
PHYSICAL REVIE% 8 VOLUME 34, NUMBER 5 1 SEPTEMBER 1986

Directional solidification with buoyancy in systems with small segregation coefficient
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%'e derive an evolution equation governing the cellular structure of a binary alloy having a small

segregation coefficient. This equation, applicable to long-wave instabilities of a planar interface, in-

corporates coupled morphological instabilities and buoyancy effects. The presence of buoyancy can
inhibit the onset of the cellular structure by effectively magnifying the segregation and diffusion.

I. INTRODUCTION

The evolution of pattern in the directional solidification
of a sohd from its melt is an indicator of the small-scale
transitions that determine the physical and electrical
properties of the resulting materials. The corrugations of
a planar front can amplify, creating complex three-
dimensional cellular structures, dendrites with their side
branches, and, together with the induced convective fiows,
the field of microsegregation that determines the distribu-
tion of solute in the solid.

Mullins and Sekerka' analyze the linear stability
theory that gives conditions for the corrugations to ampli-
fy. Wollkind and Segel fix the wave number and use bi-
furcation theory to examine weakly nonlinear interactions
near the critical point. Such studies have been generalized
and extended by I.anger and Turski and I.anger. ' Ungar,
Brown, and their associates ' have used finite-element
numerical simulations of two-dimensional cells to delve
into the large-amplitude deformations associated with in-
teractions that are not weakly nonlinear. Figure 1 is
drawn from an early photograph of Jackson9 showing the
cellular structure.

In the presence of buoyancy the morphological instabil-
ity described above can be accompanied by convective ef-
fects, given that the solute rejected gives rise to density
changes in the melt. On the one hand, unwanted convec-
tion can itself lead to undesirable solute redistribution that
further degrades the material properties of the solid. On
the other hand, it may be possible that convection can
rtxirganize the conditions at the solidification front by re-
moving latent heat and smearing the concentration boun-
dary layer; in this case its presence would be desirable.
Coriell et al. ' '" and Hurle et al. ' ' investigate the cou-
pling between the convective and morphological instabili-
ties via linear stability theory. Jenkins' and Caroli
et al. ' use bifurcation theory to analyze this weakly non-
linear coupling. The conclusion from all these studies is
that the coupling is weak due to the fact that the two in-
stabilities individually occur at widely different wave
numbers, the disparity in scale precluding a stronger in-
teraction. Nearly all such studies focus on the lead-tin
system with segregation coefficient k =0.3. Here k is de-

fined by

k =C, /CI,
where C, is the concentration of solute in the solid and

Cf is that concentration in the liquid at the interface.
If one contemplates the numerical solution of systems

involving directional solidification, one must confront the
difficulties of three-dimensional free-boundary problems.
Further, there is the practical difficulty of dealing with
systems having many parameters (normally between 10
and 20) and the subsequent inability to appraise the phys-
ics when parameters vary. In order to bypass such diffi-
culties, we shall take an approach suggested by Sivashin-
sky. ' He examines the characteristic equation of the
linear stability theory of Mullins and Sekerka and sees
for small values of k, that the system has long-wave insta-
bilities. He then develops a long-wave evolution equation
for the interface shape whose solution displays cellular
structure. This approach has the advantages that the
description of the system reduces to a generic partial dif-
ferential equation containing a single parameter; no free-
boundary problem arises. Furthermore, systems with
k ~0.01 have great practical interest since they become
nearly pure substances upon solidification. The purifica-
tion of silicon depends upon the rejection of trace contam-
inants at the solidifying front. The doping of pure sub-
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FIG. 1. A dra~ing of the cellular structure observed by Jack-
son (Ref. 9), which developed during the directional solidifica-
tion of a CBr4 melt with impurities.
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II. FORMULATION

As shown in Fig. 2, a binary-alloy melt is directionally
solidified at constant speed V. Following Wollkind and
Segei~ and Langer, ' we assume that the thermal diffusivi-
ty a. of the system is much larger than the mass diffusivity
D of the solute, and that the latent heat is not too large.
Furthermore, we assume that the thermal conductivities,
kL, and ks, in the liquid and solid phases, respectively, are
equal. Under these conditions we may neglect the heat
generated at the solidifying front and presume that inter-
facial perturbations do not give rise to disturbances of the
temperature field. Thus, the temperature field may be
taken as fixed and equal to

T=T'0+Gz . (2.1)

Here z =0 is the mean position of the interface, To is the
reference temperature of the undisturbed planar interface,
and 6 is the imposed temperature gradient.

