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In this paper we examine the detailed relationship between the density-wave and unit-cell descrip-
tions of quasicrystals. We show that phonons, phasons, and dislocations correspond to translations,
distortions, and rearrangements of unit cells. The associated density-wave images closely resemble
experimental electron micrographs of the icosahedral phase of aluminum-manganese and related al-
loys. Partial dislocations are also discussed and a natural classification scheme for partials is pro-

posed.

I. INTRODUCTION

The recently discovered icosahedral phase of
aluminum-manganese and related alloys' may be an ex-
ample of a new “quasicrystalline” phase of solid matter.
Quasicrystals are solids with long-range quasiperiodic
translational order and long-range orientational order.’
Quasicrystals may exhibit any orientational symmetry,>*
including those (such as icosahedral symmetry) that are
strictly disallowed for periodic crystals. Various tech-
niques have been discussed in the literature for analyzing
quasicrystal structure. One approach utilizes a continuum
or density-wave description that leads naturally to a Lan-
dau theory for quasicrystals. This approach is particular-
ly useful for studying the energetic stability of quasicrys-
tals compared to other ordered states’~® and for studying
elasticity theory and defects.%*1° A second approach uti-
lizes a discrete or unit-cell picture, describing a quasicrys-
tal as a quasiperiodic packing of two or more unit-cell

shapes. This approach is particularly useful for analyzing .

atomic structure, stoichiometry, diffraction properties,
and phonon and electronic wave functions of quasicrys-
tals. Numerous techniques exist for generating quasi-
periodic unit-cell packings, including matching and infla-
tion rules,>'!? projections and cuts from higher-
dimensional periodic lattices,*®!3~15 and the generalized
dual (or multigrid) method.>!316

The purpose of this paper is to discuss the detailed rela-
tionship between the density-wave and unit-cell pictures
so as to develop a deeper understanding of the structural
and elastic properties of quasicrystals:

(i) Landau theory identifies phonon and phason vari-
ables whose uniform translations do not change the free
energy of the system.®*!° We will show how variations in
these variables can be associated with translations, distor-
tions, and rearrangements of unit cells. Locally iso-
morphic arrangements of unit cells are related by uniform
phason shifts (and ordinary translations) and correspond
to configurations of equal free energy.

(ii) We produce a series of density-wave images illus-
trating phonons, phasons, and dislocations which closely
resemble experimental electron micrographs of the
icosahedral phase of aluminum-manganese and related al-
loys.!” The associated unit-cell configurations provide a
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natural basis for the interpretation of the phonon and
phason variables and defects in terms of rearrangements
of atoms and atomic clusters.

(iii) We analyze dislocations and partial dislocations in
the unit-cell picture. Levine et al.’ have discussed dislo-
cations in the context of the density-wave picture, and
Kleman et al.'® have discussed some aspects of disloca-
tions and partials in the unit-cell description. In this pa-
per, we provide a prescription for generating dislocations
in the unit-cell picture using either the projection or gen-
eralized dual techniques. We also analyze partial disloca-
tions and show how they can be naturally classified as
mixtures of two distinct types of partials.

(iv) We discuss the energy and dynamics associated
with the phason variable. There appear to be at least two
logical possibilities. The first is the elastic-hydrodynamic
theory treated in Refs. 9 and 10, which is obtained natur-
ally from the density-wave description. The second, sug-
gested by the tiling picture, is a theory in which excita-
tions occur through local discrete rearrangements'® lead-
ing to defects which can relax through defect diffusion
and annihilation.?’ In both cases, phason relaxation is
dynamical and controlled by mass diffusion, which is ex-
pected to be an extremely slow process in solids.

(v) The correspondence between phasons and rearrange-
ments of unit cells is also relevant to understanding the
growth of quasicrystals. One of the arguments that has
been raised against the quasicrystal model is that the ra-
pid aggregation of rigid unit cells forced into a quasicrys-
tal structure according to local matching rules (as in a
Penrose tiling, say) leads to mismatches.?! It has been
suggested that such mismatches can only be prevented if
there are strong long-range interactions (which seems un-
likely in an atomic structure). We will see in this paper
that the mismatches correspond to spatial variations or
strains in the phason variable. We agree that such phason
strains will occur during the growth process, and, further-
more, that they will relax slowly (diffusively). However,
the energetic cost of such strains is comparable to that of
producing strains in periodic crystals and, therefore,
should not represent a significant impediment to growth.

The organization of this paper is as follows. In Sec. II,
we present a basic overview and discuss the physical signi-
ficance of our results. In Sec. III, we provide the detailed
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mathematical relation between the density-wave and unit-
cell constructions. Included is a discussion of how to ob-
tain dislocations in quasicrystals as projections of disloca-
tions in higher-dimensional periodic lattices. In Sec. IV,
we discuss how to construct dislocations in unit-cell pack-
ings and their associated Burgers vectors. In Sec. V, we
extend the methods in Sec. IV to study and classify partial
dislocations.

II. PHONONS, PHASONS, AND DISLOCATIONS
FROM TWO POINTS OF VIEW

Hydrodynamic modes and topological defects in quasi-
crystals are most simply described in the density-wave
picture, as discussed in Ref. 9. In (d =2)-dimensional
pentagonal and (d =3)-dimensional icosahedral quasi-
crystals, there are 2d broken symmetry hydrodynamic
variables, twice as many as in conventional (periodic)
crystals. The hydrodynamic modes are the long-
wavelength, low-frequency excitations of these variables:
d modes can be described as phonon modes and d modes
as phason modes associated with the relative displacement
of incommensurate density waves. Dislocations corre-
spond to topologically stable spatial variations of com-
bined phonon and phason variables.

The mass density of a periodic solid or quasicrystal can
be expanded in a Fourier series of mass density waves
with wave numbers drawn from a discrete set of points on
a reciprocal lattice. In the Landau density-wave picture
of these solid phases, it is customary to include only a fi-
nite number of mass density waves in the expansion of the
density. Although this approach easily identifies hydro-
dynamic degrees of freedom, it does not provide detailed
information about actual arrangements of atoms or atom-
ic clusters in the solid. The unit-cell picture in both
periodic and quasiperiodic solids can provide this infor-
mation, and so it is useful to interpret variations in the
hydrodynamic variables identified with the aid of the
Landau theory in terms of translations, distortions, or
rearrangements of repeating atomic motifs (unit cells) in
quasicrystals. One of the principal goals of this paper is
to develop and explore this interpretation.

We begin in this section by briefly reviewing various
features of the elasticity and dislocation theory that have
been derived from the Landau density-wave description.
We then discuss their representation in terms of the unit-
cell picture and consider some toy atomic models (decora-
tions of the unit cells) that provide some insight into the
nature of the hydrodynamic modes. The mathematical
details supporting our assertions in this section are con-
tained in subsequent sections.

For simplicity, we will confine our discussion almost
entirely to the two-dimensional tilings with pentagonal
orientational symmetry. The generalization to three-
dimensional icosahedral structures is straightforward.

A. Review of the Landau density-wave picture

1. Degrees of freedom

To obtain the density-wave description®®® for an or-
dered solid, the mass density p(r) is expanded in a Fourier
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series

pr)= 3 pgexpliG-r) , (1)
GEL,

where G is a reciprocal vector and Ly is the reciprocal
lattice. Each pg is a complex number with an amplitude
pc and a phase ¢g. Since p(r) is real, pg=p_g and,
hence, ¢g= —¢g. The ordered phase can be described in
terms of a Landau free energy F that can be expanded in a
power series in p(r). For example, the kth power of p(r)
gives rise to terms in F of the form

k
FO=4, 3 [drpe,pa,, po,exp ZGm--r]
nln2,...,nk i=
k k k
=VAr ¥ A|3X Gycos| X ¢6, |IT Ipc, | »
G,ELy n=1 n=1 n=1

(2)

where V is the volume. The factor A(x)=8§,, ensures
that only terms where 2:=1 G, =0 contribute to the sum
in Eq. (2). The free energy expansion is phenomenological
in the sense that the coefficients A; depend upon the de-
tails of the physical system (atomic species, interatomic
interactions, temperature, pressure, etc.). The equilibrium
ordered state is characterized by the values of pg that
minimize F.

