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We investigate an Ising model of an ordering binary alloy on the face-centered-cubic lattice, such
as Cu-Au. This model contains multiatom interactions on the triangles and tetrahedra of the lattice
as well as the usual repulsions on the nearest-neighbor bonds. We examine the model’s ground
states and its low-temperature equilibrium states: There are an infinite number of the former but
only a few of the latter. We also study its phase diagram using Monte Carlo simulations, which
confirm the broad conclusions of previous cluster-variation-method calculations, particularly near
stoichiometry. Even small triangular interactions can introduce dramatic asymmetry into the phase
diagram, making it similar to those observed in real alloys.

I. INTRODUCTION

The use of nearest-neighbor Ising models to approxi-
mate binary alloys has had a long and distinguished histo-
ry.!=% It is, however, clear that such models, which con-
tain only two parameters (the coupling constant and the
magnetic field), cannot hope to explain the tremendous
variety of alloy phase diagrams found in nature. One way
to make the model both more realistic and more general is
by adding second- or even further-neighbor interac-
tions.>~!” However, any Ising model with pair interac-
tions alone, regardless of their range or complexity, is
symmetric between the two constituent species and hence
the resulting phase diagram must be symmetric about
50% composition. (Although this symmetry does not
arise if the pair interaction strengths depend upon compo-
sition, such interactions are in fact not pair interactions at
all, because the “pair” energy depends upon all the sites
used to find the average composition.) Realistic, asym-
metric phase diagrams can be obtained only from models
with multiatom interactions, and this paper investigates
the phase diagram of one such model.

We choose to study an Ising model for face-centered-
cubic alloys which has four parameters, corresponding to
one-, two-, three-, and four-body interactions. In each
case the n-body interaction extends over the smallest n-
site unit of the fcc lattice, e.g., over nearest-neighbor
bonds, and over the smallest triangles and tetrahedra of
the lattice. While this model, which was suggested by van
Baal? and studied by Kikuchi and collaborators,'8~2 is
still only a caricature of real fcc alloys such as copper-
gold, we shall see that it nevertheless captures the asym-
metry of the real systems.

The nearest-neighbor Ising model on the fcc lattice has
been investigated using several techniques, most prom-
inently the cluster-variation method?~> (CVM) and Monte
Carlo simulation®~® (for a review see Ref. 5). These in-
vestigations support a picture with five distinct types of
zero-temperature ground states which become, at finite
temperatures, four distinct phases separated by first-order
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phase boundaries. Here we ask how this symmetric phase
diagram is altered by the addition of small multiatom in-
teractions, and find that it remains topologically unaltered
but that even very small three-body interactions can in-
duce dramatic asymmetry. Previous work on this model'®
(performed using the tetrahedron approximation of the
CVM) found that a reasonable likeness of the experimen-
tal copper-gold phase diagram could be obtained easily by
adjusting only two parameters in the model Hamiltonian.
The surprise of such good agreement from so simple a
model raises the possibility that the CVM phase diagram
is a product more of the approximation used to produce it
than of the true phase diagram of the model Hamiltonian.
To test this possibility we studied the same system using
high-accuracy Monte Carlo simulations, and these simula-
tions have verified the broad outlines of the CVM results.
Specifically, the transition temperatures predicted by the
CVM are accurate to within 5% or 10% near
stoichiometry, but the situation away from stoichiometry
is less clear.

We begin this paper with a detailed specification of the
model in both binary-alloy and Ising-spin language (Sec.
II). We use geometrical arguments to uncover the model’s
highly degenerate ground states (Sec. III), and Pirogov-
Sinai theory to investigate the low-temperature states as
perturbations of these ground states (Sec. IV). In Sec. V
(which is independent of Secs. III and IV) we extend our
treatment to arbitrary temperatures (but at particular in-
teraction strengths) using Monte Carlo simulation. This
section emphasizes the transitions and phase diagram of
the model. Although in this paper we focus on applica-
tions of the multiatom Ising model to alloy systems, it is
also applicable to physical problems as diverse as the
phase diagrams of metal hydrides®® and classical fluids,**
the magnetism of solid He,?® and even lattice gauge
theories.26?’

