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We have applied previously used quantum Monte Carlo (QMC} techniques to obtain numerically
the thermodynamics of two well-studied quasi-one-dimensional (1D) easy-plane ferromagnetic
models, in the presence of an applied magnetic field in the easy plane. The checkerboard decompo-
sition form of the Trotter approximation to the partition function has been used. Internal energy,
specific heat, magnetization, and susceptibility have been obtained for model Hamiltonians believed

appropriate for spin S=
2 [(C6H»NH3}CuBr3 (CHAS}] and S =1 (CsNiF3), in temperature and

field ranges where classical theories have proiicted solitonlike kink excitations. The S =T QMC

ca1culations are verified and superseded by a numerically exact quantum transfer-matrix (QTM)
technique. Results for the temperature dependence of the peak in the specific heat versus field are
compared with available experimental results. For the model applicable to CHAS, it is found that
there is no value of the easy-plane anisotropy parameter from 4% to 10% for which the QTM cal-
culation can adequately reproduce the experimentally obtained peak height and position. On the
other hand, the QMC results for the model assumed for CsNiFs do roughly reproduce the tempera-
ture dependence of the experimental peak positions, but not the peak heights. However, statistical
errors present in our QMC data are large, and a better method is still needed for computing the
quantum statistical mechanics of S = 1 systems.

I. INTRODUCTION

Obtaining a correct theoretical description of the low-
temperature thermodynamics of the easy-plane spin-1 fer-
romagnet CsNiFi has been the subject of a number of in-
vestigations in recent years, both theoretical' 6 and exper-
imental. ' More recently, a similar spin- —,

'
compound,

(C6Hi iNH3)CuBrq, or CHAS, has inspired even further
interest in easy-plane ferromagnets (EPFs), especially be-
cause of the possible existence of (or effective conse-
quences of) classical solitary wave excitations in such a
low-spin quantum chain. " A typical model Hamiltonian
for a spin-1 EPF is'

N

&s=i= g l —JS. S.+i+A(Sn)' —g}ttaB.Sn)

where J=23.6 K, A =9.0 K, and g =2.4 for CsNiF&.
N is the number of spins and p,s is the Bohr magneton.
For a spin- —,

' EPF, the easy-plane anisotropy must be in
the exchange, then the Hamiltonian is usually taken to be

~s=&n= g [—(J„S"„S"„+i+JrS„S„+i

+J,S'„S'„+i)—gpsB S„].

For CHAB, me take' J„=J,=110K, J~ =104.5 K, and
g =2.0. In both Hamiltonians, ~e will find it convenient
to choose the xz plane as the easy plane, and to apply the
field in the z direction.

Because of the low spin number, quantum effects might
be expected a priori to be strong in both these materials.

However, it has been customary to apply classical
mechanics as a first approximation. With a field in the
easy plane which is small in comparison to the anisotropy
(glss8 g~2AS), and at low temperatures ( T &J), the con-
tinuum limit classical dynamics is ap roximately
described by the sine-Gordon (SG) equation. Then the
possible excitations include small-amphtude spin waves,
solitons, and breathers. Early neutron-scattering experi-
ments on CsNiFs (Refs. 7 and 8) and tetramethyl am-
monium manganese trichloride (TMMC, a similar antifer-
romagnet with S =—', ; Ref. 13) were interpreted in terms
of a gas of weakly interacting solitons and spin waves.
More recently this interpretation has been challenged and
the need to include alternative mechanisms has been
discussed —for example, including higher-order spin-wave
processes. Also, the soliton-gas model' predicts apeak in
the soliton specific heat versus field at fixed temperature,
whose position and height are proportional to T and T,
respectively. The T dependence of the peak position is
approximately observed in experiments on CHAS and
CsNiFi, but the constants of proportionality are only
correct if one assumes an ad hoc renormalization of the
soliton rest mass. There is no consistent fit for the peak
heights in either material.

Furthermore, linear stability analyses' ' and numeri-
cal simulations of the full classical dynamics' (without
approximating the equations of motion by the SCi equa-
tion) have shown that there is an intrinsic instability for
the solitons, henceforth referred to as kinks, to deviate
strongly from SG-like behavior for applied fields greater
than a critical field given by g{ttn8, =2AS/3. As the
field is increased toward the critical field, the spins show
an increasing tendency to tilt out of the easy plane, a
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motion which is assumed small in the SG approximation.
The critical fields are around 18 kG for CsNiF& and 13
kG for CHAS, somewhat above the ranges where most
experiments have been done. This spin tilting increases
continuously as the field approaches the critical field, and
therefore its effects can generally play a role in the
dynamics. For fields greater than the critical field, the
kinks move in a direction opposite to that expected of SG
solitons; these have been referred to as "backwards" nega-
tive effective mass kinks. ' It is only in the limit of small
field and zero velocity that the out-of-plane tilting van-
ishes, and then the SG approximation becomes exact.
Otherwise, the complete classical dynamics is rather poor-
ly described by the SG equation. This behavior of the
kinks also has been obtained by a variational ansatz calcu-
lation. "