In a frame of reference moving at the velocity V, the
Boussinesq equations for conservation of momentum,
mass, and solute in the melt are

u, +(u V}u—Vu, = — +vV u+ gk,&c

po Po
(2.2)

stances with small quantities of solute is used to change
the material properties of the final alloy product. Addi-
tionally, these systems are commonly used in experiments
since it is easy to instigate instabilities in the interface for
further investigation by adding small amounts of contam-
inants.

Here we examine the coupled morphological-convective
system for directional solidification for k «1 and for
small wave number a. We formulate the problem in Sec.
II, introduce the scalings in Sec. III, and examine linear
stability theory in Se:. IV. In Sec. V we give some justifi-
cation for the approximations made, and in Sec. VI derive
the long-wave evolution equation appropriate to weakly
nonlinear interactions. In Sec. VII we present some nu-
merical simulations and discuss the results. We find that
it is indeed possible, under certain conditions, to suppress
morphological instabilities through buoyancy even though
sustained convection is absent. The physics of this effect
is discussed.

P =p(c —Cf),
po

(2.5)

where P is the solutal coefficient of expansion, P & 0, and
C~ is the concentration of solute in the fiuid at the inter-
face. Here we have neglected the thermal contribution to
the density gradient so that solute gradients are the dom-
inant factor determining the convective stability of the
system. ' '

The mean position of the interface is given by
z=h(x, y, t}. There are the no slip conditions and the
mass balance condition

u=0, (2.6)

assuming that the density change upon solidification is
negligible. There is conservation of solute at the interface

c(1—k)(V+&, )= D(c, c—,h,——c~h~), (2.7)

and there is the condition of thermodynamic equilibrium

T =P7lc + T~ 1+ E
L

(2.8)

Since T is given by (2.1), we have

To+Gh =mc+TM 1+ K
L

(2.9)

Here, from the phase diagram of Fig. 3, m is the liquidus
slope, T~ is the melting point of the pure substance, y is
the surface free energy, L is the latent heat, and K is
twice the mean curvature

K= [h (1+by) 2h hyh„y+—h~(1+h )]

X(1+&,+by') (2.10)

Faraway from the interface, we assume that the veloci-
ty field is bounded and that the solute concentration is C„
the concentration of the solute in the sohd phase.

where u is the fiuid velocity, p the reduced fluid pressure,
po a reference density, c the mass concentration of solute
in the fluid, and v is the kinematic viscosity of the fiuid.
We neglect any diffusion of the solute in the solid phase.
We also assume that density change 5p satisfies

V u=0,
c, +u.Vc —Vc, =DV c,

(2.3)

(2.4)

V Liquid C

///I//I

FIG. 2. Schematic of the directional solidification of a melt
at speed V.

FIG. 3. The phase diagram: C, /k represents the concentra-
tion of solute in the liquid at the interface while C, represents
the concentration in the solid, both occurring at the same tem-
perature.
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III. BASIC STATE AND SCALING

T =To+GZ, (3.1)

where from Eq. (2.9) the reference temperature of the pla-
nar interface is

There exists a steady-state solution, w'ith a planar inter-
face, h =0, and zero melt velocity, u—:0, to the above sys-
tem. This temperature field is

HIOvy Solvent t

Light Solute

Eg////

mC,
Tp= +T~ .

The concentration field is

(32) FIG. 4. The rejection of light solute at the solidifying inter-
face beneath the heavy solvent away from the interface may
lead to a convective instability.

C= Cg G,D
+ 1 —exp

V

where 6, is the solute gradient at the interface,

(k —1)C, V

ka

(3.3)

(3.4)

situation with light solute beneath heavy solvent. The
minus sign in the definition of R is due to the fact that
6, &0 for k ~1.