II. THE MODEL

A face-centered-cubic lattice of N sites (and with
periodic boundary conditions) possesses 6N nearest-
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FIG. 1. The conventional unit cell of the face-centered-cubic
lattice. The thin lines are next-nearest-neighbor bonds, the thick
lines are nearest-neighbor bonds. The four nearest-neighbor
bonds shown make up four triangles and one tetrahedron. Al-
though the conventional unit cell holds eight such tetrahedra,
one in each corner, only one is shown for clarity.

neighbor bonds. These bonds form 8N equilateral trian-
gles and 2N tetrahedra. These are illustrated in Fig. 1,
and will subsequently be referred to simply as “bonds,”
“triangles,” and ‘‘tetrahedra,” without the nearest-
neighbor qualifier. We consider a spin-% Ising model on
this lattice, with spin variable s; = *1 at each lattice site i,
and with interaction Hamiltonian

%?—Jz ES,'SJ' +J3 zsisjsk +J4 ESiSjSkS[
—mH S s;+JoN . (1)

The four sums run over all bonds, all triangles, all tetrahe-
dra, and all sites in the lattice, respectively. We will re-
strict our attention to the model with antiferromagnetic
bond interactions, i.e., with J, >0. (Note that only the
three-spin interaction introduces asymmetry with respect
to field in the resulting phase diagram, because clusters of
even number must preserve the symmetry.) While there
are five coupling strengths in this Hamiltonian, investiga-

|
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The correspondence between the alloy and Ising systems is
achieved when

v =2Jz ’
a=(4J3+ZJ3)/(3J2) ’

—3v(1+B8)—
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tors in magnetics conventionally set J,=0 to fix the ener-
gy zero.

It is frequently convenient to write the Hamiltonian as
a sum over tetrahedra alone. Each tetrahedron is in one
of only five distinguished configurations: all spins up,
one down, two down, three down, and all down. We refer
to these configurations by the number of down spins they
contain: e.g., a type-3 tetrahedron contains three down
spins and one up spin. Because each bond is shared by
two tetrahedra, and each site by eight tetrahedra, the ener-
gy contribution of a type-n tetrahedron is €,, where

go=3J,+4J3+Js—3smH +5J, ,

g =—23—Jys—smH +5J, ,

e=—Jr+Js+3570, (2)
e3=2J3—Jo+smH +3J5 ,
ea=3J,—4J3+Js++mH +3J, .

If N, represents the number of type-n tetrahedra, the
Hamiltonian may be rewritten as

H=eoNo+eN1+eNy+€3N3+8N,y . (3)

(Recall that the sum No+N;+N,+N3+N, is 2N, not
N.) In this language, a convenient energy zero is fixed by
taking, say, €,=0.

Workers in binary alloys use yet a third form for the
Hamiltonian. This form starts by taking the total energy
of an AB alloy to be

Hp=—3v(1+a)N,—20N,—3v(1+B)N;, (4

where N, is now the number of tetrahedra whose four
sites hold exactly n B atoms. [The B atoms in alloy
language correspond, by common convention, to down
spins in Ising language. Also, our energy parameter v is
equal to Kikuchi and de Fontaine’s —¢;, (Ref. 18) and to
Cahn and Kikuchi’s — w (Ref. 20), so v is positive in this
work: see Ref. 8. Because the canonical Ising model cor-
responds to the grand canonical binary alloy, the 5 in (1)
corresponds to

# 4p—HaN4—1pNp , (5)

where N, is the number of A4 atoms in the lattice and Np
the number of B atoms. In alloy language, the energy
zero is most conveniently fixed by taking

—Ha=EB=N, 6

in which case (5) is

£ ]N3 -En,. ™

(8a)
B=(—4J3+2J,4)/(3J;) ,

u=8J3;—mH ,

or, in other words, when
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JZ__—%U ’
Ji=5v(a—B),
Ji=7v(a+p), (8b)

Two features of this correspondence are noteworthy.
First, pure pair interactions correspond to a=f=0.
Second, magnetic field and chemical potential difference
are not proportional, as they are in the pair interaction
case, because there is an offset proportional to J;.

III. GROUND STATES

The ground states of this model, or of various simplifi-
cations of it, have been investigated previously,?® 8~ but
not, we believe, in the simple manner used here. The
ground states are in fact found effortlessly from the Ham-
iltonian in form (3) by noting that when, for example, €, is
the smallest of the five parameters ¢,, then any configura-
tion in which every tetrahedron has exactly one down spin
is a ground state. We must of course also convince our-
selves that such configurations exist, because a local
prescription such as ‘“‘every tetrahedron has exactly one
down spin” can be inconsistent. (For example, the
prescription “every nearest-neighbor bond connects an up
spin and a down spin” is inconsistent.) Because the
prescriptions are in fact consistent there are five kinds of
ground states, which we name after their constituent
tetrahedra: the ground state formed entirely of type-n
tetrahedra (that is, tetrahedra of n down spins) is called a
type-n ground state. This classification breaks the mul-
tidimensional parameter space into regions according to
the type of tetrahedron which is most stable in that re-
gion. This “zero-temperature phase diagram” also has
surfaces of lower dimension in which two or more of the
€, parameters are smallest.