The classical EPF Hamiltonian has been further shown
to be inadequate for explaining experimental data through
classical transfer-matrix (TM) calculations. In particular,
TM calculations of specific heat using the full discrete
EPF Hamiltonian give results much higher than experi-
ment' for CsNiF&, whereas SG theory (without a renor-
malized rest mass) fits much closer to experiment. Simi-
lar results have been found for easy-plane antiferromag-
nets' comparing experiment with classical Monte Carlo
results. It has been suggested that quantum mechanics
could effectively restrict spins to the easy plane (tilted by
zero-point fluctuations), thereby making SG theory more
appropriate than the full classical Hamiltonian, even for
5 = —,

' CHAS.
There could be several corrections necessary to the clas-

sical model, including effects of next-nearest-neighbor in-
teractions, impurities, or discreteness. Perhaps even a
quite different Hamiltonian is necessary, especially since
parameters are usually determined from fits to linear
properties, whereas soliton-bearing systems exhibit intrin-
sically nonlinear phenomena. Certainly the most obvious
question to consider, however, is how to include quantum
mechanics in the model. One approach has been to rein-
sert the quantum mechanics by simply replacing the clas-
sical SG equation with its quantized version, then the
leading correction to the classical theory is a reduction of
the SG soliton rest mass. ' More recently, Johnson and
Wright reported on the Bethe ansatz method applied
to solving the quantized SG equation relevant to easy-
plane ferro- and antiferromagnets a similar rest-mass
reduction is found, but still theory and experiment for
CHAB, CsNiF&, and TMMC disagree (for specific heat,
and therefore probably for other thermodynamic proper-
ties). These authors point out, in particular, that the
corrected classical SG theory, including kink-kink interac-
tions, would require a rest mass increase to bring the
calculated specific heat into agreement with experiment
for CHAB. This approach of quantizing a particular lim-
it of the full classical Hamiltonian (the SG limit) seems
questionable. By so doing, the out-of-plane degree of free-
dom is not treated properly; it is essentially transformed
to a linear degree of freedom. In view of continuing con-
troversies over the importance of out-of-plane classical
motions versus the quantization of the SG model, it
seems necessary to include both out-of-plane and quantum

II. TROTTER-SUZUKI FORMALISM:
CHECKERBOARD DECOMPOSITION

The original 1D quantum thermodynamics spin prob-
lem is mapped onto an approximately equivalent 2D clas-
sical thermodynamics problem via an application of a
generalized Trotter formula, as suggested by Suzuki.
First, the partition function Z is defined in terms of a
trace

Z=tr(e &~)= g-(o ~e t'~~o.
&
„- (3)

where P is the reciprocal of the temperature T (we use
Boltzmatin's constant ks = 1) and o = f S„, n
=1,2, 3, . . . , NI, where the S„are eigenvalues of some

appropriately chosen operators, usually S'„. It is general-
ly not known how to compute the required matrix ele-
ments in Eq. (3), so the Trotter formula ' is used to ap-
proximate the operator by one for which the matrix ele-
ments are easier. The generalized Trotter forinula for the

aspects simultaneously.
One way of achieving this is to use the recently

developed Trotter-Suzuki transformation, whereby the
thermodynamics of the original one-dimensional (1D)
quantum system is mapped onto the thermodynamics of a
2D classical system. Numerical evaluation of the inter-
nal energy, specific heat, etc. , is carried out by using ei-
ther Monte Carlo or transfer matrix methods. Although
this will give no direct information about the excitations
(e.g., the question of existence of solitons) it can neverthe-
less give crucial indications of the importance of quantum
effects and the validity of the assumed Hamiltonians.

In this paper we begin with a brief review of the
Trotter-Suzuki formalism, which converts the trace opera-
tion in the partition function definition into a discrete
path integral, thereby adding one dimension. New Monte
Carlo spin-1 updating algorithms will be given, these be-
ing somewhat different from the previous spin- —,

schemes. Results relevant to the CsNiF& model will be
presented, and compared with experiment and SG theory.
Unfortunately, these S=1 data have rather large statisti-
cal errors making quantitative comparisons of limited
value. Methods other than the present quantum Monte
Carlo (QMC) technique may prove to be more precise.
One possibility is the "numerically exact" quantum
transfer-matrix (QTM) method as studied by Betsuyaku, 9

which will be applied here to the spin- —,
' CHAB thermo-

dynamics. We use a technique to extrapolate from the
finite-size lattice to the infinite limit in both directions on
the 2D lattice, thereby making this preferred over the pre-
vious S=—,

'
QMC method. We find that there is no

value of exchange anisotropy from 4% to 10% for which
the QTM results for specific-heat peaks will agree with
experiment. We have, however, tested that the QTM cal-
culation gives results consistent with the QMC calcula-
tion. Finally, a method for calculating the S =1 funda-
mental matrix elements is sketched in the Appendix;~'
these matrix elements determine the effective energy of
the 2D lattice, and therefore control the Monte Carlo up-
dating.
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exponential of a sum of k operators is

k k

exp g 8; = lim g exp(e(/rri) (4)
~

1
m~ce

Typically the integer k is N for what has bow calledi2 the
"real space decomposition, " and k can be 2 or 4 or even 6
for the "checkerboard decomposition. " The integer m is
referred to as the "Trotter index, " and represents the
number of discrete path integral steps.