If we substitute (3.6) into system (2.2)—(2.4),
(2.6)—(2.9), and drop the primes, the governing equations
become

based upon the concentration boundary-layer thickness 5,

(3.5)

We now scale all lengths in the system with 5, velocities
with V, time with the characteristic time for diffusion,
D/V, concentration with 56„and the pressure with

IJ, V /D, consistent with a slow viscous flow in the melt.
The scaled variables, denoted by primes, are

x =5x', y =5y', z=5z', h =5h',

S '[u, +(u V)u —u, ]=—V@+V u —Rck,

V u=0,
c, +u Vc —c, =V c,

(3.11)

(3.12)

(3.13)

subject to the boundary conditions at the interface
z =h (x,y, t),

(3.14)

V2
u =Vu', v=VU', w =Vw', p= p',

D

C, G,D
f, = t', c — = c'.V'' k V

[c(k —1)+ l](1+h, ) =c,—h„c„—hycy,
(3.6)

(3.15)

c M h+I [h (1+by) 2h hyh y+hyy(1+h )]

X(1+h.'+hy')-3/2=0, (3.16)

(3.7)

the morphological parameter M,

mG,M= (3.8)

which measures the degree of constitutional supercooling
at the interface,

These scalings give rise to the following nondimensional
groups. There is the Schmidt number

and conditions far from the interface as z~ ao,

fuf (oo,
c=l .

The scaled basic state is

u, P, w=—0,

c= 1 —e

(3.17)

(3.18)

(3.19a)

(3.19b)

(3.19c)

V

I mo, D
(3.9)

%'e can eliminate the dependence upon the pressure
field in Eq. (3.11) by taking the curl of that equation twice
to obtain

which measures the effects of the surface free energy, and
the solute Rayleigh number

—gPG, D (1—k)C gP

5 ' —V u —V(V.(u V)u)+V (u.V)u — V u
Bt BZ

=V u —RDc . (3.20)

measures the strength of the buoyant force due to
solute being rejected at the interface. For definiteness it is
assumed that the solute is less dense than the solvent and
thus, as shown in Fig. 4, we have a potentially unstable

32 82 82 82
+

BXBZ Cl+BZ Q~ 2
Qy

2

We also note that using (3.12) and (3.14) we have

(3.21)
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IV. LINEAR STABILITY ANALYSIS

We now allow disturbances to the basic state as follows:

(u, u, w)=(0, 0,0)+e(U, V, IV),

h =0+EH,
c =1—e '+eC .

(4.1a)

(4.1b)

(4.1c)

We substitute (4.1} into the scaled system (3.3)—(3.18),
(3.20), and (3.22) and linearize with respect to e. For each
dependent variable lt we introduce normal modes as fol-
lows:

f(x,y,z, t)=%(z)4(x,y)e ', (4.2)

where the growth rate cr determines the stability of the
basic state, and 4 satisfies

(3.22)

at the interface. The Eqs. (3.20) and (3.22) will be con-
venient to use for the linear stability analysis to follow.

dC {1 k)C (o+k)C
dz ~ —&+g P

(4.9)

the last term of which represents a perturbation in the
concentration field due to an interfacial-shape change. If
M~1, which is near the critical value for instability, then
this term is proportional to a . If a were small, then
this term would dominate the diffusional term dC/dz;
this is a singular perturbation. Since a is the disturbance
wave number, then the dimensional wavelength or charac-
teristic cell size of an interfacial perturbation is

D 2m'

V a
(4.10)

Small a would imply that the cell size exceeds the dif-
fusional width D/V of the solidification zone. Such may
be the case particularly at the onset of instability near
M =1.

Thus, we assume that

(4.11)

@~+@~+a4=0 (4.3)
and rescale the problem for systems with small k as fol-
lows:

and a is the disturbance wave number.
The growth rate o is an eigenvalue of the system

k =a'k, (4.12a)

(4.12b)
d2 —a
dz

(4.4)

d d+ —a —cr C =We
dz2 dz

(4.5)

—1 d 2 —I 2+S —a —S rr IV= —a RC,
dz dz

This scaling retains the last term of (4.9} as an order one
quantity near M =1.