In the next section we will use Pirogov-Sinai theory to
“continue” this zero-temperature phase diagram into the
low-temperature regime. In this section, however, we
describe and analyze the ground states. We will first
prove the consistency of the five ground-state prescrip-
tions by demonstrating spin configurations in which they
are trivially satisfied. (For three of the prescriptions we
actually demonstrate an infinite number of such configu-
rations.) We then prove that these configurations are the
only ground states by describing the procedure used to
construct them: casual readers will want to skip these de-
tailed arguments. In addition, Fig. 2 converts the zero-
temperature phase diagram in terms of the variables ¢,
into a phase diagram in terms of the more familiar vari-
ables a, B, and p.

It is easy to find the single configuration consisting en-
tirely of type-O tetrahedra: it is the one in which all spins
point up. Similarly, in the type-4 ground state all spins
point down. The three remaining kinds of ground states
are more complex: they are described in terms of (100)
planes (for example, the planes defined by the bottom five
sites, the middle four sites, or the top five sites in Fig. 1).
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FIG. 2. Ground-state phase diagram with = —0.1. The di-

agram maintains this same general form for ——;— <B<1l. In

this regime the 2-3 phase boundary is u/v =2—6p, and for all
B> —% the 3-4 phase boundary is pu/v=6+6B and the 1-3
phase boundary is p/v=3a—3B. (For all B> —% the 1-3
phase boundary is simply a straight line connecting the tops of
the right- and left-hand boundaries of the type-3 phase.) The
remaining phase boundaries are B independent and their equa-
tions can be read off the graph. If B decreases from —O0.1 the
type-3 phase reigon shrinks until, at = — —;—, it vanishes by col-
lapsing onto the dashed line. Further decrease in 3 has no effect
on the phase diagram. If S increases from —O0.1 the type-3
phase expands into the type-2 and type-4 phase regions, until at
B=1 the type-2 phase vanishes. For 8> 1 the 0-3 phase boun-
dary is u/v = —2—2p, so further increase in S results in further
expasion of the type-3 phase.

Each such plane (or “layer”) supports a two-dimensional
square lattice. We call a layer “spin up” if all the spins in
its square lattice point up, “spin down” if they all point
down, and ‘“checkered” if they point alternately up and
down. (In other words, every nearest-neighbor bond
within a checkered layer connects spins of opposite sign.)
Note that while the up and down configurations are
unique, there are two different ways to checker a layer,
depending upon which of the two sublattices holds the up
spins. The type-1 ground state consists of alternating
spin-up and checkered layers. Because the checkered
layers can be either of two varieties, there is a ground-
state degeneracy of order 3(2/2), where [ is the number of
layers in the lattice. (A cube with L unit cells on an edge
has [ =2L layers and N =4L3 sites.) The prefactor three
corresponds to the three sets of (100)-like planes [i.e., (100)
planes, (010) planes, and (001) planes]. Similarly, the
type-3 ground state consists of alternating spin-down and
checkered planes. Finally, the type-2 ground state con-
sists entirely of checkered layers, and has degeneracy of
order 3(2)).

On the phase boundaries of the zero-temperature phase
diagram two or more of the ¢, are smallest. Here the
ground states are even more degenerate and correspond-
ingly more difficult to describe globally. In general, one
expects that such states will violate the third law of ther-
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modynamics and possess finite entropy per site at zero
temperature (see, for example, Ref. 33). Such ground
states are called “superdegenerate.”!!

We now show how to construct the ground states
described above, beginning with the type-2 ground state.
The construction proceeds in two steps: first, we find
which conventional unit-cell configurations can be formed
from type-2 tetrahedra, and then we show that such unit
cells can be pieced together only in the manner given.
The reader may readily verify for himself that there are
only three conventional unit cells in which all eight con-
stituent tetrahedra are of type 2. Two of these cells, the
so-called D and S cells, are shown in Fig. 3. The third, or
S’, cell is simply the S cell with all spins reversed. (When
all the spins of a D cell are reversed, one obtains another
D cell, upside down relative to the one in Fig. 3.) Note
that the D cell is the only one in which next-nearest
neighbors are of opposite sign, and that this happens in
only one direction (the up-down direction in Fig. 3). This
is the property which leads to the names D and S for cells
in which next-nearest neighbors are ‘“dissimilar” and
“similar.” (References 30 and 34 refer to D and S cells as
a and B clusters, respectively.)

Suppose that a D cell appears somewhere in the lattice.
Rotate the lattice so that this D cell is oriented as in Fig.
3. Then all four of the conventional unit cells which over-
lap the original cell horizontally (such as the dotted cell in
Fig. 3) must also be D cells because they contain next-
nearest-neighbor spins of opposite sign. (These new cells
will be oriented upside down relative to the original.)
Consideration of the cells which overlap these cells hor-
izontally, and the cells which overlap them, and so forth,
demonstrates that the entire horizontal layer must be
made up of D cells. It follows that all three of the hor-
izontal (100) planes that intersect the origin cell are check-
ered.