The Hamiltonian is written as a sum of two-body
operators H„„+i, and it is convenient to assume that each
of these two-body operators can be written as a sum of
two parts

n =1,2, 3, . . . ,Nj, r =1,2, 3, . . . , 2m .The eigenvalues
now have both a position index n and a state index r
Then

~1~~2~ . r~2m

2 Z

e
—PE(n, r) (10)

From (9) it is evident that we have an expression for a
classical partition function on a 2D lattice of size N )& 2m:

H= g H„„+i,

&n,n+1=H e,a+1+ ~n, m+1

(5a)

(5b)

Here brackets (n, r ) indicate a product restricted to terms
in which n and r are both odd or both even, and the 2D
energy function E(n, r) for a block of four spins on the
lattice is given by the fundamental matrix element

Furthermore, the odd and even n two-body operators are

summed separately to define four parts of H (i.e., k =4);

A

-pE(s, r) t e c ( pHn, a+1 m p n, a+1 m

0 0g Hn, n+i I'~~= X I'.,n+i (6a} X
I Sn, r+(Sn+i, r+i)

even pg =odd cvcn gg =odd
even even

0 A 0 A+odd+ ~odd++ even+ ~even (6b}

All four operators H~z, etc. , are sums of commuting
operators, and so this is rewritten as

f odd even) ] ~

where

Lodd=
even

PH n n+ (/m —PVn n+(/m)je "'"+ e "'"+
n =odd

even

(8b)

Now, (2m —1) complete sets of states are introduced (in
addition to that of the trace itself) labeled by o, = f S„„,

I

The mth-order Trotter approximation to the partition
function, Z(™,is then defined by

A
p~ f m~ ~ —p& ~d/m —pV~d/mZ =tr [(e e }

A
p—PH „ /m -PV „ /m„

The r variable is the new added dimension. Since the only
terms which contribute to the energy of the 2D lattice are
restricted to n and r both odd or both even, this has been
called a checkerboard decomposition. In what follows the

S„„variables will be eigenvalues of S'„operators, for the
rth set of states. In the spin- —,

'
problem these can be + —,',

while for spin-1 the possibilities are +1 and 0.
The 2D lattice consists of —,

'
Nm blocks of four spins, or

"vertices. " In the limit medea, Z' ' approaches the ex-
act partition function of the original 1D quantum system
The 2D lattice has periodic boundary conditions in the r
(or Trotter) direction, as a result of the trace operation.
For the Monte Carlo calculations, periodic boundary con-
ditions will also be imposed in the spatial direction. For
the transfer matrix calculations, however, it is very advan-
tageous to use free end boundary conditions in the spatial
direction.

Expression (11) needs to be modified slightly, since the
resulting matrix elements will not in general be symmetric
with respect to the interchange of r and r+1 (i.e., the
matrix is non-Hermitian). We redefine E(n, r) and restore
this symmetry:

AP
—pH(nr) j c c ~

pVnw+ I pgnn+ &
m pVnn+1= X~n, r~n+1, r+1 I

e
( ~n, r +1~@+1,r +1 ~

(12)

This is equivalent to using k =6 in the Trotter formula.
These matrix elements (or vertex weights) for the spin-1
model are calculated in the appendix. Spin- —,

' matrix ele-

ments have already been given elsewhere.
The properties of the spin- —,

' matrix elements have also
been discussed. It is important to note that zero ma-
trix elements correspond to infinite energies and therefore
prohibited states of the four-spin blocks or vertices. For
the spin-1 problem, out of the possible (2S+1) =81 ma-
trix elements, only 19 are nonzero for the isotropic case in
the absence of a field (A =8,=0). If a field is added

l

parallel to the quantization axis, there will still be only 19
allowed vertices. However, if a field is added perpendicu-
lar to the quantization axis, this produces an 81 vertex
model. By choosing the quantization axis in the easy
plane (when 3+0), parallel to the field, one obtains a 41-
vertex model, independent of the size of the field. Since
we are interested in studying the field dependence of the
thermodynamics, it is most convenient to choose this last
case, so that the model under consideration always has 41
allowed vertices. In this way, updating acceptance rates
will depend only weakly on the field strength for any
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chosen spin updating algorithm. For this 41-vertex
model, the allowed vertices are the ones which contain an
even number of zeros (or +1's}, and this influences the
choice of an appropriate Monte Carlo updating algorithm.