The governing system becomes

d+S ' —a (1+S 'o} 8'
dz2 dz

W= W, =0, (4.6a)

subject to the following boundary conditions applied at
the undisturbed interfacial position z =0,

d d+ —a (1+o) C=We
dz

= —a RC, (4.13)

(4.14)

dc +{1 k)C (o+—k)H =—0,
dz

—C+(M ' —l)H+a I H =0,
and faraway from the interface as z~ oo,

(4.6b}

(4.6c)

subject to conditions at z =0,
W= W, =0,

C+(1 a2k)C ' (-+k)C
0~—1

1 +g2P

(4.15a)

(4.15b)

f
IV/ (oo, (4.7a)

(4.7b)

One can solve the linearized thermodynamic equilibri-
um equation (4.6c) for the interfacial perturbation H to
find that

CH=
M ' —1+a I

(4.8)

Furthermore, if M —+0, then (4.8) requires that H~O,
which is the unperturbed state. This is consistent with
(3.8) since if the undercooling is zero, then there will be no
morphological instability.

Now if we substitute for H in (4.6b), using {4.8), the
mass conservation of solute at the interface equation be-
comes

and conditions (4.7a) and (4.7b) far from the interface.
We assume a power-series expansion for all dependent

variables in the problem,

W=WO+a W)+ . '

C=CO+a C)+

(4.16a}

(4.16b)

Wo ——0,
Co ——Ae

where A is an arbitrary constant of integration.
At order a we obtain

(4.17a)

(4.17b)

and substitute these into (4.15)—(4.17).
The solution procedure is straightforward and we find

at leading order that
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Wi ——RSA —1+ (Se'~s —e ')
5 —1

(4.18a)
2.5-

Ci ——Be A (RS cr—1—)ze — ez -z ~~ -Z.
2(S —1)

R&a() + S-~)

RS' (1+S)z
g2

(4.18b) -I 0
(QM( /

where B is an arbitrary constant of integration.
We now substitute Ci into the O(a ) part of (4.15b), -2.5-

i
C gk (0 +k )A

(4.19)

and obtain an expression for the linear-theory growth rate
cr. If we now use (4.12a) and (4.12b), we find -5.0—

(1—M ')a —a I0'=
M '+a I

1— E.
2(1+S-')

(4.20)

FIG. 5. Plot of the growth rate expression (4.20). Here
M =1.025, k =0.001, S=10.0, I =0.1, and R, is given by
I'4.22a).

When gravity is absent, R =0. If we examine M near un-

ity, and a small, the expression (4.20) reduces to

cally unstable as shown in Fig. 5.
Now as the buoyant force is increased by raising R, the

morphological instability is damped. %hen
o=(1—M ')a —a I —k (4.21)

R, (R (2(1+S '), (4.24)
which, except for notation, is identical to that of Sivashin-

sky, ' who considers the morphological instability of sys-
tems with small k, near M =1, in the absence of buoyan-
cy. We recover this limit since fVi ——0 for R =0 as
shown in (4.18a). Thus (4.20) extends Sivashinsky's re-
sults to include the effects of buoyancy.

We can calculate from (4.20) the critical R and a when
0 =0 to obtain

R, =2(1+S ')[1—kl (1—M '") '] (4.22a)

a =M 'I '(M' '—1)

If we take the limit M~O in (4.22a) we fmd that

R, =2(1+S-'),

(4.22b)

(4.23)

which agrees with Hurle et al. ,
'3 who consider the con-

vective stability of the melt motion for a system with
k~0 and a planar interface (in the absence of morpho-
logical instability). Since M and I are inversely pro-
portional to the concentration C, of solute, then increas-
ing C, increases the wave number of the instability. A
pure substance, C, =O, has wave number equaling zero,
which gives a planar interface.

In Fig. 5 we plot from Eq. (4.20) the growth rate versus
wave number for various values of R Recall that a.&0
implies instability while cr ~0 gives stability. From (4.21)
if M ~ 1, then the contribution to o due to undercooling is
positive and thus the system is susceptible to a morpho-
logical instability. On the other hand, the presence of sur-
face free energy I and an increasing k imply a smaller
concentration gradient, and therefore are stabilizing ef-
fects. Thus if k is not too large, then for R =0, cr &0 for
a range of wave numbers a and the system is morphologi-

the system is stabilized even though M & 1. Caroli
et al. ' also find that the coupling of buoyancy stabilizes
the solidifying front. Their result is vahd for a Pb-Sn sys-
tem where the wave number is not small. They do note,
however, for small wave numbers, that the effective Ray-
leigh number for the problem is a R which agrees with
(4.13). However, they do not pursue this limit since it is
not physically relevant for the Pb-Sn system.