On the other hand, suppose that there are no D cells in
the lattice, i.e., that the lattice consists entirely of S and
S’ cells. Then an identical argument concerning an initial
S (or S’) cell and its horizontally overlapping cells implies
that the lattice possesses three adjacent checkered (100)
planes.

Now we show that if one (100) layer is checkered, then
the layer two above (or below) it must also be checkered.
Rotate the lattice so that the checkered plane is horizon-
tal, and consider all the conventional unit cells which have

FIG. 3. Two conventional unit cells made up entirely of
type-2 tetrahedra. A plus represents an up spin or 4 atom, a
minus represents a down spin or B atom. Note that the appear-
ance of these cells changes dramatically if they are set on their
sides.
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the given layer as their base. Because the base layer is
checkered, these cells, whether D, S, or S’, must be
oriented with the same vertical axis as the cells shown in
Fig. 3. By the argument given above, either all or none of
these cells are D cells. In either case, the layer formed by
the tops of the unit cells, that is the layer two above the
original layer, is again checkered.

Starting with the three layers already determined to be
checkered and applying this result repeatedly, we conclude
that all the (100) planes of any type-2 ground state must
be checkered, as asserted above.

The verification of the type-3 ground-state description
is even simpler. In this case there are three possible con-
ventional unit cells (Fig. 4). It is quite easy to see that the
four cells horizontally adjacent to (not overlapping) a
given cell must be of the same type as the original cell,
whence any configuration must have a down (100) layer
sandwiched between two checkered layers. Finally, if a
given layer is checkered then the adjacent layer is spin
down and the layer two above is checkered, so the ground
state must consist of alternating spin-down and checkered
layers.

IV. LOW-TEMPERATURE STATES

One intuitively expects that a system’s low-temperature
states will qualitatively resemble its zero-temperature (i.e.,
ground) states. Thus the highly degenerate ground states
of the fcc Ising antiferromagnet might lead one to expect
highly disordered low-temperature states, in contrast to
the usual low-temperature states in which a few defects
are scattered about in the (single) ground state. This ex-
pectation is in fact quite incorrect. A Monte Carlo simu-
lation of this model at low temperatures and with, say,
a=B=p=0 (well into the regime of type-2 ground states)
almost always finds the system in some small perturbation
of a particular, highly symmetric ground state, the so-
called “L 1y” (or “AB”) state (to be described later). In
other words, the system behaves as if the infinite number
of other ground states did not exist. Why is this one
ground state singled out from so many as the basis for the
low-temperature states? A heuristic argument points to
the low-energy excitations of the ground states, as follows:
At zero temperature the only factor relevant in determin-
ing the states is energy, so all ground states are equally
likely. But at any finite temperature, no matter how
small, entropy is a factor. The ground state with the larg-
est number of low-energy excitations will correspond to
the lowest-temperature state of highest entropy, so it will

FIG. 4. The three conventional unit cells made up entirely of
type-3 tetrahedra. Same notation as Fig. 3.
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“dominate” the other ground states at low temperatures.
(This argument was developed by Mackenzie and Young*
and by Slawny,*> who followed the work of Pirogov and
Sinai;’¢ see also Refs. 37 and 38. A precise version of the
result was proved rigorously by Slawny and Bricmont.*)
In the case a=B=p=0, the L1, configuration is the
dominant ground state (the one with the largest number of
low-energy excitations), and this explains the Monte Carlo
observation mentioned above.

In order to identify and describe the dominant ground
states, we need a nomenclature which distinguishes among
the many configurations which are type-1, -2, or -3
ground states. To this end, we call a (100) layer
sandwiched between two checkered layers an “S™ layer if
the spins in the two adjacent layers point up in the same
sublattice and a “D” layer if they point up in opposite sub-
lattices. Notice that designation of a layer as D or S says
nothing about the layer itself, which may be spin up, spin
down, checkered, or otherwise, but instead says that the
adjacent layers are checkered and are either “in phase”
(similar, S) or “out of phase” (dissimilar, D). (It is true,
however, that if a D layer is checkered then it consists en-
tirely of D cells, and that if a S layer is checkered then it
consists entirely of S and S’ cells.)

We show below that when a==0, when a >0, B<0,
and p <0, or when a <0, >0, and u >0, then the dom-
inant type-2 ground state consists entirely of S layers.
This is the L 1, structure mentioned above. It is more
easily visualized through either of the following

equivalent descriptions. (1) The L 1, structure consists of
(100) layers which are alternatively spin up and spin
down. (2) If the fcc lattice is dissected into its four inter-
penetrating simple-cubic sublattices, then in the L 1,
structure two of the sublattices are occupied by up spins
and two by down spins. We also show that when
a=f=0 and u/v=4, the dominant type-3 ground state is
the L 1, configuration in which all the down layers are S
layers. (Alternatively, one sublattice is occupied by up
spins, three by down spins.) A similar result holds for the
type-1 ground state when a=8=0 and /v = —4.