III. MONTE CARLO SPIN UPDATING: S= 1

At each of the N X2m sites of the 2D lattice, there is a
classical spin variable whose value can be —1, 0, or + 1.
Starting from any given allowed state of the system, an al-
gorithm is needed which has equal a priori probability of
transition to any other allowed state. Then the new state
will be accepted or rejected according to the usual
Metropolis et al. scheme: If && is the energy change of
the 2D lattice, the acceptance probability is 1 if ~& &0
and e ~~ if h& p0. One can follow the example of
spin- —,

'
QMC and generate trial columns, rows, or squares

(in the "holes" of the checkerboard) along which spins are
altered. One simply flips + —,

' to ——,', or vice versa, at
each site along the trial path; there is only one possible
output state (plus the identity). For this spin-1 problem,
however, the situation is more complicated —there are
many choices for possible output states of the selected
path, and they all need to be weighted equally, as fol-
lows. s

A move is considered which will alter p spins along
some closed path in the lattice. That the path must be
closed is nowssitated by the choice of a 41-vertex model.
One has p ~N for a row, p =2m for a column, and p =4
for a square Any. nearest-neighbor pair of spins in the
path belongs to one vertex (block of four spins) in the lat-
tice. If the number of 0's in the pair is odd (even) before
the atteinpted move, then within the 41-vertex model it
must remain odd (even) after the move, since the only al-
lowed vertices have an even number of 0's. This restric-
tion limits the moves to two types:

(i) "unflipped;" all 0"s in the path remain 0; all +1's in
the path go to + 1 or —1 with equal probabilities.

(ii) "flipped;" all 0's in the path go to + 1 or —1 with
equal probabilities; all + 1's in the path go to 0.

The decision whether to attempt the flipped or un-

flipped move is based on the number of zeros, No, along
the path before the move. For a given initial path, there

0
—No

are 2 ' flipped moves possible, and 2 unflipped ones,
for a total of 2 '+2 ' possible output states. There-
fore the flipped moves should be attempted with probabil-

ity 2 '/(2 '+2 '), and the unfiipped moves should be
attempted with probability 2 '/(2 +2 '). In the
absence of any interactions (all vertex weights equal}, we
have tested that this algorithm generates equal numbers of
—1's, 0's, and + 1's in the lattice, using an equal number
of row, column, and square moves at randomly chosen lo-
cations.

IV. MONTE CARLO DETAILS

We used an approximately constant value of mT =60
K, in order to make the errors due to the Trotter approxi-
mation reasonably independent of temperature. This
nec4..ssitaies a larger lattice in the Trotter direction at
lower T. For the CsNiF3 parameters, in the temperature

range 5 K & T & 15 K and field range 0(8, (10 kG {in
the easy plane}, acceptance rates for row and column
moves are «1%, while quare moves have larger accep-
tance rates =10%. Because of the inefficiency of this
method compared to spin- —,', we present data here for only
16 spins, using only square moves.

The initial configuration was taken to be the state with
all S„„=O. Vertex weights were found for a temperature
2T, and then the Monte Carlo algorithm was applied for
3000 to 5000 "steps, " where a step involved attempting
Nm sq~re moves chosen at random positions; this is two
sweeps through the lattice of Nm/2 vertices. The tem-
perature was then lowered to T, new vertex weights were
calculated, and the Monte Carlo algorithm was begun us-

ing the final configuration of the stirring or heating inter-
val as the initial configuration. The first 64000 steps
were discarded for equilibration, and then data for expec-
tation values were saved for 192000 steps. Expectation
values of the internal energy, specific heat, in-plane mag-
netization, and susceptibility were computed in a manner
identical to that for the spin- —,

'
problem, as expectation

values of appropriate derivatives of the vertex weights. '
Six bins of 32000 steps were used for estimation of errors.
Finally, data from five such calculations were averaged to
obtain the results presented here.

At zero applied field, it was found to be difficult to ob-
tain zero average magnetization, due to the strong effec-
tive ferromagnetic exchange, especially at low T. This
strong exchange, which is also seen in spin- —,

'
QMC,

causes an effective freezing of the QMC algorithm. This
was somewhat alleviated by adding a global spin move
(where all spins of the lattice are reversed in sign) at-
tempted once every step. At zero field this move is al-
ways aeoipted and the average magnetization must come
out as zero. At nonzero fields the move is accepted with
probability 1 if b,E &0 and probability e @ if l},E ~0,
as for any other elementary move.

V. QMC )CULTS FOR CsNiF,

Calculations using CsNiFi pat+meters were made in the
temperature range 5 K & T & 15 K for fields up to 10 kG.
The internal energy, specific heat and in-plane magnetiza-
tion and susceptibility versus T are shown in Fig. 1, for
fields 0, 5, and 10 kG. In Fig. 2 we present the changes in

energy and specific heat, b, U = U(8) —U(0) and
b,C=C(8)—C(0), to isolate contributions present only
under application of the field (including, but not ex-
clusively, "sohton" contributions). These data have vague
peaks and the scatter is considerable. In Fig. 3 the specif-
ic heat hC versus field 8 is shown, at temperatures 5, 6, 7,
8, and 9 K. Classical sine-Gordon soliton theory predicts
a peak in hC versus 8, whose position (at 8 =B~q) and
height (hC,„)are proportional to T and T, respectively.
For these results, it is estimated, very roughly, that the
peaks are at fields 2, 4, 5, 7, and 10 kG. We plot B~i
versus T in Fig. 4, and compare with the SG theory pre-
diction and with the linear fit to the Ramirez and Wolf
experimental data. ' Linear fits to the three are
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(13)

SG theory (Ref.24), no mass rcnormalization .