When R &2(1+S ') in (4.20), the buoyant force is
strong enough to cause a sustained convective instability
in the system. This instability has wave number greater
than a, of Eq. (4.22b), which as shown in Fig. 5 may be
unit order and thus outside the range of the present
theory. Furthermore, the quantity a R may be greater
than O(a ) in this region, which is also inconsistent with
the theory.

The above results are summarized in Fig. 6. The
tongue of stability near R =2(1+S ') shown for large M
is as wide as the correction to R, =2(l+S ) given in
(4.22a). Since it is proportional to k, and k is small, then
it is unlikely that such a region could be found experimen-
tally. However, near M=1, the region of stability is
larger. Furthermore, this region occurs for
R &2(1+S ') so that the system attains at long times a
static configuration, ' no sustained convection is possible.

In order to determine the mechanism by which buoyan-
cy is able to suppress the morphological instability, a non-
linear analysis is required to completely specify the veloci-
ty and concentration fields. The linear analysis discussed
above does not determine the arbitrary constants of in-
tegration, A and B of (4.17) and (4.18).

Before turning to this task, we pause a moment to ex-
amine in detail the approximations made and their physi-
cal implications.
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R~ 2(l+S )

STABLE
~

M

l

~ ~A=Ac{M)
I

ORr HQl.06ICAL
INSTABILITY

CONVECTIVE INSTABILITY

small segregation coefficient k, small latent heat L, large
surface free energy y, and small solute diffusion coeffi-
cient D. For a given binary system, choose V and 6 to
satisfy (5.7}. The magnitude of I defines the closeness of
M to unity, through inequality (5.3), and hence the size of
k. Note that k «(1/4I )(M —1} is not required. Note
also that inequality (5.4) requires a small, not a. Consid-
er now a system for which I =10 ' and k =10 i. Then
we have a long-wave instability with a =10 ' as long as
0 & M —1 & 2 X 10 . Alternatively, if I"= 10 and
k =10, there is an instability with a =10 ' as long as
0 & M —1 & 2 &( 10 . Such situations seem reasonable
when silicon or germanium with trace contaminants are
processed.

FIG. 6. Plot in the R vs M plane of the results shown in Fig. VI. %'EAKLY NONLINEAR ANALYSIS

In order to obtain the weakly nonlinear behavior of the
system, define

M =1+@, p~g1, (6.1)
V. APPROXIMATIONS

For purposes of this discussion let us take R =0.
When M is near unity, M —1=0(a ), the linear theory
growth rate cr is obtained from Eq. (4.21),

o -(M —1)a —a I —k, (5.1}

while the critical wave number a, is 'obtained from Eq.
(4.22b),

a, — (M —1) . (5.2)

Thus maximizing the wave number corresponds to an un-
stable disturbance if

where parameter e measures the degree of the undercool-
ing. Following Sivashinsky, ' we rescale the original
governing equations (3.11)—(3.19) as follows:

xe'"=X, ye'"=I', z=z, h =EH, c=c,
(6.2)

e k=k, te =T, e'~u=U, e'~2v=V, iv=W.

These scalings are determined by using (6.1) and the linear
theory of Sec. IV.

For ease of discussion only we examine the two-
dimensional case, V=O, 8/BI'=0. In terms of the
stream function P such that

k & (M —1) « 1 . (5.3) U = -i)'z IV =4x (6.3)

Now, the asymptotic expansions (4.16}require that

a (&1,
so from form (5.2) we must have

(M —1)«1 .1

(5 4)

(5.5)

the governing equations are

~+Ox Z
—

Wz ~Z «Pxx+4zz }

8 8
(eqxx+Pzz) eecx, (6.4)—

i3X BZ

The scalings in the nonlinear problem described in Sec. VI
require that

e'Cr 4z Cx+ PxC—z Cz =«xx+—Czz (6.5)

k/I =0(a') (5.6)
subject to boundary conditions at the interface
Z =eH(X, T),

which is consistent with (5.3}and agrees with the small-k
limit of the wave number found by Sekerka. '

