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Thee-ttiodynamics of field-induced spin-density-wave states in Bechgaard salts. II
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Extending the Gor'kov and Lebed approach to more general spin-density-wave {SDW) vectors, we

study theoretically the thermodynamics of the field-induced SDW in Bechgaard salts. The quasi-
particle spectrum in the SDW is determined. The thermodynamics is identical to that for a BCS su-

perconductor. We predict a cascade of SDW transitions in magnetic fields, which describes the
observed phase diagram of the relaxed bis(tetramethyltetraselenafulvalene) perchlorate
[(TMTSF)2C104] extremely well. We calculate also the magnetization in SDW, which again de-

scribes the observed magnetization in (TMTSF)2C104 quite well.

I. INTRODUCTION

The field-induced spin-density-wave (SDW) state in the
(TMTSF)zX family of organic-transfer salts (Bechgaard
salts) are currently studied both experimentally' ' and
theoretically (TMTSF is tetramethyltetraselenaful-
valene).

In an elegant paper Gor'kov and Lebed (GL) have
shown that the field-induced SDW is intrinsic to the
quasi-one-dimensional system. Heritier et al. considered
SOW with more general wave vector. More recently
Yamajis'9 has shown within a two-dimensional model,
where the quasiparticle energy spectrum is given by

F. (p) = —2t, c o(spa„) 2t&cos(bp„—),

the ground state is described as a series of SDW states
with different SDW vectors, while we have shown recent-
ly' that Eq. (1) describes a cascade of SDW transitions as
the magnetic field is decreased. The transition tempera-
ture T, (H) thus obtained describes quite well the observed
T, (H) of (TMTSF)zC104 by magnetization measurement.

The object of this paper is to study the thermodynamics
of the ¹hSDW state thus obtained. Earlier one of us"
(hereafter refer to as I) has shown that the thermodynam-
ics of the zeroth SDW is identical to the BCS state. We
shall show in the following that within the mean-field ap-
proximation, the thermodynamics of all the ¹hstates are
identical to the BCS state. %'ithin the present approxima-
tion the phase boundary between the ¹hSDW and the
(%+1)th SDW is independent of temperature. Further-
more we obtain a rather simple expression of the magneti-
zation in the ¹hSDW, which describes the observed
magnetization in (TMTSF)2C10& extremely well.

II. GREEN'S FUNCTIONS

b, '(x) = UT g F„(x,x), (4)

where U is the on-site Coulomb potential.
Hereafter we assume that e(p) is given by

e(p) = v (
I p„ I pF ) 2tbcos—(bpy )—

2tbcos(2bpy )——2t, c s(ocp, ) . (5)

As shown by Yamaji the quasiparticle spectrum (1) is
cast in the above form when (tblt, ) «1, where tb is
given by

tt', ———,' tbcos(apF ) lt, si—n (apF )

we take also A = (O,Hx, O). Furthermore following
Heritier et a1., we take

Q =(2pF+q„,~lb +q„~lc),
where q„=—Xk and k =beH.

Then substituting

G„(x,x') =g (x,x')exp I i [P(x)—P(x')] I

[i to e(p —eA) —pH]G—„(x,x')

+b, (x)F„(x,x') =5(x —x'),
(2)

[i to e( p —Q e—A)+—pH]F„(x,x')+ b, '(x)G (x,x') =0,
where G„(x,x') and F (x,x') are the Fourier transform
of the thermal Green's functions with co the Matsubara
frequency defined by

G, (x,x') = —( T [g,(x)P,(x')] ),
F„(x,x') = —( T [P,(x)g, (x')]e'~" ) .

We can write down a similar set of equations for G, (x,x')
and F,(x,x') where pH in Eq. (2) is replaced by pH, —
Q~ —Q, b, ~b,".