The goal of the density-wave description is to derive
certain general properties of the ordered state that depend
upon the symmetries and conservation laws, but not on
the particular choices of A4;. For these purposes, it is suf-
ficient to consider a small finite subset {pg } of the

Fourier components pg. In practice, the “density-wave
picture” consists of retaining only the set {pg } in the

Fourier expansion of p(r) and truncating F at some low
power in an expansion in {pg_}.

The {pg, } must include a minimal subset of the pg cor-

responding to Ny reciprocal vectors G,, such that any re-
ciprocal vector GE Ly can be written as an integral linear
combination of the G,. In addition, {pg ] must include

reflected images {p_g ] (to ensure a real mass density

when all density waves are summed) plus any vectors that
can be obtained from the minimal set by point group
operations associated with the orientational symmetry of
the solid. In periodic crystals, Nz =d; in quasicrystals,
Ng=n;d, where n; is the number of incommensurate
lengths associated with each lattice vector direction. For
pentagonal and icosahedral quasicrystals n;=2. (For
icosahedral quasicrystals, the minimal set {pg} can be
chosen to correspond to the six independent vectors point-
ing to the vertices of an icosahedron plus reflected im-
ages.) For pentagonal quasicrystals, a natural choice for
{pg,} consists of the five pg_ corresponding to the five

vectors that point to the vertices of a pentagon (plus re-
flected images): four vectors are required because n;d =4,
and a fifth is added because it is related by a point sym-
metry operation to the other four. The five vectors can be
written G, =G[cos(27n /5),sin(27n/5)], n=0,...,4.
[Later, to discuss partial dislocations, we shall find it use-
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ful to extend {pg, } to include more reciprocal-lattice vec-

tors (see Sec. V).] Note that, since 2: —0G»=0, only
four of the G, are independent.

Minimization of F with respect to |pg| and ¢¢ fixes
all the variables except for Nz phases. From Eq. (2) it is
clear that for any set of G,’s that satisfies , G, =0, the
value of F depends on the value of ¥, ¢, Minimizing F

must, therefore, fix the value of every such sum. For the
pentagonal case then, where our chosen fundamental set
of five G,’s satisfies », G, =0, minimizing F places the
constraint that EQSGn =I=const, and only Nz=4

phases remain independent.

Because uniform shifts in the N phases leave F un-
changed, they correspond to hydrodynamic variables in
the theory. Furthermore, uniform shifts in the ¢Gn that

change the sum of the phases change the energy. (Such a
uniform shift corresponds to a shift in local isomorphism
class in the unit-cell picture.) The Np =4 hydrodynamic
degrees of freedom in phases can be parametrized by two
two-dimensional vectors, u and w, which are related to
two different vector representations of the rotational sym-
metry group. For pentagonal symmetry, a convenient pa-
rametrization is

b6, =wG, +aw-Gin)+I/5 n=0,...,4, (3)

where (3n) means mods(3n) and a =sin(27/5)/
sin(4/5). In the perfectly ordered state u and w are
constant vector fields (independent of position). Figure
1(a) depicts such a “density-wave image” obtained by

(©)

FIG. 1. Density-wave images. A white dot is placed at all
points r where the value of p(r) exceeds + of its maximum
value. (a) A perfect pattern with 3, ég,=0. (b) A distortion of
pattern (a) corresponding to spatial variations in the phonon de-
gree of freedom u. (c) A pattern containing variations in the
phason degree of freedom w about the value used in pattern (a).
(d) A dislocation. Note that both phonon variations (curvature)
and phason variations (jags) are present.

FIG. 2. Density-wave images. (a) A perfect pattern with
> ¢G" =0.3. (b) A pattern in which ¢G" varies linearly from

zero on the left to 0.5 on the right. Variations in 3, ¢G" corre-

spond to variations in local isomorphism class in the unit-cell
picture.

computing the truncated p(r),

4
p(r)= 3 cos(G, 1+¢g ),

a=0
where 2¢Gn=0’ in the manner described in Ref. 9.

These and other density-wave images shown in this paper
are different from those in Ref. 9 in that they are, in some
sense, “higher contrast” and black and white are reversed.
White dots indicate regions where p(r) is positive and at
least + of the maximum possible positive value of p(r)
[whereas in Ref. 9 white dots meant only that p(r) <0].
This cutoff is essentially arbitrary, but we have made the
choice of + here because it produces images that compare
better visually with experimental electron micrographs.
Note how the white dots lie along quasiperiodically
spaced parallel lines oriented parallel to edges of a penta-
gon. In Fig. 2(a), a similar figure except with
> ¢g,=0.3 is shown. Figures 1(a) and 2(a) correspond to
density-wave images associated with two states with
differing free energy. They correspond to the density-
wave images expected for unit-cell configurations in dif-
ferent local isomorphism classes.

2. Variations in u

A uniform shift in u corresponds to a translation of the
system. Just as in the case of a periodic crystal, spatial
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variations in u give rise to propagating phonons. Figure
1(b) is a density-wave image with constant w but varying
u. Note the curvature produced in the lines of high-
density points.

3. Variations in w

A uniform change in w shifts the density waves relative
to one another to produce a rather subtle change in the
pattern. Mathematically, the w variable is analogous to
the phason degree of freedom in incommensurate crystals.
One of our primary concerns will be to interpret uniform
shifts in w in terms of special rearrangements of the unit
cells.

Figure 1(c) shows a density-wave image with constant u
and varying w. In contrast to Fig. 1(b) in which only u is
varied, the high-density regions remain along straight
lines, but the lines are jagged or shifted in many places.
Interestingly, some experimental electron micrographs of
icosahedral phases exhibit shifts similar to those that we
find for phason variations.!” This observation is con-
sistent with the hydrodynamic theory which suggests that
phason variations present when a sample is prepared take
a very long time to relax.'

Figure 2(b) shows a density-wave image in which
2 b, varies from zero on the left-hand side to 0.5 on the

right-hand side of the image. Such an image corresponds
to a variation in local isomorphism class. According to
the hydrodynamic theory, such variations are highly ener-
getic excitations that should relax quickly to the ground
state. This is consistent with the fact that we have not ob-
served such variations in experimental electron micro-
graphs.

Note that the method of obtaining electron micrograph
images—Fourier transforming some subset of diffraction
spots lying in a two-dimensional (2D) plane—is exactly
equivalent to the way in which we have obtained our 2D
density-wave images. Therefore, it is appropriate to com-
pare directly the 2D density-wave images in this paper
with electron micrographs obtained by imaging fivefold
diffraction patterns of icosahedral phases.

4. Dislocations

Dislocations are topologically stable point defects in
two dimensions or line defects in three dimensions corre-
sponding to spatial variations in the phases, ¢g , or,
equivalently, the vector fields u and w. They are charac-
terized by a Burgers vector which measures the net dis-
placement in u and w (with respect to a perfect lattice)
about any circuit enclosing the dislocation core. The
Burgers vector can be expressed as a 2d dimensional vec-
tor, the first d components of which measure the displace-
ment in u and the second d components of which measure
the displacement in w.’

The Burgers vectors correspond to displacements in u
and w that leave the ¢ invariant modulo 27 (and keep

the sum of the phases fixed for the case of pentagonal
symmetry). As shown in Ref. 9, each Burgers vector cor-
responds to nonzero u (translational) and w (phason) dis-
placements, so that dislocations in quasicrystals, unlike
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those in periodic crystals, cannot be interpreted simply in
terms of insertions or removals of half-planes of atoms
(pure translations).

Figure 1(d) illustrates a density-wave image of a dislo-
cation whose core lies at the origin. We have set
b6, = —9G,=0 (keeping 3, d¢, fixed), where 6 is the usu-
al polar angle. The dislocation contains both curvature
and jags, indicating that variations in both u and w are
present. For these images, the variation in the phases has
been chosen to be circularly symmetric (proportional to
0), so that the curvature and jags are distributed in a cir-
cularly symmetric pattern. However, in real materials, a
phase variation which is not uniform in 6 may be energet-
ically favorable.?