8~-0.14T —1.4, QMC data,

8~ -0.131T, Ramirez and Wolf experiment,

8~1,——0.114T
W -05-
Q

-1.0-
4

a

Generally the lack of agreement between experiment and
SG theory has been attributed to a quantum reduction of
the rest mass of the solitons. One can also compare the
results of a Bethe ansatz solution of the quantized SG
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Q.
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4.0 6.0

equation in Ref. 22. Surprisingly the slopes of the QMC
and experimental data are in good agronnent, although
this may be coincidental, especially considering the quali-
ty of the QMC data. Also, there is considerable scatter in
the QMC data for peak heights versus T; we can draw no
firm conclusion from those data.

There are several deficiencies of this QMC calculation,
the largest of which is its inefficiency. A better algorithm
is needed with higher acceptance rates so that the statisti-
cal errors are reduced. There is also a strong tendency for
the system to "freeze" at low T; possible solutions to this

8.0 10.0 12.0 14.0 16,0
Temperature (K)

FIG. 2. The differences I,U = U(8) —U(0) and hC
= C(8)—C(0) versus temperature, derived from Figs. 1(a) and
1{b), for fields 5 kG {4,dashed) and 10 kG (+, dotted). The
drawn curves are the differences of the least-square polynomial
fits in Fig. 1, awhile the data points are obtained by direct sub-
traction of the Fig. 1 data points.
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— t
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FIG. l. Representative spin-1 QMC data for CsNiFi param-

eters, using 16 spins and m =60E/T. The dra%vn curves are
least-square polynomial fits to the QMC averages, for in-plane
fields 0 kG (O, solid), 5 kG (5, dashed), and 10 kG ( +, dotted).
All quantities are per spin.

0.00 +&

V

G4 -0.05,
0.0 2.0

I I
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I
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FIG. 3. The differences EC=C(8)—C(0) versus 8, as ob-
tained from the spin-1 QMC calculation for CsNiF, parameters
(see text). The data points correspond to temperatures 5 K (()},
6 K {X), 7 K (+ ), S K (5), and 9 K (0). There are only vague
peaks in each set of data at fixed temperature, although these
represent averages over 5 & 192000 states.
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20,0 40.0 60.0 80.0
T'(K')

FIG. 4. Field 8~, at which hC vs 8 is maximum, versus
T~, from experimental and model calculations. The dashed line
is a linear fit to the Ramirez and Wolf (Ref. 10) experimental
data for CsNiF3. The data points are rough estimates from the
QMC calculation, and the so1id line is a linear fit to those data.
The dotted line is the prediction of classical SG theory of Sasaki
and Tsuzuki (Ref. 24), which includes effects of soliton-soliton
interactions, as well as multiple spin wave and spin wave-soliton

processes.

0.0

problem might include some annealing procedure, or
perhaps a different decomposition of H„„+i into H „„+i

and V„„+i. The other major problem is the finite lattice
size, in both the spatial and Trotter directions. This latter
problem is difficult to correct without first tending to the
inefficiency problem.

Because of these difficulties, we cannot make any
strong conclusions, especially concerning the question of a
"quantum soliton" interpretation to the experimental
data. Furthermore, it is not possible to verify the applica-
bility and parameters of the presently accepted Hamiltoni-
an for CsNiFi without a more accurate calculation. It is
likely that quantum effects are important here, and fur-
ther study, possibly by other methods, is needed. As a
step in this direction, we present next a quantum transfer
matrix calculation for the spin- —,

' model of CHAS, where
the accuracy is much better and does show that there are
some difficulties to be cleared up in the understanding of
the Hamiltonian currently considered to be appropriate.

VI. QUANTUM TRANSFER MATRIX CALCULATION
POR S=

2

The Hamiltonian in Eq. (2) is used here. The Trotter
formula applies just as for 5 =1, but now the matrix ele-
ments are the spin- —, functions given previously. z

The coordinate system is oriented so that it is an eight-
vertex model, although this simphfication is in no way
necessary.

The computing method used was given by Betsuyaku,
who adapted that of Morgenstern and Binder as origi-
nally applied to spin-glass models, by allowing for the
four-spin interactions. It is necessary to choose free

boundary conditions in the spatial direction, while period-
ic boundary conditions are imposed in the Trotter direc-
tion as a result of the trace.