Furthermore the self-consistency equation is given by

As in I, we shall consider the electron Grmn's function
in the ¹hSDW state. The Green's function obeys the
Gol kov equation

and

F (x,x') =f(x,x')expIi [P'(x) —P(x')] I
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into Eq. (2) we obtain

ico+iu g(x,x')+b((x)f (x,x')=5(x —x'),
dX

2E

i co i—u f(x,x')+ b, '(x)g (x,x') =0
dX

with

h(x) =6(x)expIi [4(x) C—)(0)]I

/@(())
—i)Vk(x —x() ) i»lk (x —xo)I„e (10) -K/p

2b,N

where xo ——(p„——,
'

q» ) leH and

P(x)=u ' f du [upp pH —t(p»—eHu, p—,)],
P'(x)=v ' f du upp pH+—vq„

+t pz
—eHu —

qz
——,p, ——

C

26))i P -2C

I„=I„(a,p) =i" g Jt(a)J„q)(p)
I = —oa

with J„(z) is the Bessel function,

a=h 'cos(bq»), P=rih 'sin( —,'bq»),

(13)

t (p»,p, ) = 2tbcos(b—p» ) 2tbco—s(2bp„) 2t, cos(cp—, )

(12)

(p(x)=q„(x —x())+pcos[k(x —x, }]—a sin[2k(x —x())],
and"

FIG. 1. Quasiparticle energy spectrum in a SDW is shown
schematically. The energy spectrum develops a series of energy

gaps at p=+pF+nk/2, ~here n =0,+j., +2, . . . . The Fermi
momentum pF is shifted by Nk/2 so that the Fermi level lies at
the center of the largest energy gap.

E+(p) =(no-N)g+[g—(p)+~, ]' (19)

where g= —,
'

uk and

If we take into account the largest gap 6„, exactly and

the others perturbatively, the unperturbed energy is given
by

h =eubHr2tb, ~=2tbxtb .
g(p) =u (p pp+ ,' Nk) . —— (20)

f(x»x }=g(it0 —+»») u„(x x())u„(x' —x()), —(15)

whe«()(„=(„")satisfies

E„+iu Q(

with

6'(x)
f„(x)=0

iU
dX

g(x) ge —i@(0)e ii»ikxyI i»»kx—

The eigenvalue equation is solved in terms of a plane
wave 1(i„(x)-e'p. Since the off-diagonal term mixes
plane wave e'~" with e'~+" '", the energy band splits into
a series of subbands as shown in Fig. 1. The energy gaps
2

I 5„
I

at P = ——,
' nk are given by

A»» the «een's functions g(x, x') and f(x,x'} are
constructed in terms of eigenfunctions [u„(x),u„(x)] as

}=y(i(u —E, ) u„(x —xQ)u„'(x' —x()),

The details are given in the Appendix. Therefore when

I I»»0 I
» IIno+) I I In, +2 I», it is most favorable to

choose N =no for the SDW vector, so that the Fermi sur-
face lies in the middle of the largest energy gap
2

I ~no I
=2

I ~N I
. In this way the first term in Eq. (19)

vanishes and we fin(l

g (x x') — g ~ eip(x —x')ia)+E

p tu+g+g
e i@(0)

f(x,x') =—g '0 +0 +~)v

(21)

1=UII)(i
I Tg f (ro +g +b,N) (22)

which is the BCS gap equation where U= U(bc)
Therefore we conclude the thermodynamics of the

SD% is identical to that of the BCS theory.

Here we have neglect~ for simplicity the other energy
gapa from the energy spectrum, since their effect is negli-
gible when

I b„,+) I
&~

I
b,„, I

. On the other hand when

I
b,„,+) I

—
I 6„,I, a more careful analysis of the effect of

the second energy gap is desirable. Finally the gap equa-
tion is rewritten as
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FIG. 2. Reduced coupling constant for the ¹hSD% I~ is
shown as a function of magnetic field. Ho is the scaling field
given by Ho [tt, /2t, co——s(happ}] (ettb}.

FIG. 3. SD%' phase diagram is shown. The solid curve
shows the transition temperature T,(H), while vertical thin lines
are the phase boundaries between two adjacent SDW's. Broken
curves are continuation of the second-order transition lines into
the next SD%"s.