Clearly, vast volumes of the (a,f3,u /v) parameter space
are not treated in the above synopsis. We conjecture that
the configurations given are in fact dominant throughout
the relevant regions.

The remainder of this section is devoted to proofs of
these assertions. Before starting, however, we must clari-
fy the notion of a configuration with “the largest number
of low-energy excitations.”*> Consider the local excita-
tions of a particular ground state. The energy increase
caused by each excitation falls at some level on a discrete
spectrum, and each energy level has a corresponding den-
sity of excitations. For example, the L 1, ground state at
a=f=u=0 has excitations of energy 4v, 6v, 8v, 10v, etc.
Two types of excitations have energy 4v: flipping a single
up spin and flipping a single down spin. In a lattice of N
sites there are N/2 ways to flip an up spin and N /2 ways
to flip a down spin, so the total excitation density (excita-
tions per lattice site) at this energy level is 1. Only one ex-

TABLE I. Important excitations of the type-2 ground state. The figures represent spins to be flipped
in the excitation, with nearest-neighbor bonds indicated. An up spin (4 atom) is indicated by a solid
circle and a down spin (B atom) by an open circle. Thus one forms a type- B excitation by flipping an

up spin and four adjacent down spins.

Energy

Excitation Density
A Y—j l+n5
B T l+n5

6
BI 1+n5
C 6+6n5
C’ 6+6ng
E ¢ —O0—e—0 96 —4ng
o

F Py l cL 2+42nss

8ei+8e3=8v — 12va— 1208

24} =12v —36va+6u

24e3=12v —36vB—6u

14e]+6€e3=10v —2lva—vB+2u

6e1+ 14e3=100 —va—21vB—2u

10€; + 10€}

10€} + 10¢}
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citation contributes at energy 6v: it consists of flipping
two adjacent spins of opposite sign, and it has density 4.
To decide which of two ground states supports the “larg-
est number of low-energy excitations” we compare the ex-
citation density level by level, starting at the lowest excita-
tion energy. If, at a given level, one ground state supports
a greater density of excitations, then the ground state
dominates the other and the comparison ceases. On the
other hand, if the two ground states support an equal den-
sity of excitations at this level, the comparison goes to the
next higher level and begins again. Note that the compar-
ison hinges upon only the lowest level at which the two
states differ. Thus if ground states X and Y have identi-
cal excitation densities up to the fifth level, and X dom-
inates Y at the fifth level, then X dominates Y even if Y
has many more excitations than X at the sixth level: exci-
tations at the sixth and higher levels are called irrelevant
in the determination of the dominant state. If one ground
state dominates all others at a given point in the parame-
ter space,.then it is dominant in the sense described above
and it forms the basis of the system’s unique low-
temperature equilibrium state. If several ground states
dominate all remaining ground states but not each other
(as may happen because of symmetry), each will form a
low-temperature equilibrium state and at the system will
generally show phase coexistence among these states.
(This procedure may fail when the ground-state degenera-
cy is too high: see Refs. 35—39.)

We begin our proofs by considering the type-2 ground
state. We have cataloged all the excitations of the type-2
ground state with energy 10v or less at a=B=u=0.
Surprisingly few of these excitations (five out of 23) have
densities dependent upon which type-2 ground state is be-
ing perturbed. These five excitations, along with two oth-
ers of great importance, are described in Table I. The ex-
citation energies in that table are given in terms of the
variables