B. Unit-cell picture

In the unit-cell description of a quasicrystal, specifying
the orientational symmetry and the shapes of the unit
cells is not sufficient to uniquely determine the tiling
(packing of unit cells).?? In fact, there are infinitely many
distinguishable rearrangements of the unit cells whose dif-
fraction patterns are given by the same set of reciprocal
wave vectors with different Bragg peak intensities. The
tilings can be subdivided into local isomorphism (LI)
classes, where two tilings are in the same LI class if, and
only if, every bounded configuration of unit cells in each
is found in the other. The condition that two tilings be in
the same LI class guarantees that the tilings cannot be dis-
tinguished by measurements made on any finite length
scale. Tilings in the same LI class are, therefore, physi-
cally indistinguishable and have identical Fourier
transform (diffraction) properties including intensities.
The phases are also identical up to shifts which preserve
the value of ¥ ¢ for every set {G,] that satisfies
> G,=0. A physical consequence is that configurations
in the same LI class have the same free energy density F,
since F just depends on the Fourier coefficients; converse-
ly, tilings in different LI classes will have different free
energies, unless there is some accidental energy degenera-
cy. In particular, if we are interested in analyzing an
atomic structure in terms of unit cells, we should focus on
the subset of tilings belonging to the LI class with
minimum F.2

1. Degrees of freedom and local isomorphism

As we shall detail in Sec. III, associated with each of
the techniques for constructing quasicrystal unit-cell
packings are parameters analogous to |pg | and ¢g in the
density-wave description. For example, some of these pa-
rameters control the precise position of the five-
dimensional (5D) lattice points (or, equivalently, of the
projection strip) in the projection approach and the rela-
tive shifts of the grids of parallel lines in the generalized
dual approach. Just as minimizing F determines all the
|pc| and ¢g except for Ny phases in the density-wave
picture, so fixing the LI class determines all but Ng of the
parameters in the unit-cell picture. The N parameters
can be expressed in terms of two vectors, u, and w,,
analogous to u and w in the density-wave picture. The
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vector w, determines the particular unit-cell configuration
within the LI class and u, determines the translation of
the pattern.

The tilings produced by Penrose by application of
matching and inflation rules!! correspond to a particular
subset—a single LI class—of pentagonal quasicrystal til-
ings. Without loss of generality, we will focus on this
particular LI class to illustrate our points, as if the Pen-
rose LI class corresponded to the ground state of some
system. This LI class has the advantage that many
readers are already familiar with Penrose tilings. Distor-
tions and defects in these tilings are easy to recognize and
their energetics can be estimated in terms of violations of
the matching conditions. Furthermore, the Penrose LI
class has the advantage that it can be generated as a sim-
ple decoration of an “Ammann quasilattice”?* of quasi-
periodically spaced parallel lines. The effect on the lines
in the Ammann quasilattice induced by distortion and de-
fects in the unit-cell structure bears a remarkably close
resemblance to the analogous effects on the lines of high-

(@) ©

FIG. 3. Penrose tilings. (a) A portion of a perfect Penrose til-
ing. The shaded unit cells compose a segment of a “worm.” (b)
A distortion of the tiling of (a) corresponding to variations in
the phonon degree of freedom u,. The unit-cell shapes are dis-
torted, but their arrangement is the same as in (a). (c) A tiling
containing variations in the phason degree of freedom w, about
the value used in (a). The shaded rhombuses form a flipped seg-
ment of a worm. [Compare to same region of (a). For more de-
tails on worm flips, see Fig. 5.] The large dots at the ends of the
shaded segment indicate edges along which the Penrose match-
ing rules are violated—deviations from the Penrose local iso-
morphism class. This picture contains several other such
mismatches and flipped worm segments. To find them, use Fig.
4 as a guide. (d) A dislocation in a Penrose tiling. At large dis-
tances from the core the distortion of the unit cells and the den-
sity of mismatches both become small, although neither can be
completely eliminated.
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density points (black dots) in the density-wave images.

For fixed LI class, the perfectly ordered tiling corre-
spond to spatially uniform u, and w,. In Fig. 3(a) we il-
lustrate a portion of a perfectly ordered Penrose tiling.
[See also Fig. 4(a), which is explained in Sec. III.]

2. Variations in u,

Uniform shifts in u, give rise to pure translations of a
Penrose tiling. Spatial variations in u, lead to distortions
of the tile shapes but do not affect the configuration of
tiles at any point. This corresponds precisely to the situa-
tion in periodic crystals where spatial variations of the
phonon field can be thought of as distortions of the unit
cells. Thus the correspondence between u of the Landau
theory and u, is simple and direct. Figure 3(b) illustrates
a Penrose tiling with spatially varying u,. [See also Fig.
4(b).]

FIG. 4. Ammann quasilattices. A Penrose tiling can be ob-
tained from an Ammann quasilattice either by decoration or by
a generalized dual transformation. The reader is encouraged to
overlay a transparency of this figure on Fig. 3. (a) A portion of
a perfect Ammann quasilattice corresponding to the Penrose til-
ing of Fig. 3(a). (b) A distortion of the Ammann quasilattice of
(a) corresponding to variations in the phonon degree of freedom
u,. (c) An Ammann quasilattice containing variations in the
phason degree of freedom w, about the value used in (a). The
points at which a line shifts, called “jags,” correspond precisely
to mismatches in the associated tiling. [Compare to same region
of Fig. 3(c).] (d) A dislocation in an Ammann quasilattice. At
large distances from the core the curvature of the lines and the
density of jags both fall off like 1/7.
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3. Variations in w,

Uniform shifts in w, produce no tile distortion or uni-
form translation but, instead, result in special rearrange-
ments of the tiles which transform the tiling to another
tiling within the same LI class.

The rearrangements induced by uniform shifts in w,
can be understood as taking place along so-called
“worms” in the tiling. A “worm” is composed of thick
and thin rhombuses which form a connected line of (irreg-
ular) hexagons, as shaded in Fig. 3(a). If the hexagons
formed from one thin and two thick rhombuses are la-
beled S and the hexagons formed from one thin and two
thick rhombuses are labeled F, then the worm is given by
a Fibonacci sequence of S and F hexagons. Each tiling
contains an infinite number of crisscrossing worms. In
most worms, the worm of hexagons is interrupted in
several places due to the crossing of some other worm.
An entire uninterrupted worm is unique in that it can be
reflected about its horizontal axis, or “flipped,” without
disrupting any of the Penrose matching rules (or,
equivalently, without changing the LI class). When a hex-
agon consisting of two thin tiles on top and one thick tile
on the bottom, say, is flipped, the tiles are rearranged
within the same hexagonal boundary such that the thick
tile is now at the top and the matching rules in the interi-
or of the hexagon are still obeyed. (See the transformation
in the rightmost hexagons in the two lower diagrams of
Fig. 5.) A flipped worm is obtained by flipping all of its
constituent hexagons.

In general, a uniform shift in w, causes a number of
crisscrossing worms to flip in just such a way that the
matching rules are maintained throughout (including
where the two worms cross). The number density of
worms that flip is proportional to the size of the change
in w,. In the Penrose tilings, spatial variations in w, re-
sult in segments of worms being flipped, creating isolated
violations of the matching rules. The matching rule viola-
tion occurs only at the two ends of the segment, along the
two hexagon edges that connect to the rest of the worm.
In other words, the flip leads to two localized defects at
the ends of the worm segment. Examples of such
mismatches are indicated in Fig. 3(c), which shows the re-
sult of varying w, on a Penrose tiling. [See also Fig. 4(c).]
We note that in the analogous three-dimensional struc-
tures, a “worm” consists of a planar array of connected
unit cells. Spatial variations in w, lead to flipping of the
unit cells in connected planar sections of a worm produc-
ing lines of mismatches along the boundaries of the sec-
tions. For a brief explanation of this result, see Sec. IIT A.