Further, we have assumed that the effects of latent heat
are negligible and that the thermal conductivities kz and
kL in the solid and liquid, respectively, are equal. The
former of these requires that

(5.7)

I=hz=0

[C(e k —1)+1](l+eHz. ) =Cz eHxCx, (6.6—b)

C —eH(l+e} '+e I Hxx(1+ e Hx} ~ =0, (6.6c)

and boundary conditions as Z~ oo

(6.7a)

while condition (5.3) requires that I not be too small.
The present analysis should apply to materials having We seek solutions in powers of e as follows:

(6.7b)
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0=0+e0i+ "6+"
C = I —e +t.C]+e C2+

0 =Hp+eH]+

(6.8a)

(6.8b)

(6.8c}

Ho, T+kHo+ t I &o,xxxx+ [(1 &—o }Ho,x]xj

x 1— =0
2(1+S ') (6.20)

W2, zzz =42,zzzz
—].

Wz, xe —C2,z =C2, zz

t( 2=4 ,2z=o

C2 z+C2 ——0, Z =0

C, ——,'Hp'+Hp+rH, ,=O, Z =0

gati bounded, Z~ oo

C2 —+0, Z~(g) .

(6.9a)

(6.9b)

(6.10a)

(6.10b)

(6.10c)

(6.11a)

(6.11b)

Equation (6.9a), subject to boundary conditions (6.10a)
and (6.11a), implies that

(6.12)

We then solve for the concentration field C2 using (6.9b),
(6.10b), (6.10c), and (6.11b) to find that

(6.13)

The leading-order problem is identically satisfied by the
basic state. At 0 (e) we fmd that ij'ji ——Ci —=0.

At O(e ) we have

Hp ——I', T =
1—

2(1+S-')

(6.21)

converts Eq. (6.20) into the following one-paraineter form
of the evolution equation:

F,+KR +Fgg+ [( I F)Fg]g=—0, (6.22)

1 ——2 R
2(1+S-')

(6.23)

In three dimensions, one obtains the obvious generaliza-
tion

Equation (6.20) agrees with the result of Sivashinsky'
in the case 8 =0 and upon rescaling gives a single param-
eter k I e governing the behavior.

Whenever R &2(1+S '), sustained convection is ab-
sent and the transformation

where

2a= —,Hp —Hp —I Hpgg . (6.14)

F,+KR+V'F+V [(1—F)VF]=0,

where

(6.24)

However, to this order, the interfacial position Ho is still
unknown, so that we must examine the O(e ) problem:

and

Bg Bri
(6.25a}

A,zzzz+S A,zzz =«xe—] —Z

—z —z
Ci,zz+ C3,z =A,xe ~xxe

it'i=@,z =o

C3 z+ C3 ——Hp T+ kHp, Z =0

g& bounded, Z~ 00

C3~0, Z~ao .

Equations (6.15a), (6.16a), and (6.17a) give

e
—z

g3 SRax 1 — e ——+

(6.15a)

(6.15b)

(6.16a)

(6.16b)

(6.17a)

(6.17b)

(6.18)

F,+KR V'F V[(1 —F)VF—]=0 . — (6.26)

Here, now what were stabilizing fourth-order and desta-
bilizing second-order terms, have their roles interchanged.

(6.25b)

Clearly, the presence of buoyancy (without sustained
convection) leads to an effective segregation coefficient E,
given by Eq. (6.23), larger than the physicochemical value
k by an amount determined by the Rayleigh number.
This will be discussed further in Sec. VII.

When R & 2(1+S '), the evolution equation is quanti-
tatively different, having the form

while (6.15b) and (6.17b) give

C3 ——b,e +axx (1—SR)Ze + e
—Z sz, z

2(S —1)

RS '" —(1+S)Z (6 19)

where 6 is an unknown function of integration. 6 is
determined through the O(e ) contribution of (6.6c). By
substituting (6.19) into (6.16b), we obtain an evolution
equation for the interfacial shape Ho, independent of b„

VII. RESULTS

C=1—e +e ( ,'F F Fg)e———(7.1)

obtained from Eqs. (6.8b), (6.13), and (6.21). Since
Z =eH(X, T), we can use Eqs. (3.6), (6.8c), and (6.21) to
obtain

Let us return to the two-dimensional problem (6.22)
subject to periodic boundary conditions on the interval
/=0 to g=l. Given the solution for F, one can determine
the concentration distribution from
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FIG. 7. Numerical simulation of Eq. (6.22} results in the
above interfacial shapes for the given values of K. Here
I =16@~2.
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FIG. 9. The component parts of Eq. (7.2).