Initially the 2 partial partition functions of the first
column (Si „,r =1,2, 3, . . . , 2m) are stored in memory.
Now consider adding the spins Sz ~ and Sz q to the lattice,
in each of four possible states. This adds one four-spin
block to the lattice. Since all the interactions involving
Si i and Sz i in the first column have been taken into ac-
count, we can perform the trace over them, and save in
memory 22™partial partition functions labeled by the
states of Sz i,Sz i,S& „, r & 3. Next, new spins are added
at sites Sz &,Sz &, and thus the trace over Si & and S, 4 can
be performed, and the states are now labeled by
S2 ] S2 2 S2 3 S2 4 S] y r & 5. This procedure is contin-
ued until the whole second column of spins has been add-
ed to the lattice, at which point the partial partition func-
tions saved will be labeled by states of the second column,
Si „r=1, . . . , 2m. This procedure is repeated, adding
the spins of the third column by pairs, and tracing over
the spins of the second column pair after pair. Columns
are added iteratively, thereby transferring from the n-

particle system to the (n+1)-particle system. The pro-
cedure is stopped after adding the ¹hcolumn and taking
the trace over it, obtaining the total partition function
Z' ' for any specified temperature. Internal energy,
specific heat, magnetization, and susceptibility are then
obtained by taking appropriate derivatives numerically.

The method requires storing the 2z Boltzmann
factors —for this calculation we have used 1&m &9.
Computing time rises exponentially with rn and linearly
with ¹ Presently the practical limit is m =9 for storage
as well as CPU time using a CRAY-1 800K word
machine, while N & 100 is no practical problem.

For 1D magnets, it has been noted that for large X the
total internal energy U scales like U(N)/X= U„+a/N
(Ref. 35) where U„and a are constants. Similarly, it has
been shown that the leading errors in the Trotter approxi-
mation should be proportional to 1/m i (Ref. 36), a result
which has been demonstrated in the numerical calcula-
tions of Betsuyaku. We have made use of these two facts
to extrapolate to the infinite N, infinite m limit. First,
for a given value of m, data from E =8, 14, 20, 26, and
32 was extrapolated to obtain the N-+ 00, finite m limit.
A weighted least-squares linear fit was used, where the
weights were proportional to N. See Fig. 5 for an exam-
ple. Then these data, for a series of m values satisfying
JS /mT &1, were used to extrapolate to the %~00,
m~ao limit (also in Fig. 5). Here a weighted least-
squares linear fit was also made, where the weights were
1,2.5,2.5, . . . , as m increases. The restriction
JS /mT & 1 is necessary since the Trotter errors actually
scale with the square of this parameter. Curiously this
parameter must be much smaller to obtain good results in
an XFmodel than for a Heisenberg model.

VII. QTM RESULTS FOR CHAS

First the method was tested for m =8, N =32, at 5%
anisotropy (J~/J„=0.95) to compare with previous spin-

QMC data. ' Results for internal energy, specific
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heat, magnetization, and susceptibility all agreed to within
about 5% over the temperature range 4 to 20 K. Then we
applied this method to model (2} with anisotropy ranging
from 4 to 10%, in order to compare with the experimen-
tal specific heat data of Kopinga et a/. " As for CsNiF&,
b,C is plotted versus field for a series of temperatures, and
then the peak position and height are determined and
plotted versus T and T, respectively. Some representa-
tive b,C versus 8 curves are shown in Fig. 6, for the case
of 5% anisotropy. The data he on smooth curves, making
the determination of peak positions and heights possible.
Interpolation, using a parabolic fit to the peaks, provided

(a)

0.10—

0.05—

Qx

0
Q

m -0.05 l

15.00.0 5.0 10.0
Field (kG)

FIG. 6. Some typical results for 6C vs 8 as obtained with
the spin- 2 QTM calculation using CHAB parameters (5% an-

isotropy). The data correspond to temperatures T =4.0 K (V),
4.4 K ( ), 4.9 K ()&), 5.5 K (+ ), 6.2 K (5), and 7.2 K (O), and
have been extrapolated to N~ oo, m~ ao.
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FIG. 5. An example of the extrapolation to N~ao, m~ao,
for the specific heat per particle C/X, as used in the spin- —,

'

QTM calculation. (Similar curves can be obtained for the inter-
nal energy, and in-plane magnetization and susceptibility. )
CHAB parameters are used here; J =J,=110K, J„=104.5 K.
The in-plane field is 8,=5.5 kG, and the temperature is
T=7.20 K. (a) Extrapolations to %~00 at fixed values of
m =3 (0), m =5 {0),m =7 (6), and m =9 (+ ). The straight
lines are weighted least-square fits. {b) Extrapolation to m ~ ao,
using 3 & m & 9. The data points are the values already extrapo-
lated to N ~ 00, as found from the intercepts of curves as in (a).
The straight line is a weighted least-squares fit.

( 1 l

1.5 2.5 3.5 4.5 5.5 6.5
T (K)

FIG. 7. Spin- 2 QTM results for (a) 8~ and (b) hC,„,us-

ing model {2) with J„=J,=110K, for a series of values of an-
isotropy J~/J„=O.96 (0), 0.95 (0), 0.94 (6), 0.92 {+ ), and 0.90
{X}. These are all data from the extrapolation to X~oo,
m ~ ao. The solid data points (0) are the experimental data on
CHAS by Tinus et al (Ref. 20). The dashed Hnes are the classi-
cal SG theory of Sasaki and Tsuzuki (Ref. 24).
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a simple accurate way to determine the heights and posi-
tions. In Fig. 7 the resulting 8~ and hC are shown,
for anisotropies 4, 5, 6, 8, and 10%, and compared with
classical SG theory and experiment.