Note that such mismatches will occur naturally during
the rapid aggregation of unit cells during quasicrystal
growth. That is, given only local interactions or matching
rules that lead to a ground state corresponding to some
particular LI class, mismatches can be produced where a
worm of unit cells growing in one direction meets a
flipped worm growing from the opposite direction. It has
even been suggested that mismatches might represent a
significant impediment to the growth of quasicrystals (un-
less there are strong long-range interactions to prevent
them).?! We now see that such mismatches correspond to
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FIG. 5. Illustration of a “worm” in a Penrose tiling and its
signature in the Ammann quasilattice. An open circle indicates
a type of vertex that is never found in undefected tilings of the
Penrose local isomorphism class. The right (left) half of the
broken Ammann line can be shifted up (down) to restore the
ideal quasilattice in the region depicted. The consequent re-
arrangements of the intersections of the Ammann quasilattice
cause the right (left) half of the worm to flip when the general-
ized dual technique is applied. The worm segments depicted
below are decorated to illustrate the Penrose matching rules.
The rules are that two tiles can join only along edges which have
the same color arrow pointing in the same direction. The seg-
ment on the right corresponds to the shaded segment above,
where the rightmost hexagon (formed from one thick and two
thin rhombuses) has been flipped, causing a matching rule viola-
tion (indicated by the single arrow). If the middle hexagon were
now flipped to relieve that mismatch, a mismatch would arise
along the edge indicated by the double arrow. Note, however,
that the top and bottom of the hexagon are decorated in the
same way, so that no other mismatches would arise.

spatial variations or strains in the phason variable which
can relax in a diffusive mode through local rearrange-
ments of atoms. (During rapid cooling, there may also be
local deviations from the ground-state LI class, but we ex-
pect these to relax quickly because they are energetically
costly according to the Landau theory.) Of course, dislo-
cations and compositional variations may be quenched
during rapid solidification since they also relax slowly.

The detailed way in which a phason relaxes depends to
some degree on the appropriate model of the dynamics.
Considering the tiles themselves for a moment, we see
that a mismatch can be moved along the worm that con-
tains it by successive flips of single hexagons. A worm
that contains mismatches can therefore relax to the
ground state by having those mismatches find each other
and annihilate or move off to infinity. Figure 6 shows a
sequence of configurations corresponding to the relaxation
of a localized “bump” in the w, field. (See also Fig. 7.)

4. Dislocations

In the unit-cell description of a quasicrystal, a disloca-
tion produces a topologically stable rearrangment and dis-
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FIG. 6. Tiling illustration of the relaxation of a localized
variation (“bump”) in the phason field. In each figure we have
set w,=A(r)§, where A(r)=Ao[1+cos(kr)] for kr <m and
A(r)=0 at greater values of r. The value of k is such that
kr =21 occurs near the border of the figure; there are no varia-
tions in w, that are not visible. The value of A, decreases
steadily through the sequence (a), (b), (c), (d). Dots indicate
mismatches in the tiling (deviations from the Penrose LI class).
Note that the order in which the mismatches annihilate is not
arbitrary. Some worms cannot flip until other crossing worms
do.

tortion of the unit cells. The dislocation can be character-
ized by the net displacement in u, and w, with respect to
the undefected unit-cell structure as measured around a
closed path that encircles the dislocation core (a Burgers
circuit). Because the dislocation is a topological point de-
fect in two dimensions (2D) (or line defect in 3D), as the
radius of the Burgers circuit about the core approaches in-
finity, the local arrangements and shapes of the unit cells
along the circuit become indistinguishable from those in
the undefected lattice (i.e., the same unit-cell shapes and
the same LI class).

From these simple remarks, we can understand why
any dislocation in the quasicrystal tiling requires displace-
ments in both u, and w,. If a defect involved only dis-
placements in the translational degree of freedom,
Au, =V, the tiling arrangement could not approach the LI
class of the undefected lattice at large distances from the
dislocation core. The tiles at the beginning and end of a
large Burgers circuit would not match in an arrangement
in the same LI class unless b were an exact translation
vector of the lattice; however, there is no such translation
vector in a quasiperiodic structure. To approach the LI
class of the undefected tiling at large distances from the
core, as required for a dislocation, the translation Au,
must be accompanied by a rearrangement of unit cells, as

®) @

FIG. 7. Ammann quasilattice illustration of the relaxation of
a bump in the phason field. In each figure we have set
w,=A(r)§, where A(r)=Ay[1+cos(kr)] for kr <m and
A(r)=0 at greater values of r. The value of k is such that
kr=2m occurs near the border of the figure; there are no varia-
tions in w, that are not visible. The value of A, decreases
steadily through the sequence (a), (b), (c), (d). These pictures can
be compared directly to those of Fig. 6. Note that each
mismatch in the tiling corresponds to a jag in the Ammann
quasilattice.

occurs through displacement in the phason variable w,.

To form a dislocation in a Penrose tiling we make u,
and w, functions of the polar angle 6, as measured about
the dislocation core. The requirement that there be no
mismatches along the 6=0 ray (to require matching at
the beginning and end of a Burgers circuit) forces a cer-
tain relationship between Au,=u,(27)—u,(0) and
Aw,=w,(27)—w,(0), as we will demonstrate in the next
section. The dislocation can then be characterized by a
2d-dimensional vector, the first two components of which
measure the displacement in u, and the second two com-
ponents of which measure the displacement in w,. The
properties of this vector and the constraints on it are ex-
actly the same as those found for the Burgers vectors in
the Landau theory. Thus, we will refer to this vector as
the Burgers vector when discussing the unit-cell picture.
Note that in a dislocation, u, and w, are interlocked and
neither can relax to a constant. A dislocation in a Penrose
tiling is shown in Fig. 3(d). [See also Fig. 4(d).]

One advantage of the unit-cell picture over the five-
component density-wave picture is that it leads to a more
complete understanding of dislocations and partial dislo-
cations. According to the simple Landau theory, for ex-
ample, topological defects need be introduced in only two
of the five phases in order to form a dislocation. One
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might therefore expect that a dislocation in a tiling could
be formed in which mismatches occurred only along
worms running in two of the five possible directions. The
density-wave picture of Fig. 1(d) shows, however, that jags
occur along four directions and Fig. 3(d) shows that
mismatches in the tiling also occur along four directions.
The disparity is due to the effect induced on the phases
of other pg when the fundamental ¢g ’s are changed.

Whereas the simple Landau density-wave theory includes
only the fundamental PG, the unit-cell picture automati-

cally includes other pg (higher harmonics). (The method
of obtaining the density-wave image from a sum of cosine
waves also introduces higher harmonics, as can be seen by
diffracting a laser from one of the density-wave images.)
The defect can be understood from the density-wave pic-
ture if we expand {pg } to include five more pg corre-

sponding to the wave vectors G, =(1/7)G,, (plus reflect-
ed images). (No extra hydrodynamic variables are intro-
duced by this construction.) Note that G,—G,_,
— G, 41=0, implying that ¢G; —d¢g, _ l——¢Gn+ ,=const,
where the constant is determined by minimizing F. Thus,
if we set, for example,

b6,=—¢g,=f(xy), $g,=dc,=dg,=const,
the constraints on the sums of the phases require that

= - = t ’
¢62 ¢63 f(x,y)+cons
¢G(,)=¢G,‘=¢G‘,‘=const.

The variations in ¢g, and ¢g, cause mismatches in the G,

and G, directions as expected, but they also induce varia-
tions in ¢G,2 and ¢G,3, which accounts for the mismatches

found in the G, and G; directions. We further consider
topologically stable variations in these extra phases in our
analysis of partial dislocations, as discussed in Sec. IV.

C. Energy and dynamics of u and w
spatial variations and dislocations

In the Secs. Il A and IIB, we discussed the effects of
spatial variations of u and w on the structure of pentago-
nal quasicrystals using both the density-wave and unit-cell
pictures. It was not necessary in this discussion to make
any reference to energies associated with these variations.
In real physical systems, however, the energetics associat-
ed with spatially varying hydrodynamic variables is of
considerable interest. In this section, we will discuss two
logical possibilities for the energetics.

In the standard elastic picture, u and w are regarded as
continuum hydrodynamic variables having an elastic ener-
gy proportional to the square of their gradients. This is
the approach discussed in Refs. 6, 9, and 10. A change,
Aw, in w along a single direction in a d-dimensional cube
of side L §iv¢s rise to an elastic energy of order
~L%~%Aw)? since the change in w is distributed uni-
formly along L (Vw=~Aw/L), just like the energy associ-
ated with a Bloch wall in a Heisenberg ferromagnet. In a
dislocation, Vw o7 ~!, where r is the distance from the
core. The elastic energy of a dislocation in a two-

dimensional sample is, thus, of order In(L /a), where a is
the core radius. The hydrodynamics implied by this con-
tinuum elastic picture (and the symmetries and conserva-
tion laws of the icosahedral phase) is discussed in Ref. 10.
The dynamic modes associated with u are propagating
phonons, whereas those associated with w are diffusive.
Note that the relaxation of the spatial variations in the
phason variable in Fig. 6 occurs through local rearrange-
ments of unit cells and is perfectly consistent with the hy-
drodynamic theory which predicts relaxation through lo-
cal diffusive motion of atoms.