gj=¢,—¢, and €3=¢€3—¢,, 9

which are positive in the regime of type-2 ground states.
The densities are given in terms of ng, the fraction of
(100) planes which are S layers, and ngg, the fraction of
adjacent pairs of layers which are both S layers. Excita-
tion E is the only one which favors D over S layers in the
dominant state, but excitations E and F are irrelevant for
determining dominance, because their energy is always
greater than that of excitation 4. Excitation C is likewise
irrelevant, because when the energy of B is lower than
that of A then the energy of C is greater than the energy
of B, whereas when the energy of A is lower than that of
B then the energy of C is greater than the energy of A.
Thus C is never the lowest-energy excitation with a densi-
ty dependent on the ground state. Excitation C’ can be
proven irrelevant by similar reasoning. Although the
remaining excitations A, B, and B’ all favor the domi-
nance of the L 1, configuration, there are an infinite num-
ber of other excitations that have not been examined. We
prove that such excitations are irrelevant in three regions:
first when a=pB=0 with y arbitrary, then when a>0,
B <0, and <0, and finally when a <0, 8> 0, and 1 >0.
Let us take a=B=0. The excitation energies of 4, B,
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and B’ are plotted in Fig. 5(a). Note (see Fig. 2) that the
type-2 ground-state regime extends from p/v=-—2 to
u/v =2, so it terminates when the energy of a B (or B’)
excitation vanishes. By definition, in fact, the boundary
of any ground-state regime is marked by the vanishing of
some excitation energies, and vice versa: this is crucial to
our arguments. The excitations that we must prove ir-
relevant fall into two classes: those with energy 12v at
u=0, excluding B and B’, and those with energy greater
than 12v at u=0. We have listed all 54 excitations of the
first class, and they all have energies of 12v, of 12v+2yu,
or of 12v+4u [for example, the dashed line in Fig. 5(a)].
These energies are bounded below by the energy of either
A, B, or B’, so such excitations are irrelevant. Now con-
sider excitations of the second class. Because all excita-
tion energies are linear in u, and because they can only in-
tersect the p axis outside of the type-2 regime
—2<pu/v <2 [for example, the dotted line in Fig. 5(a)],
such excitation energies are bounded below by the energy
of B or B'. These excitations are again irrelevant, so at
a=B=0 the dominant type-2 ground state is L 1.

We turn to the case >0, B<0. The excitation ener-
gies shift from those of Fig. 5(a) to those of Fig. 5(b), but
the boundaries of the type-2 regime are still marked by
the vanishing of the energies of B and B’ at
u/v=—2+6a and u/v =2—6p, respectively. Note that
the energy versus p line for a given excitation will change
in intercept but not in slope. Thus to show that the un-
cataloged excitations are irrelevant when p/v <0 we need
only prove that their energies at 4 =0 cannot be less than
that of B. Because any excitation energy is of the form

moe{)+m,£’1+m3e'3+m4s; , (10)
where the m, are integers and where
E=¢€9—Er; =20 +%,u ,

’__ 1 3 1
gi=g —g=7V—3va+u,

ei=e3—e, =70 — 30— T4 ,
E4=€4—€; =20 —%y ,
we can rephrase our objective as follows: We wish to
prove that if energy (10) exceeds or equals 24¢) at

E/v E/v
12 K. (a) 12 (b)
N
A ] .’\\ A /
8 1
+ Q
[:] al B 41 B’
1 i 1 1 L
;e -1 o -2 - ) ] 2
/v /v

FIG. 5. Energies of the 4, B, and B’ excitations (see Table I)
as a function of u: (a) a=B=0, (b) a>0, B<0. The B’ line
slides rigidly to the right as S8 is decreased, and the B line slides
rigidly to the right as a is increased.
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a=f=p=0, then it continues to do so when a >0, 5<0,
and p=0. Or, in yet another form: If we denote the
a=pB=p=0 value of (10) by Ey, then we wish to prove
that

Eoo > 120 (12)
implies
Eo—mi(5va)—ms(3vB) > 120 —36va . (13)

This result is obviously true if m; > 24, because then
moEg+m €1+ m3e3+myey > 24¢€; , (14)

which includes (13) as a special case, holds even without
preconditions. On the other hand, if mj <24, then we
have

—m3(3va)> —24(3va) (15)
and, because 8<0,
—m3(5vB)>0. (16)

Summing (12), (15), and (16) gives the desired result (13),
so the proof is finished. A symmetrical argument proves
that the L 1, configuration is also dominant when a <0,
B>0,and u>0.

Our result for the dominant type-3 ground state is quite
easy to prove, but only because it is so restricted—it in-
volves only a single point in (a,B,u/v) space. We have
cataloged the nine excitations with energies less than or
equal to 8v when a=B=0 and u/v=4, and have found
that only one has a density dependent upon the ground
state perturbed. This is excitation 4 of Table I, which
has energy

8(84—83)+8(£2—83)=80(1+3B) (17)
and density
l+ng, (18)

where ng is now the fraction of spin-down (100) layers
which are S layers. [Recall that in a type-3 ground state,
only half of the (100) layers, namely, the spin-down
layers, can be described as D or S.] This proves the dom-
inance of the L 1, configuration at a=8=0 and u/v=4.
The dominance of the L 1, type-1 ground-state configura-
tion at a=B=0 and u /v = —4 follows from symmetry.