III. THERMODYNAMICS

Since Eq. (22) is the BCS gap equation for a supercon-
ductor, the thermodynamics is identical to a BCS super-
conductor. First of all the transition temperature is given
b 10, 13

N (23)

with A,~ ——A, ~Itt ~
and A, =U/mv at least in the weak-

coupling limit. We compute
~

IN
~

as a function of mag-
netic field for rl =60 (which corresponds to t, =2843 K
and ts ——265 K}and plot them in Fig. 2. As the magnetic
field decreases (h «1), the maximum value moves from

I
Io

I

' «
I Ii I

',
I
I21' in sequence T»s gives rise

to a series of first-order transitions as the magnetic field is
reduced. Recently a qualitatively equivalent result is

found by Montambaux et a/. ' in their numerical analysis
of the spin susceptibility X(q,H). On the other hand the
present theory predicts that the phase boundary between
two adjacent SDW states is independent of temperature as
shown in Fig. 3. Therefore when the magnetic field is
fixed, we stay in a single SDW phase as the temperature is
changed. The energy gaps in the vicinity of T, and at
T =0 K are given by'

m T( H)[ 8/7g(3)]' (1 T/T, )' —(24)

(25)

respectively, where g(3)=1.202. . . is the zeta function
and y = 1.78. . . is the Euler constant.

Similarly the free energy is given by

sow —I'

(2m T, )—No (1—T/T, ), for T=T,
7g(3)

(26)

(27}

The free energy at T =0 K (the ground-state energy) is
calculated as a function of magnetic fields, which is
shown in Fig. 4. The result is quite comparable to the one
obtained by Yamaji for parameters somewhat different
from ours.

Perhaps of great interest is the excess magnetization in
SD%, which is given by

M = — (~)
BH

=Noh (H, T)A,N' ~I~
~ ~Itt

~dH

We note that M(T)/M(0) is a universal function of
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FIG. 6. Magnetization at T =0 K is shown as a function of
magnetic field.

FIG. 4. Ground-state energy is shown as function of magnet-
ic field.

T/T, (H),

M ( T)/M (0)= [h(H, T)/6(H, O) ] (29)

This universal function is shown in Fig. 5. Further-
more we have computed M (H,O) as a function of magnet-
ic fields, which is shown in Fig. 6. Again the magnetiza-
tion is quite similar to the one due to Yamaji. However,
in our calculation the maximum in M for SDW with
small N occurs before the transition into the subsequent
SDW with larger N unlike Yamajis's result. This feature
as well as the relative magnitude of peaks in the magneti-
zation resemble more closely the observed magnetization
in (TMTSF)2C104 at 225 mK. However, the present

theory predicts slower decrease in the inagnetization in
the higher SDW states than the observed magnetization.

Furthermore the magnetization appears to never cross
zero for N &8 in contrast to the observation. In order
that the magnetization takes negative values, T, (H)
should have local maxima, which appears never to happen
for g=60. For a smaller value of rj (e.g., rI =5) we have
local maxima in T, (H) [and in (I~) ] as shown in Fig. 7.
However, this choice gives Ho-1440 T within the present
model, which is certainly incompatible with the experi-
ment on (TMTSF)2C104.

Also for comparison with the experimental result
we have to displace the external magnetic field slightly
( —3 T). Therefore we may conclude that the present
model describes the qualitative features of the phase dia-
gram as well as magnetization quite well. However, for a
quantitative description of the experiment further im-
provement of the model is clearly desirable.

0 10-

I—
OJ ~
X
Xp4.

0 0.5 10 1.5

0 0.5 10 T/Tc

FIG. 5. Magnetization M(T) follows universal curve as
shown here.