In an alternate approach, which is suggested by the
unit-cell picture, spatial variations in u lead to distortions
in unit-cell sizes and shapes. Since unit cells can be con-
tinuously distorted, it is natural to associate an elastic en-
ergy with spatial variations in wu, just as for a periodic
solid. Spatial variations in w, on the other hand, give rise
to matching rule violations at discrete places in the lattice.
A violation is either present or it is not, and the natural
way to determine the energy of a spatial variation in w
would be to associate an energy € with each matching rule
violation. The energy E associated with a given configu-
ration with nonuniform w is then E =N, €, where N, is
the number of matching rule violations. Along a given
line, the number of matching rule violations is proportion-
alto |Aw|, sothat ExL?~'|Aw| ~L?%| Vw|. The en-
ergy of a dislocation is then proportional to

d*r|Vw| =~L.

Note that the energy associated with a slowly varying
w still goes to zero (linearly) with wave number (in the
limit of long wavelength). Thus w remains distinguished
from variables such as those corresponding to variations
in LI class which are nonhydrodynamic in the density-
wave picture. Spatially uniform shifts (i.e., the limit of
long-wavelength variations) of the latter produce energy
increases proportional to the volume of the sample.

The dynamics of the discrete model suggested by the
unit-cell picture is not yet fully understood. The
Frenkel-Kontorova model? is one of the simplest models
for incommensurate structures and may provide insight
concerning this topic. It consists of a linear chain of
atoms coupled by ideal (Hooke’s law) springs of equilibri-
um length [, interacting with a rigid “washboard” giving
rise to a cosine potential of incommensurate period /;.
The energy is invariant with respect to uniform transla-
tions of the chain atoms relative to the washboard. When
the average separation of the atoms is constrained to be an
irrational multiple of the washboard period, there is an
elastic phason energy proportional to the square of the
gradient of the atomic variable so long as the washboard
potential is not too strong. However, for sufficiently
strong washboard gotential, numerical calculations by
Peyrard and Aubry?® show that the position of the nth
atom becomes a discontinuous function of » and the ener-
gy associated with very slow spatial variations of position
becomes finite rather than infinitesimal.2® That is, the en-
ergy becomes Ising-like rather than elastic. Peyrard and
Aubry refer to the state with discontinuous position vari-
able as pinned since neighboring states of equivalent ener-
gy are separated by an energy barrier.

One could argue that the unit-cell description, a discrete
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picture in which spatial variations in the phason variable
correspond to discrete rearrangements of the unit cells
which produce mismatches, is naturally associated with
the pinned state.!” If this is the case, continuum elastici-
ty® and hydrodynamics'® is not applicable. Nevertheless,
it appears that phason relaxation can occur through dif-
fusion and annihilation of defects. Thus, even though the
detailed energetics and dynamics may be different from
the hydrodynamic results, long-wavelength phason strain
is a low-energy excitation and long-wavelength phason re-
laxation is a slow, diffusive process that plays an impor-
tant role in the elastic properties of quasicrystals.?®

We wish to emphasize that even if the elasticity is
correctly described by the continuum approach, it can also
be interpreted in terms of a unit-cell picture. We adopt
the point of view that the unit cells provide a template for
local atomic configurations, but do not determine the
dynamics. Within each unit cell in an equilibrium config-
uration, there is a preferred arrangement of atoms, which
depends upon the unit-cell shape and the matching rules
(or, more generally, LI class). Other atomic arrangements
are energetically unfavorable. A matching rule violation,
which is produced by a local rearrangement of unit cells,
can be interpreted as an energetically unfavorable re-
arrangement of atoms. Such a rearrangement of atoms
will cause the positions of atoms in nearby unit cells to re-
lax to reduce the overall energy. This relaxation provides
a mechanism to spread out the energetic effect of a spa-
tially varying w, leading again to an energy density pro-
portional to (Vw)2. Atomic positions in distorted struc-
tures might be determined as follows: (i) Find the tilings
associated with nonuniform w as shown in Fig. 3(c), (ii)
locate atomic positions using the ideal atomic configura-
tions within each cell, and (iii) allow the atoms to relax to
the lowest energy configuration without changing the to-
pology of atomic arrangements (i.e., without interchang-
ing positions). This relaxation is presumably a fast,
nonhydrodynamic process. One is then left with a distort-
ed configuration with energy density proportional to
(Vw)?. This configuration can now relax to the state of
uniform w only by rearranging atoms—a slow, diffusive
process. This picture is consistent with the elastic and hy-
drodynamic theories.

In summary, both the discrete and hydrodynamic ver-
sions of phason dynamics support the view that w relaxa-
tion is implemented via mass diffusion with a mobility
that is of the same order as that for mass diffusion in
solids. Since mass diffusion mobilities are extremely
small (<107'° cm?/sec), spatial variations in w that
might be present at the time of preparation relax very
slowly and are effectively quenched. This may account
for the fact that electron micrographs of icosahedral
phases appear to have many jags associated with unre-
laxed phason variations.

III. THE CONNECTION BETWEEN DENSITY
WAVES AND TILINGS

The purpose of this section is to provide the detailed
connection between the hydrodynamic variables (u and w)
of the density-wave picture and the parameters used in the
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unit-cell constructions. The connection can be determined
by examining the relationship between the parameters of
the unit-cell construction and the pg (amplitudes and
phases) of the peaks in their Fourier transform. The same
analysis that derives u and w from the phases of pg in the
density-wave picture can then be used to derive u, and w,
from the pg and, ultimately, the parameters in the unit-
cell picture. Once this connection is made, there is a clear
prescription for varying the parameters to obtain tilings
with spatially varying phonon and phason variables.

There are several different construction techniques
which can be used to generate pentagonal quasicrystal til-
ings. These include direct projection of a subset of points
in a 5D hypercubic lattice,*>!>!* taking the dual of five
sets of periodically or quasiperiodically space parallel
lines,>'3 and, in the case of the Penrose tilings, decorating
an Ammann quasilattice.'? In this paper, we will use the
last technique for most of our discussion for several
reasons. First, the Fourier transform of the Ammann
quasilattice itself can also be easily calculated and com-
pared to the simple Landau theory. Second, defects in the
Ammann quasilattice are readily recognized and analyzed,
and since the tiling is just a decoration of the quasilattice,
defects in the quasilattice are essentially equivalent to de-
fects in the tiling. Note that a discussion of the quasilat-
tice approach automatically incorporates the dual ap-
proach since the tiling can be obtained from the Ammann
quasilattice by a generalized dual transform as well as by
decoration. Finally, the structure of the Ammann quasi-
lattice explicitly illustrates the two incommensurate
periods associated with each orientational direction.

Although our discussion will be centered around the
Ammann quasilattice, in some cases the direct projection
technique is especially useful (e.g., for producing pictures
of tilings) and we will therefore discuss it as well. Both
methods can be generalized to 3D icosahedral structures
as well as to other symmetries.

A. Ammann quasilattices and their Fourier transforms

An Ammann quasilattice, which can be regarded as a
decoration of a Penrose tiling, is a special case of a Fi-
bonacci pentagrid.'?> A Fibonacci pentagrid is composed
of five sets of parallel lines, or five “grids;” the unit nor-
mals to these lines form a star of vectors with pentagonal
symmetry. Each space between successive parallel lines is
either a short interval S or a long interval L =78, where
7=(14+V'5)/2. The ordering of L’s and S’s in each
direction forms a Fibonacci sequence. For S =1, the
equations of the lines in a Fibonacci pentagrid are

, n=0,...,4, (4)

1[N
x-e,=N+a,+— |[—+B,
T T

where n labels the orientation of the grid line,
e, =[cos(27wn /5),sin(2mn /5)], N is an integer which
indexes the lines in a given direction, and [z] denotes the
greatest integer less than or equal to z. The ten real pa-
rameters a, and B, completely determine the Fibonacci
pentagrid.