The drawn curves in Fig. 7 are classical SG theory re-
sults using a soliton rest mass EsG ——8(JSigp&B, )'~, that
is, with no adjusted parameters, as in Ref. 24. The predic-
tions of classical SG theory are independent of the aniso-
ti'opy. Expi'essioils givell by Sasakl alld Tsllzllki lllclllde
contributions from spin waves, solitons, and soliton-
soliton interactions. Their calculations predict that the
general result for a SG ferromagnet is

B~k —AT,—A =(64t~gptt JS ) (14)

where t~ = T/Eso ——0.190 has determined the peak posi-
tion. The corresponding peak height is found to be given

y

b, C,„=A'T, A'=0. 196/JS~ . (15)

We see that agreement between this classical theory and
experiment is fair for B~q but not as good for IC
None of the chosen values of anisotropy for the QTM fit
well to the experimental CHAB data over this tempera-
ture range. If the SG soliton rest mass is ad hoc renor-
malized such that the slopes of the SG theory B~k
curves agree with the experimental slope, then the implied
changes in the SG theory EC,„are not adequate to cause
them to simultaneously fit the experimental data. It has
not been apparent how to resolve this problem with classi-
cal SG theory. The QTM data presented here obviously
should require no such quantum renormalization, but
nevertheless systematically disagree with experiment.

VIII. DISCUSSION OF RESULTS

The lack of efficiency and resulting lack of accuracy of
the S = 1 QMC algorithm presented here led us to consid-
er other methods of obtaining the low-temperature ther-
modynamics, the first of which is a quantum transfer ma-
trix method. This transfer matrix method as introduced
by Betsuyaku was applied here to the S= —,

' CHAS ther-
modynamics, thereby making earlier S=—,

'
QMC data

obsolete, due to the much greater precision of the newer
method (i.e., no statistical errors). The results obtained
for specific heat with an in-plane field are in disagreement
with presently available experimental data. Other values
of easy-plane anisotropy, from 4 to 10%, different from
the accepted value of 5%, produced no good fit to the ex-
perim. ental data. It continues to be somewhat surprising
how well the classical SG theory is capable of explaining
the CHAB specific heat data. We have shown that the
quantized version of the ferromagnet Hamiltonian gives
approximately the same low-T thelruadynarnics as the
classical SG Hamiltonian, for the case of S= —,

' CHAB.
This can be compared with the classical transfer matrix
calculations for the ferromagnet Hamiltonians, which
give much larger low-temperature specific-heat peaks.

Apparently the quantum mechanics plays a strong role in
restricting the spins to the easy plane (perhaps including a
zero-point out-of-plane component) thereby making the
classical theory more appropriate than might at first be
expected.

Unfortunately, this QTM method cannot be applied in
its present form to the S =1 CsNiFi problein, essentially
because of computer memory limitations. Generally one
expects that the errors due to a finite value of m in the
Trotter approximation should scale with the parameter
JS /mT. For the m-extrapolation method to work well,
at a given temperature one needs data at several values of
m satisfying JS /mT «1. Coincidentally, JSi=25 K
for CsNiFi as well as for CHAB, and since the interesting
soliton regimes are both near T=5 K, one necessarily
must use several points for which m & 5. For S = —,', the
computer memory needed is of the order of 2X2~ words,
which is 520000 words for m =9. This size was the
practical limit (also in terms of CPU time) of available
CRAY-I machines (800K words) at Los Alamos. For
S=1, the computer memory needed will be of the order
of 2X3 ~ words, which is about 1&(106 words for m =6.
This memory requirement is excessive and yet m =6 is
too small for the extrapolation. The present QTM
method cannot be used for this S =1 problem without
taking into account the intrinsic symmetry of the Trotter
subsystems of the 2D lattice (the columns, along the
Trotter direction). (See Ref. 36 and 37.) Including these
symmetries, possibly by using coherent spin states as in
Ref. 37, will reduce the number of states being stored,
thereby easing the computer memory limitation problem.

APPENDIX I: CALCULATION OF SPIN-1
MATRIX ELEMENTS

The two-site Hamiltonian is broken up into 0 „„+&
and V„„+~as

PH „„+i/m =K(x„x„+—i+y„y„+&+z„z„+i),

—PV„„+&/m = —PV„/m —PV„+&/m

A(yn+yn+1)+b(z +znn+1) ~

where

K =PJ/m, n =—PA /2m—, b =PB/2m,

(A 1)

(A2)

(A3)
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M=expEM= g — E&M~,
p=o p. (A4)

where

and x„,y„, and z„represent spin-1 operators S„,S», and
S'„. The motivation here is that V„„+, is a moderate
perturbation on H „„+i(2A// =0.38 for CsNiFs), with
very weak dependence on the field strength. Matrix ele-
ments of the two parts will be found separately; we sketch
the inethod for H „„+i,the same method can be applied
even more easily to V„„+&.