V. MONTE CARLO SIMULATIONS

In principle, the Pirogov-Sinai theory described in the
preceding section can give a complete and rigorous
description in the low-temperature phase diagram of our
fcc Ising model away from the “superdegenerate” planes
which bound each of the five different ground-state re-
gimes in (a,B,u/v) space. We have, however, already
seen that in practice the Pirogov-Sinai prescription may
be too difficult to carry out. Furthermore, the most in-
teresting features of the model are its phase transitions,
which do not occur at “low” temperatures (except precise-
ly near the superdegenerate points). To investigate the
finite-temperature behavior of the system we turn to
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Monte Carlo simulation. In doing so we pay two prices:
First, we lose any semblance of rigor. Second, we can no
longer keep a and S8 as free parameters, and it is prohibi-
tively expensive to investigate more than a few points on
the (a,B) plane. We have decided to investigate only one
point on that plane, namely a=0.01, = —0.08 (corre-
sponding to J3/J,=0.03375, J4/J,=—0.0525). Kiku-
chi and de Fontaine'®!® investigated the model with these
parameters in the CVM approximation, and found that
the resulting phase diagram was a reasonable likeness of
the experimental phase diagram of copper-gold. This
value of J, is perhaps too large to correspond to a realis-
tic physical alloy,'>!® but the value of J; is certainly
reasonable, and the interesting feature of the phase dia-
gram, namely its asymmetry, is induced by J; alone.

We performed Monte Carlo simulations on an fcc lat-
tice of 2408 sites (a cube with eight conventional unit cells
on each edge), using single-spin-flip Kinetics (Glauber
dynamics). The computations were run on a CDC 7600
computer at Los Alamos National Laboratory and re-
quired less than one minute of CPU time per one million
attempted spin flips. Experiments were begun with the
system in a random configuration, then run for 2000
Monte Carlo steps per site to equilibrate and for 3000
Monte Carlo steps per site to collect data. To test the ade-
quacy of this equilibration procedure we reran all our
p=0 simulations with an L 1, rather than a random, ini-
tial state. The equilibrium energies measured in corre-
sponding runs with different initial configurations dif-
fered by less than 4%, far less than the expected sampling
errors. As expected, the acceptance ratio (i.e., the percen-
tage of Monte Carlo steps accepted in the data taking por-
tion of the simulation) was small at low temperatures and
grew with temperature, with a large increase at the phase
transition. For example, at =0 the acceptance ratio
jumped from 11% to 21% at the transition.

Finite-size effects seem to be unimportant. For exam-
ple, when the simulation at temperature k37T /v=1.0 and
chemical potential u =0 was performed on lattice portions
of 256, 864, and 2048 sites (corresponding to cubes with
four, six, and eight unit cells on an edge), the equilibrium
energies per site were e /v = —0.7+0.1, —0.67+0.03, and
0.66+0.01, respectively. The transition temperatures
determined from a sequence of simulations at different
temperatures (as described below), are, for the three sizes,
kpgT,/v=1.00+0.05, 0.98+0.02, and 0.967+0.003, respec-
tively. In both cases increased size leads to increased ac-
curacy, and does not drive the result out of the range es-
tablished by smaller systems.

Fourteen values of the chemical potential were selected
for detailed investigation, and for each chemical potential
simulations were performed at 10 or 15 temperatures. A
plot of equilibrium energy as a function of temperature
for one of the chemical potentials, namely p =0, is shown
in Fig. 6. The error bars in this figure represent plus or
minus one standard deviation (o) among the energies
sampled in more than six million data collecting Monte
Carlo steps. This “sampling error” cannot be reduced to
zero, because even in a simulation with an infinite number
of Monte Carlo steps, it is related to the specific heat
¢, =(de/0T), by the fluctuation-susceptibility relation
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FIG. 6. Equilibrium energy as a function of temperature at
fixed @=0.01, B= —0.08, and £ =0.0. The energies were deter-
mined by Monte Carlo simulation, and the error bars represent
plus or minus one standard deviation among the energies sam-
pled in the data taking portions of the simulations. From this
graph we conclude that the transition is first order and that it
falls between kpT /v=0.965 and kT /v=0.970, as reported in
Table II.

o*=kpT?c,/N , (19)

where N is the number of lattice sites in the simulation.
A glance at Fig. 6 verifies qualitatively that this relation,
which is obeyed exactly only by infinitely long simula-
tions, is obeyed approximately in our work: the e versus
T curve is steeper to the left, and the standard deviations
are larger there. A quantitative examination confirms this
conclusion, and increases our confidence that the simula-
tions were carried out using an “effectively infinite” num-
ber of Monte Carlo steps.