FIG. 7. Field dependence of I& for q=5 (corresponding to
Ib /I~ ~1).
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IV. CONCLUDING REMARKS

Extending the method introduced by Gor'kov and
Lebed, we have studied the thermodynamics of field-
induced SD%' in Bechgaard salts. Assuming that the
quasiparticle energy spectrum is described by a two-
dimensional tight binding model given by Eq. (1), we
determine the SDW Green's function within mean-field
approximation. We have shown that a cascade of SDW
states with different SDW vectors are induced in high
magnetic fields, which reproduces the observed SDW
phase diagram. We find that if we identify the observed
phase boundary near H =10 T in (TMTSF)2C10& with the
boundary between the N =0 SDW and N =1 SDW, this
provides a strong constraint to the present model. This
constraint is given as Hp-10 T, where

H, = ,'(tblt, —)'leab . (30)
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%'e have shown also that the present model describes
not only the phase diagram but also the magnetization
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predicts higher transition temperature and higher magnet-
ization than those observed experimentally. Furthermore,
the present model predicts the phase boundary between
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model is clearly desirable.

Or we write more compactly

M /=0,
where

4 =(a(»(+p(

E —g —21(

E+$+2(l +N n—,)g

for j &0

+.I) I J ——MI

M(( is diagonalized by rotating ij'(( into U( g( with

Qi Vg

—VI Q~

and

np —E
k(p)=4+2 1—

2

Then we will have

E+(p)

(A4)

(A5)

(A7)
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with

™II UI =
E Ei (p)—(A10}

APPENDIX: ENERGY SPECTRUM OF EQ. (16} Ei (p}=(no—&4+[k(p)+~', ]'" (Al 1)

(x) I —&/2e(Pr g b eilkr

l

(Al)

Here I. is the length of the system in the x direction. Let
b(=e ' ' 'b( and b„=bJ„. Then substituting (Al) into
Eq. (16), we obtain equations for a( and b(,

« 0 210)a(+ g~—nb(—+(v m=0

( )

g b,„'a( b(+„+(E+(+21()b(——0,

where g =up and g= —,
'

uk.
If 5„ is the largest among 5„'s, it is reasonable to take

into account A„exactly and to treat other 6„'s perturba-

tionally. For this reason we rewrite the second equation
of (A2), replacing I by 1+% no, as—

g b,„a(+„„+[E+g+2(!+N no)g]b(+p( „—0. —

(A3)

Here we solve Eq. (16) approximately with b, (x) given
by Eq. (17}. Since b,(x} is periodic, we look for the solu-
tion in the form

(X) I —i/2eipr ~ a eilkr
P I

I

b(=(U(+M, i U ) (A13)

In particular at p =0, E( (p) and E ((p} with
I = 1,2,3„.. . intersect and

I
~('. -( I

=
I
»u (~.,+»+»& (~:,-»I =

I ~.,+»-I-
(A14)

I ~(, —i I

=
I

(((u (~ro 2(+u(—(( (~n—o+2( I
——

I ~no 2iI—
(A15)

and similarly at p = —,k, E( (p) and E (,(p)
( I =0, 1,2, . . .) intersect and we have

when p&0 or p& —,k, these eigenvalues are nondegenerate
and a perturbative analysis gives second-order corrections
in b„'s (n&no) to E(+-(p). On the other hand at p =0 or
—,
' k energy gaps will develop ~here two energy spectra in-

tersect. When two branches of the energy spectrum E( (p)
and E (p) (o=+,—) intersect each other at p =0 or
p = —,k then the spectrum in the vicinity of these points is
given by

E(p)= —,'[E((p)+E (p)]

+
I , [E( (p) E(p)]—+

I
b( —

I
}', (A12)

where
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I~i, t-i I

= Iuto t-i~a, +zt+t+»u t-i~., zt

=
I
~.,iztix I

(A16)

I ~t, t —i I
=

I
utU t —i~», zt—i+&tu t —t~—~,+zt+t I

=
I ~n, z—t (A17)

The sign = in (A14)—(A17) means that they are equal if
higher-order terms in (6„,/g) are neglected. Finally, we

obtain a sequence of energy gapa in the energy spectrum
8s sh0%vQ lQ Flg. 1.
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