The exponential of (A 1}is needed, i.e.,

2 IOi M j =02+Os —i o4
1

w w w w
1

T IOi,M j =0,—0 + —,0

z IO»Mj = 2o4 —o6

2 I04,M j =Os ——,04+Os+04,

TIOs Mj=o4,

i I06,M j = —Os+ —,'04,
—, I 07,M j =Os,

—,'[O, ,Mj=o, .

(A10)

+a +n +1+3sPn +1+ZnZn + 1 (A5}

M»+ ' = —,
'

IM, M» j . (A6)

&y iteratively tahng higher powers of M, it is found that
M» will generally involve eight different simple spin-1
operators, with coefficients of these operators depending
on p, so we can write

A method is given here which produces M&+' from M»,
using the anticommutator for symmetrizing the algebra;

C)

C2

Cs
p+1

0

0
0

1

2

0 0 0 0
0 0 0 0 0

—1 0 1 0 —1 C3

C~
2 2

0 0 1 0 0
0 —1 1 0 0 C6

. P

1
1 1

2 2

Inserting (A7) into (A6), we see that the Ck(p+1) coeffi-
cients are found from the Ck(p) coefficients by two ma-
trix relationships:

M'= g CA(p}ok .
k=1

(A7) (Al 1)

The sum is over the eight operators Oi, . One can use the
fundamental commutator

Cs

Now since

0 1

1 0 Cs
(A12}

n = i [Xn ~ytn ] A,

M =0)—03+07, (A13)

to write all operators in terms of x and y operators. Then
the symmetry of M with respect to interchange of x and y
operators simplifies the calculation. The eight operators
are

Oi =xnxn+1+ Ix~y j ~

2 202 =xnxn ~ i + [x~y j

Os ——(xy)„(xy}„+i+ Ix~y j,
04 =(xxy)„(xxy}„+i+ tx~y j,
Os=(»yy}. (»yy). +i+ Ix yj,
O, =(xyyx)„(xyyx}„+,+Ix yj,

07 ——(xy)„(yx)„+i+ Ix~y j,
0,=(xyyx)„(yxxy)„+, +Ix y j,

where Ix~y j indicates another term with the x and y
operators interchanged. The anticommutators of these,
divided by two as in (A6), are

the system is solved subject to the initial condition

Ci(1)=C7(1)=1,
Cs(1)= —1,
all other Ck(1}=0.

(A14)

Ci(p)=C7(p)= —,[1—( —1) ],
C,(p) =C,(p) =-,' [1+(—1}»],

Cs(p) = —,
' [(—2) —1],

C4(p) = —Cq(p) =——,+ —,( —1) ——,( —2F,
Cs(p) = ——,

' ——,'( —1}+ —,( —2)

(A15)

Multiplying these by E»/p! and summing on p, the fol-
lowing operator result is found for M =expEM:

The simplest way to solve the six-variable system is to ex-
pand the initial condition in terms of the eigenspectrum of
the matrix transformation. One finds the eigenvalues
A, = —1, + 1, —2, and ——,

' with —1 triply degenerate.
Then applying the transformation (p —1) times to the ini-
tial condition easily gives the following solutions for the
operator coefficients:
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M= 1+(sinhK)(Ot+ 07)+(coshK —1)(02+Os)——,
'

(e —e )03+(—,
' e ——,

' e + —,
'

e )(06—Os)

A calculation similar to the above gives the following expression for the other part of the Hamiltonian:

exp( P—V„/2m) =exp( ——,
' ay„+ ,

'
bz„—)= 1+(e ~~2 1 )y„+by 'e ~s(sinhy )z„

+[e '~ (coshy+ ,'a—y 'sinhy) 1—](xyyx)„

+ [e ~~s(coshy ——,
' ay 'sinhy) —e ~ ](yxxy)„,

y—:~ (b2+ ~ a2)1/2

The nonzero matrix elements of M, the isotropic exchange operator, are given here, where the notation is

( S„'S„'+
~ (

M
~

S„*S„'+
& ), (00 [ M ~

00) = —,
' (2e +e ), ( 11

~

M
(

11 ) = ( —1 —1 [ M ~

—1 —1 ) =e

(01)m [01)=(10)m [ 10)=(0—1 [M )0—1)=( —10[~ [
—10)=coshK,

(A16)

(A17)

(00 [
M [ 1 —1)= (1—1 [~ [ 00)= (00 [ ~ ]

—11)= ( —11
[
~ [ 00) = —,

' (ex—e zx),
(A18)

There are a total of 19 different nonzero vertex weights; all others are zero. When this interaction is combined with

that due to the V„„+~term [symmetrized as in (12)], one finds that 41 of the possible 81 vertices are allowed. These al-

lowed vertices are the only ones with an even number of 0's.
We also note that for arbitrary S, the isotropic exchange Hamiltonian will relate to a N„-vertex model, where

N„=2(1+2'+3'+ +(2S)'+(2S+1)' (A19)

obtained by counting those vertices which conserve total magnetization between states. For example, S= —, would be

described by a 44-vertex model in the isotropic limit.
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