The first-order phase transition was located by looking
for approximate discontinuities in the energy as a function

TABLE II. Transition temperatures 7, and latent heats Ae,
measured in units of the pair interaction v, at a=0.01,
B= —0.08, as determined by Monte Carlo simulation.

n/v kgT, /v Ae /v
5.0 0.480+0.005 0.06+0.02
4.5 0.650+0.005 0.12+0.03
4.0 0.708+0.003 0.13+0.04
3.5 0.687+0.003 0.07+0.05
3.0 0.615+0.005 0.02+0.03
1.5 0.807+0.003 0.10+0.06
1.0 0.910+0.005 0.19£0.05
0.5 0.955+0.005 0.23+0.06
0.0 0.967+0.003 0.17+0.10

—-0.5 0.913+0.003 0.16+0.07

—1.0 0.807+0.003 0.061+0.06

—3.5 0.930+0.005 0.14+0.06

—4.0 0.950+0.005 0.12+0.09

—4.5 0.918+0.003 0.16+0.06
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FIG. 7. Phase diagram (transition temperature as a function
of chemical potential) for the model with a=0.01, 8= —0.08.
The transition temperatures from CVM (Refs. 18, 20, and 40)
are shown as a solid line, those from Monte Carlo as circles (the
transition temperature error shown in Table II is smaller than
the circles). The T'=0 transition points are known exactly from
the ground-state analysis: They are, from left to right,
pn/v=—6—6a, —2+6a,2—6p, and 6+68.

of temperature at fixed chemical potential (see Fig. 6).
The transition temperatures and latent heats of transition,
as surmised from the Monte Carlo experiments, are given
in Table II. (The error in transition temperature is due to
the finite-temperature steps between different simulations.
The error in latent heat arises from sampling error in the
energy at either side of the transition. As noted above,
our equilibration times were long enough that the tradi-
tional difficulties with hysteresis and metastability near
the first-order transition appear to be absent.) The Monte
Carlo phase diagram is graphed and compared with the
CVM results'®204 in Fig. 7. Note the paucity of Monte
Carlo results at low temperatures. This is because the la-
tent heat becomes small at low temperatures, and the tran-
sition is lost when the latent heat shrinks to the size of the
Monte Carlo sampling errors. (Thus we cannot clarify the
question of whether the L 1y, L 1, triple points fall at fi-
nite or zero temperature.>® We do point out, however,
that this question, which has been investigated in the
nearest-neighbor case, remains even when a and S do not
vanish.) By using more elaborate techniques Monte Carlo
can in fact track such low latent heat transitions,® but we
have decided to focus instead on the most dramatic
feature of the phase diagram, namely its asymmetry.

The Monte Carlo phase diagrams with and without
multiatomic interactions are shown in Fig. 8. It is re-
markable that such a small value of J3, barely more than
3% of J,, can depress the right-hand local maximum by
about 25%. In addition, the multiatom interaction raises
the central and left-hand maxima in such a way that the
central maximum, which is the lowest of the three when
a=pB=0, becomes the highest. Note also that the tem-
peratures of the maxima shift much more than their
chemical potentials do, although the central maximum is
displaced visibly to the right from p =0.

It would be interesting to follow the change in latent
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FIG. 8. Phase diagram of the model with and without mul-
tiatomic interactions. The circles are the Monte Carlo transi-
tions when a=0.01, B= —0.08 (as in Fig. 7); the line is the tran-
sition observed when a=B=0 in the Monte Carlo work of
Binder (Ref. 8).

heats of transition upon the addition of multiatomic
forces, as we have just followed the change in the phase
diagram, but the relevant latent heats at a=8=0 are not
available. The only comparison currently possible is at
u=0, where the a=B=0 latent heat is Ae/v=0.17,°
identical to the value at a=0.01, B= —0.08 (see Table II).
Whether this agreement is significant or a coincidence
cannot be decided until more latent heats at several values
of a, B, and u become available.

Finally, we comment upon the reliability of the
cluster-variation method in this problem. Figure 7 shows
that the CVM seems to always overestimate the transition
temperature, as is expected of a mean-field-like theory.
The same overestimate appears in the nearest-neighbor
case,>® and in fact, the CVM seems to give transition tem-

peratures which are so consistently high that they accu-
rately mirror the phase diagram distortions induced by
the multiatom forces. Thus at a ==y =0 the transition
temperatures kg7, /v predicted by CVM (tetrahedron ap-
proximation)? and by Monte Carlo (MC) methods® are
0.947 and 0.883, respectively, so CVM exceeds MC by
7.2%. At a=0.01, B=—0.08, 1 =0 the CVM (Ref. 40)
and MC transitions are 1.026 and 0.967, so the CVM ex-
cess is 6.0%. In contrast to this near-agreement near
stoichiometry, the CVM and MC results diverge markedly
near the superdegenerate points (i.e., the boundary points
between different ground states). This feature has already
been noticed in the nearest-neighbor case,® but it may be
due as much to inadequacies in the Monte Carlo method,
which has known difficulties at low temperaures, as to
inadequacies in the CVM.

Note added in proof. After submitting this article, we
found that J. M. Bell*! has investigated the problem using
a closed-form approximation technique.
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