C= [1 eI'+e (—k+F+Fg)] . (72)

We solve Eq. (6.22) using an explicit finite difference
scheme for various values of I chosen as multiples of the
wavelength 2n/a, =2trW2 giving maximum amplification
in the linear theory of Eq. (6.22). This linear theory gives
E & —, for instability.

Figure 7 shows the calculated interfacial shape F for
various values of E. Figure 8 shows the corresponding
concentration profiles. The initial condition
I' =0.25 sin[2m(g/I) ) has been used in all eases. The time
integration is performed until the cell tips have reached
steady state and the cell slopes are large. The units of the
I' axis are proportional to e5 and the units of the g axis
are proportional to (I'/s)' 5. When E) —,', initial dis-

turbances decay to zero and the basic state planar front is
regained. When E is below —,', the system is unstable and
a cellular structure forms, qualitatively similar in appear-
ance to those of the experiment shown in Fig. 1 and

direct numerical computation. (Note that the present
long-wave theory should be valid when the cell slopes are
bounded and should break down when vertical sections
appear. Further, the "droplet-shaped" root tip seen in ex-

periment and detailed numerical simulation6 should be
missing in that fine structure should not be resolvable in

this approximation. ) The concentration profiles from the
linearized version of Eq. (7.2) show that c —I eF, so tha—t
c is largest where F is smallest; solute aggregates at the
roots. The nonlinear theory shows a further redistribution
with the I'g term predominant; this term measures the
relatively large curvature at the root and distorts the
sinusoidal profile of c consistent with linear theory into
the root-flattened concentration profiles shown in Fig. 8.
Figure 9 shows the contributions to c of Eq. (7.2) separat-
ed into component parts.

Finally, when Eq. (6.22) is integrated for values of K
significantly smaller than —,', the tips of the cells show a
tendency to split, an effect perhaps related to the appear-
ance of half-wave secondary bifurcations obtained by Un-

gar and Brown from a numerical analysis of the full sys-
tern.

I 5-

0.5 -,

0.0
I

0.5

g/g

1

I.O

FIG. 8. Plot of the concentration expression (7.2). Here
@=0.2, %=1.0, and C, /k =1.0.

VIII. DISCUSSION AND CONCLUSIONS

Asymptotic analysis of directional solidification in the
presence of buoyancy is possible for small segregation
coefficient and long-wave disturbances. The result is a
single partial differential equation, the evolution equation
that governs the approximate weakly nonlinear behavior
of either two or three-dimensional cells as a function of a
single nondimensional group K. When buoyancy is absent
so that the Rayleigh number R =0, K is a scaled version
of the segregation coefficient k. When 0 ~ R (2( 1

+S }, sustained convection is absent but buoyancy in-
creases E, the effective segregation coefficient. Accord-
ing to definition (1.1) and assuming that the concentration
Cs of solute in the solid is constant, then an increase in k
corresponds to a decrease in the concentration of solute in
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the liquid at the interface. Thus, the buoyant force acting
on the light solute has enhanced the diffusion of solute
away from the interface. This decreases the concentration
gradient, thus lowering the tendency for the liquid to be-
come supercooled. The result is a suppression of the mor-
phological instability.

Numerical integration of the evolution equation in two
dimensions shows the quantitative behavior of the system.
For E ~ —, cells form and when the amplitudes are infini-

tesimal, lateral diffusion causes a small solute aggregation
at the troughs of the interface. The nonlinearities in Eq.
(6.22j accentuate this trend since lateral diffusion is
enhanced. The strong distortion of the concentration pro-

file showing solute segregation indicates that the solute is
trapped between adjacent cells, the diffusion upwards
along the root canal being too slow to accommodate the
narrowing of the root canal by solidification. This un-
desirable distribution would then be frozen into the final
crystal product.
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