By the Fourier transform of a Fibonacci pentagrid we
mean the Fourier transform of Z'B(X—r), where r is a
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vector that points to the intersection of a pair of lines and
the 2’ is a normalized sum over all r, as discussed in
Ref. 23. Setting T=1+1/7% it is useful to define the
following quantities:

_2m 9
2
K= 0= %]
w_2m | 9 AP
g =" | P+ +(Bi—7) it (5)
2
=~%[a,~kpq——(ﬂ,~—-§-)X,,q] ,

and the function
sin(X), /2)
Xpq/2

0, otherwise ,

exp(iyy) for k =kpq

%)= (6)

where p and ¢ are integers. Then, the Fourier transform
of a Fibonacci pentagrid can be written as

pk)=3 fOk-up,)f™(kuy,), (7)

l<m
where

= e,—(e,-e,,. )em
fm = 1 —(e,-e,,, )2

p(k) is nonzero if and only if k-uy, is a number of the
form of k,, [Eq. (6)]; this constrains k to equal one of a
discrete set of reciprocal vectors, G=2, n;e;, where
n; =integer. Note that ¢g_represents the phase of the en-
tire sum in Eq. (7).

If we now interpret p(k) as a Fourier sum of density
waves, our first task is to determine which values of a,
and B, yield configurations that are degenerate with
respect to the Landau free energy. Recall that the coeffi-
cients of the various powers of the density in the free en-
ergy expansion depend upon the sums of ¢g where
>, G=0 [see Eq. (2)].

A shown in Refs. 12 and 23, there are two kinds of
transformations of a, and B, that leave | p(k)| invariant.
The first is a discrete transformation known as an “um-
klapp:”

An—>Qy+Pp+qn /T, Bn—>Bn—Gn+pn/7, (8)

where p, and g, are integers; an umklapp leaves
|plk=G)| =|pg| and ég (modulo 27) unchanged.
Therefore, F is unchanged.

The second is a continuous transformation of the form

ap—a, +u,e,, B, '—’Bn +W:€(3n) ©

for arbitrary u, and w,. Such transformations were
shown to leave |pg| unchanged; also, if we write
G=3 n;G, (where G, point to the vertices of a penta-
gon and n; =integer) then
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b6—>ds=05+Gu,—Gw, , (10)

where 652 n;G(s,). Note that, for any set {G} such

that 3 G=0, 3 ¢g=, ¢ég. Thus, from Eq. (2), we see

that Fis not changed under these transformations either.
In summary, all Fibonacci pentagrids of the form

a,=a,+u,°€,+pyp+4qn /T
and (11)
B,=b, +W;*€(3n) —qn+Pn /T

(for some specified set {a,,b,} and arbitrary choices of u,
and w,) are completely degenerate from the point of view
of the Landau free energy. To specify a preferred ground
state for the system one must specify values of a, and b,.
The choices a, =(6r—1)/[2(7+2)] and b,=—2/(7+2)
for all n were shown to correspond to the Ammann quasi-
lattices, which, for the purposes of this discussion, we
take to be the ground state. This choice corresponds to
the choice Y, ¢, =0 in the minimal density-wave picture,

as can be verified by computing the phase factor accord-
ing to Eq. (7).

The form of the transformations of Eq. (11) strongly
suggests that we identify spatial variations of u, in the
Ammann quasilattice as phonons (u) and spatial varia-
tions of w, with phasons (w). We will therefore drop the
subscript in the remaining discussion. This identification
is justified by Eq. (10), where it is explicitly verified that
u affects the phases exactly as a translation would and w
exactly as changes in w do in the simple Landau theory.
In Figs. 4(a)—4(c) we show a perfect Ammann quasilattice
(a), an Ammann quasilattice containing variations in u
(b), and one containing variations in w (c). In these pic-
tures it is quite easy to separate effects due to u (curvature
of the lines) from those due to w (jags in the lines). The
reader is encouraged to copy Fig. 4 on a transparency and
overlay it on Fig. 3. Note that each jag in Fig. 4 corre-
sponds to a mismatch in the tiling of Fig. 3.

Phason variation in 3D icosahedral quasicrystals pro-
duces line defects. The icosahedral Ammann quasilat-
tice'? consists of six sets of parallel planes, each plane be-
ing perpendicular to a vector pointing to the vertex of an
icosahedron. As in the 2D Penrose case, the spacings be-
tween elements of a given set form a Fibonacci sequence.
The jags induced by linear variations in S are, therefore,
discontinuous steps between half-planes (rather than jags
between half lines). Mismatches in the unit-cell configu-
ration occur along the edges of these half-planes. More
general variations in 3 will lead to displacements of sec-
tions of Ammann planes whose boundaries form closed
loops of steps.

B. Generating unit-cell pictures using projections

We have already stated that the pictures of Penrose til-
ings and pictures of Ammann quasilattices are equivalent
in that a tiling is simply a decoration of a quasilattice, and
vice versa. By comparing Figs. 4 and 3, we can see how
this correspondence can lead to a procedure for producing
the pictures of Fig. 3. There is, however, another tech-
nique which can be used without reference to the Am-
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mann quasilattice and which is easier to implement than
the decoration.

It is well known by now that the Penrose tilings can be
obtained by orthogonally projecting a subset of the lattice
points of a 5D hypercubic lattice onto a particular 2D
subspace.*!>!° A simple procedure for doing this is as
follows: Let R denote a lattice point in the 5D hypercu-
bic lattice; R=, n;f;, where f; are the basis vectors of
the hypercubic lattice. Project R onto the 3D subspace
orthogonal to the tiling plane using the matrix
P, =+ cos[4m(j —i)/5]+ . If the projected point P'R
lies within the image of the unit cube (with its lowest in-
dex corner at the origin) under the same projection, then
project R onto the tiling plane using the matrix
P}}:%cos[Z‘tr(j —i)/5]. Do this for every R and then
join, by a line segment in the tiling plane, any pair of
points whose positions differ by a single e;, where
€ =Pl-} f;. (The five e;’s form a star of vectors with pen-
tagonal symmetry.)

Different tilings can be formed in this manner by add-
ing a constant vector ¥y (with components y,, where
n=0,...,4) to each R before carrying out the projection
procedure. Shifts in ¥ correspond to five degrees of free-
dom in generating the tiling. One degree of freedom, the
component of ¥ in the (1,1,1,1,1) direction is associated
with shifts in LI class. More specifically, an LI class is
determined by the value of y“zmodl‘y-( 1,1,1,1,1). The
Penrose LI class corresponds to y=0.

Varying ¥"! spans a continuous (uncountable) set of LI
classes; however, even this is only a highly restricted sub-
set of all possible LI classes. For example, by projecting
from yet higher dimensional lattices, where there are even
more degrees of freedom, other LI classes can be generat-
ed. The existence of more LI classes was already pointed
out in the discussion of the generalized dual method in
Ref. 3, where it is demonstrated that they can be easily
generated by using different kinds of quasiperiodic grids.

A variation in the phonon field, as we have seen, is
given by Aa, =u-e,, and a variation in the phason field
by AB,=w-e(s,). These imply AyE"™«u-e, and
AyEM®ON o e ,y. It is easily verified that

PHA,thonon:A,yphonon’ PlAyphononzo ,

PIIA.yphaSOn=O’ PlAthaso":A.yphason ’ (12)

i.e., phonon variations correspond to changes of ¥ in the
tiling plane and phasons to changes in the orthogonal sub-
space.

The projection and Ammann quasilattice approaches
are related in the following sense: The Penrose tiling as-
sociated with a given Ammann quasilattice is given by the
projection method with
—1

1+ 4| lantBaeti/r], (13)

2
where 7, is the nth component of ¥.!> Given values of a,
and B, corresponding to an Ammann quasilattice, one can
generate the Penrose tiling associated with them using Eq.
(13) and the projection technique. To obtain a tiling
where a, and B, are spatially varying, a spatially varying
Y must be added to each R associated with the higher-

Yn=

dimensional lattice points according to the position in the
tiling plane of P'R.

