15).

Now, on the Wheatstone-bridge hierarchical lattice,
"directed" ( U =1) paths are just those which involve only
the outer bonds 1,2,3,4 (Fig. 1) of the diamond at every
stage. From the recursion

which describes probabilities of directed connections, it is
straightforward to find

~~

——ln2/In(Bp„'+i/Bp„'}
~ ~,=1.63 .

On the other hand, our numerical data for U versus P
yields an estimate 8'= 1.73 with uncertain but large error
bars. We do not regard the difference as very serious; a
possible reason for the discrepancy is as follows. On the
Bethe lattice where one can compute U exactly, ' the
behavior

(1—U)-(g~~»g~~)
' as p pq (16}

was found. This differs from Eq. (15) by a multipiica-
tive logarithm. If this is a general feature, present on all
lattices, it would account for the larger effective exponent
observed on the hierarchical lattice.

In concluding this section, we wish to emphasize that
the phase transition at p =p~ is obtained in the present
calculation, from a study of the asymptotic form of the

V. THE REGION p gp,

While customary discussions of the wetting velocity are
confined to the region p &p„it should be noted that the
evolution of the probability distribution can be followed,
and U found, in the region 0&p&@, as well. For the
asymptotic form of the probability distribution, Eq. (12) is
still valid, but p„approaches 0 as n~ ao, in contrast to
the situation discussed in Sec. IV. After a few iterations,
most of the weight is pumped out from finite l to 1= DD

(corresponding to no connections). Consequently, it is nu-

merically more difficult to obtain reliable results for the
finite-1 distribution. We find that U increases smoothly
from 0 to 1 as p decreases from p, to 0. As P approaches
0, the demand that two distant nodes be connected singles
out directed paths between the two, as these have the larg-
est weight in the limit p ~0.

VI. CONCLUSION

Our study of the probability distribution P(l) of the
lengths of shortest paths in percolation shows that it is
sensitive to phase transitions at both the ordinary and
directed percolation concentrations p, and pd. At p =p„
the distribution approaches an invariant form under prop-
er rescaling of arguments, while as p approaches p~ the
wetting velocity characteristic of the distribution ap-
proaches its saturation value U=1. Our study under-
scores the need to keep track of the full distribution at
every iteration. Approximations which replace the distri-
bution by a 5 function which preserves only low-order
moments are apt to miss the phase transition at p =pd al-
together. Moreover, such approximations do not yield the
exact value of critical exponents near and at P, . This
comment applies equally to approximations for other
physical properties such as the conductivity of a percolat-
ing network; so far the critical behavior of the conductivi-
ty of a dilute hierarchical lattice has been determined only
approximately. Finally, while the present study of the
shortest path length distribution has been made only for
percolation on a hierarchical lattice, we expect that the
corresponding distribution would sense the phase transi-
tions at p, and pd in percolation on regular lattices as
well.
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