C. Ammann quasilattices, phasons, and worms

We next will examine the effect of a spatially varying
phason variable or, equivalently, a spatially varying S, on
the Ammann quasilattice and the Penrose tiling associated
with it. A complete discussion of this topic must include
two distinct issues: (i) the effect of a change in 3, on the
nth grid, and (ii) the way in which changes in the indivi-
dual grids are coupled by the conditions of Eq. (11) and
the consequent effect on the tilings. The first issue is
treated at length in Sec. V; we will first discuss the second
issue, anticipating a few simple results from Sec. V (which
are obvious from Fig. 4).

As detailed in Sec. V and displayed in Fig. 4, the effect
of a small uniform shift in 8 (AS < 1) on a given grid is to
shift the position of some of the lines in the grid. Accord-
ing to Eq. (4), if the value of | N /7+B] is changed by the
shift in B, then the Nth line in the grid is shifted by
+1/7. To see the effect of this shift on the tiling we
make use of the fact that a Penrose tiling can be obtained
from its Ammann quasilattice by a generalized dual
transformation, as well as by decoration.!*> To see that
shifting a line can cause a worm to flip, one need only ex-
amine the way in which the Ammann lines decorate a
worm (see Fig. 5). If an Ammann line parallel to a worm
is shifted by precisely 1/7 to the other side of the worm, it
causes a rearrangement of all the Ammann line intersec-
tions just such that the dual construction applied to the
new intersections produces the same worm outline with all
the internal hexagons flipped. Furthermore, flipping a
worm segment is the only tiling rearrangement which cor-
responds to a shift by 1/7 in an Ammann quasilattice
line. Thus, all shifts induced by changes in w, must occur
along worms. Where two or more worms cross, the
worms must flip in a specific order, determined by the or-
der in which the relevant values of N /74, cross an in-
teger as w, is smoothly varied.

Using the fact that the dual to an undefected Ammann
quasilattice is a Penrose tiling, we are able to study the ef-
fect of spatial variations in the phason field w in terms of
Penrose matching rule violations. First, since no local de-
fects in the Ammann quasilattice are induced by these
variations except at the points where jags occur, there can
be no mismatches in the tiles except at these isolated
points. Second, since these points always occur within
worms (or where worms cross) the mismatches must
occur at the common edge shared by two hexagons along
a worm. Finally, it is clear that mismatches along a given
direction cannot be removed except by annihilation with
another mismatch in the same direction, i.e., by having
the two jags at the ends of a shifted segment of an Am-
mann line brought together so that the segment shrinks to
zero length. Bringing the two jags together corresponds
to successively flipping hexagons between the two ends of
the worm in the dual tiling. (In 3D, the mismatches form
either open curves that annihilate or a closed loop which
can shrink to zero length.) Thus, a spatially varying
phason field relaxes through a series of local rearrange-
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FIG. 8. Illustration of a phason-induced mismatch in a toy
atomic model. The two unit cells of a Penrose tiling have been
decorated with atoms and bonds to produce a covalently bonded
structure containing four types of atoms. Each is always found
in the same bonding configuration. (a) The preferred arrange-
ment of atoms (a perfect tiling). (b) The effect on the atomic
structure of a phason-induced mismatch. Near the center of the
picture is a dangling bond indicating a deviation from the per-
fect structure. Note that while an entire slice of atoms has been
flipped over [compare to (a)], all bonds are intact except the one
at the center. This configuration can relax to that of (a) through
a series of local switches in atomic positions.

ments of unit cells, or, equivalently, atoms or atomic clus-
ters in a real material. (See Fig. 8 for an image of what
such rearrangements mean in terms of an atomic decora-
tion.)

IV. DISLOCATIONS

To describe a dislocation in a Penrose tiling, we will
consider u, w, a,, and 8, to be functions of the polar an-
gle 6 (measured about the dislocation core). The functions
a,(0) and B,(0) associated with a dislocation must satisfy
the following restrictions.

(i) There must exist u(6) and w(6) such that a,(0)
=u(0)-e, +const and B,(8)=w(0)-e3,)+const [see Eq.
(11)]. This guarantees that as r— o the pattern ap-
proaches a perfect Ammann quasilattice (i.e., a pattern in
the same LI class as the undefected lattice) for all values
of 6 other than 0.

(ii) The values of a,(27) and B,(27) must be related to
a,(0) and B,(0) by an umklapp for all n. This guarantees
that there will be no defects along the 6=0 ray.

The Burgers vector lattice is determined by the values
of Au=u(27)—u(0) and Aw=w(27)—w(0) that are con-
sistent with restriction (ii). These imply that

Auv-e,=P,+Q, /7
and (14)
AW‘C(3")= —Qn+P, /T

for some set of integers P, and Q,. Solutions can be
found for these ten equations only if certain relations hold
among the P,’s and Q,’s. The simplest solutions that
satisfy these equations are of the form

Pi=O’ Pi+l=11 Pi+2=O’ Pi+3=0’ Pf+4='—1,

Qi=0, Q;+1=0, Q;2=1, Qii3=—1, Q;14=0

for any i, where all indices are taken modulo 5. These
correspond to
I
~ sin(2m/5)
and (16)

(15)

—1 .
W= Sin(ar/5) €00

where €] is a unit vector corresponding to a counterclock-
wise rotation of e; through 90°. We term these “funda-
mental dislocations.” Any dislocation can be composed as
an integer linear combination of these fundamentals.
Note that only four of the fundamental dislocations are
independent, so that the Burgers vector lattice is four di-
mensional, in agreement with the density-wave analysis.
In fact, Eq. (16) picks out exactly the same Burgers vector
lattice as was derived from the density-wave analysis.’

The effect on the ¢, and ¢, the phases of the dif-

n

fraction peaks with wave vectors G, and G, =(1/7)G,
(see Sec. IIB4), induced by a fundamental dislocation is
particularly simple. Let A¢=¢(27)—¢(0). From Egq.
(10) we have A¢g=G-u+G-w. A straightforward calcu-
lation reveals that

A¢g =27P, and Ady, =210, . (17

A variation in the phase of a single spot in the Landau
theory corresponds to a partial dislocation (as in the case
of a periodic crystal). Only one of the ég, or dg, is af-

fected if P;=1 for some i with all other P; and Q; equal
to zero—corresponding to a P-type partial (or Q;=1 for
some i with all other P; and Q; equal to zero—
corresponding to a Q-type partial). A fundamental dislo-
cation can be seen to consist of two P-type and two Q-
type partials. We discuss the nature of these partials in
detail in Sec. V. Every dislocation must contain at least
two partials in {G,} and two in {G}]}. (It is easy to see
that any integer linear combination of the fundamentals
for which Q, =0, Vn also has P,=0, ¥Yn and is therefore
not a defect at all. At least two of the Q’s and two of the
P’s must be nonzero in order to satisfy the constraint on
the sums of the phases in each ring.)

The Burgers vectors and the structure of a dislocation
have simple interpretations in the 5D hypercubic lattice
from which the Penrose tilings can be projected. To see
this we simply compute the vector y(2) associated with
a,(2m) and B,(27) according to Eq. (13). The result is
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that y,(27) is an integer for all n and all Burgers vectors
and that ¥(2)-(1,1,1,1,1)=0 as expected from Sec. III B.
In the hypercubic lattice there is a 3D core perpendicular
to the tiling plane about which the angle 8 is defined. A
dislocation in the projected tiling is obtained by making a
standard dislocation in the hypercubic lattice with a
Burgers vector perpendicular to the (1,1,1,1,1) direction.
This is how Fig. 3(d) was produced. More specifically, in
Fig. 3(d) the 5D lattice points considered as candidates for
projection were R+(6/21)(0,1,0,0, —1).

V. TOPOLOGICAL DEFECTS IN SINGLE GRIDS

The partial dislocations described in Sec. IV correspond
to a change in a single grid, leaving the other four grids in
the pentagrid unaltered. Such a defect is not a full dislo-
cation because restriction (i) (in Sec. IV) is not satisfied.
We have seen that there exist two distinct types of par-
tials, one corresponding to a change which gives P =1,
Q =0, the other having P =0, Q =1.

Since all of our results in this section apply to a wider
class of grids than the Fibonacci grids that compose the
Ammann quasilattice, we have chosen to develop the
analysis for the general case. We study grids of parallel
lines perpendicular to the x axis whose intersections with
that axis are given by

XN =N +a+p lNU+BJ ’

where N runs over the integers, ¢ is an irrational number
between O and 1, p is a nonzero real number, a and S8 are
arbitrary real numbers, and | | denotes the greatest in-
teger function. Note that the quantity xy —xy _j, the in-
terval between successive lines, must take on one of two
values—either equal to 1 or 14+p. The quasiperiodic grid
can thus be thought of as a 1D tiling consisting of two
types of tiles with lengths in the ratio 1:1+p.

The Fourier transform f (k) of the grid defined by Eq.
(18) consists of a dense set of Bragg peaks along the x
direction which can be indexed by two integers, p and g,
and can be derived analytically:?*

(18)

. sin(X),g /2)
f(km)=exp(t¢m)m— )
where
T=1+po,

epg = Eg—(p +q0),
(19)

2
Xpg = “T—(q —pp) ,

2
bp="7-lalp +90)+(B—3)pp—q)] .

Note that the positions of all the peaks can be obtained
as integer linear combinations of two fundamental wave
vectors, the natural choice for these being k,,=27/T and
koi=012w/T)o.

The simplest Landau description of this grid consists of
density waves with these two fundamental wave vectors
only with amplitudes given by Eq. (19). This is, of course,
precisely equivalent to the Landau theory for a conven-
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tional 1D incommensurate smectic which has been stud-

ied in some detail.”* The two degrees of freedom in the

system (derived from the independent phases of the indi-

vidual waves) can be characterized as a phonon field u,

and a phason field w. A uniform change in u corresponds

to a translation of the entire density, i.e., the maxima of

both density waves are translated by the same amount. A

uniform change in w corresponds to a relative shift be-

tween the positions of the two waves that leaves u fixed.

From Eq. (18), it is clear that a plays the role of the

translation variable u, since shifting a shifts all the xy by
the same distance. A uniform change A shifts the phase

bpg bY Adpg=(27/T)(p +q0)Aa=ky,Aa, just as one ex-

pects for a translation. A pure phason (w) variation cor-

responds to a shift in B with a held fixed. A shift in 8
shifts the ko wave by —pAS and the k¢, by +AB/o.

In Fig. 9 we illustrate the effects of uniform changes of

a and B on a grid. Any horizontal line in either part of
the figure intercepts a set of points xy that forms a per-
fect sequence defined by Eq. (18) with fixed @ and B. In
Fig. 9(a), a is made a linear function of y and B is held
constant. In Fig. 9(b), @ is constant and S varies linearly
with y. The breaks in the lines of constant N, henceforth
called “jags,” due to variations in  occur where the value
of No+ B crosses an integer. It is clear from these pic-
tures that a change in a simply translates the sequence of
intervals while a change in 8 causes certain rearrange-
ments of it. It is easy to compute various properties of
the distribution of jags produced by a given AB. For ex-
ample, if B changes monotonically by 1 between two

(VN

®) )

FIG. 9. (a) Effect of linear variation of a on a single grid
(a=cy). (b) Effect of linear variation of B on a single grid
(B=cy). (c) Effect of linear variation of v, on a single grid
(¥, =y). Note that the sequence at y =1 is identical to that at
y=0. (d) Effect of linear variation of y, on a single grid
(y¢=y). Asin (c), the y =1 and y =0 sequences are identical.
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values of y there must be one jag between those y values
for each value of N.

While a and B are the variables most closely related to
the u and w of the Landau theory, it turns out to be more
useful to discuss defects using the variables
vp=[a+(B—+)p)/T and y,=[a0c—(B—+)1/T. Note
that ¢,, can be written in terms of these as

Bpg =2m(Ypp +749) - (20

The significance of y, and v, in the density-wave picture
is obvious: changes in ¥, (y,) correspond to motion of
the ko (ko;) wave with the other held fixed. The impor-
tance of these variables in the tiling case stems from the
following property of the sequence xy: There is a
transformation of a and B, called an umklapp,'?> which
takes xy to xy where xy=xy,,. The set of positions
xy remains unaltered under an umklapp, but the elements
are reindexed. The general umklapp transformation is

Aa=P+Qp, AB=Po—Q, P,QEZ. 21)

The behavior of v, and v, under umklapps is particularly
simple:

Ayp=-rAa+8fp)=P,
] (22)
Ay,= ?(Aaa—AB)=Q .

It follows immediately from this and Eq. (20) that ¢,
changes by an integral multiple of 27 under umklapps.
As expected, the Fourier transform is unaffected.

In Figs. 9(c) and 9(d) we illustrate the effects of linear
variations in y, and y, on a grid. Note that as 7,
changes by 1 each line of constant N must contain exactly
1 jag. (Ay,=1, Ay,=0=AB=—1, which means that
| No+ 8| must change by 1 regardless of the value of N.)
A net change by 1 in y,, on the other hand, produces o
(< 1) jags per line on the average. We emphasize that in
either case the final (y =1) sequence is identical to the in-
itial (y =0) sequence.

A grid containing defects can be described as the set of
points that satisfies the equation x=N +a(x,y)
+p|No+B(x,y)| for some integer N, the basic, undefect-
ed grid being one for which a(x,y) and B(x,y) are con-
stant. Having already seen, in Fig. 9, the effect on a grid
of linear variations of a and 3, we now consider variations
in a and B that are topologically inequivalent to the unde-
fected grid. When referring to a single grid only (and not
an entire pentagrid, say), we will refer to such variations
as dislocations. Recall that such a variation in a single
grid corresponds to a partial dislocation when referring to
an entire pentagrid.

A dislocation at the origin can be constructed by mak-
ing a and B smooth functions of the polar angle 6 and re-
quiring that the sequence formed at 6=0 be equivalent to
the sequence at 8=2m; i.e., these two sequences must be
identical up to umklapps. There are two simple ways to
meet this condition, one by choosing a(6) and B(€) such
that y,(27)—v,(0)=P and y,(6)=const, the other such
that y,(27)—7,(0)=Q and y,(0)=const. Figure 10 il-
lustrates these two types of defeects for the cases (a) P =1

FIG. 10. (a) A P-type dislocation in a single grid. Note the
presence of an extra half line in the top half of the picture, ter-
minating at the core. (b) A Q-type dislocation in a single grid.
In this case there is no extra half line. Nonetheless, this defect
is topologically stable.

and (b) Q =1. We call these P-type and Q-type disloca-
tions, respectively. From Eq. (20) we see that in the P-
type dislocation, the phase ¢, of the k;y peak changes by
21 as a path enclosing the origin is traversed, while the
phase @, is unaffected. Similarly, in the Q-type disloca-
tion, @y, changes by 27 while ¢,¢ is constant.

There is a significant difference between the P-type and
Q-type dislocations as they appear in the discrete grid pic-
ture. This difference is due to the fact that the ko, has a
different kind of source from that of the k,, peak. The
positions of the grid lines given in Eq. (18) can be reex-
pressed as

xy=NT+a+PBp—p

(4 1
T(NT+a+Bp)— T(aa—B)}

b

AN +7,) D)~ + 5z

- P _
=T(N+y,)+5—p T

(23)

where {x] is the fractional part of x, and y,, y,, and T
are defined as above. The first term in this expression in-
creases steadily with N, while the last simply varies be-
tween O and 1.

In this form the quasiperiodic grid is conveniently in-
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terpreted as a periodic grid of lines with period T (the
first term) modulated by a periodic function with period
T /o (the last term). The k, peak (period 7) is associat-
ed with the periodic grid itself, while the k,, peak (period
T /o) is associated with the modulation of the grid. In
the pictures of the two types of dislocations (Fig. 10) this
difference has an immediate and visible consequence. The
P type involves the removal (or insertion) of half a line in
the grid, while the Q type contains only jags with no extra
half line. This difference can also be traced to the fact
that a P-type umklapp reindexes the lines in a grid while
the Q-type one does not.

The distribution of jags in a pattern with a dislocation
can depend on the specific form chosen for y,(6) and
74(0). For example, if one of these is a linear function of
6 and the other a constant, the dislocations pictured in
Fig. 10 result. In general, as a circle of radius r about the
origin is traversed, a net change in 8 occurs whose value is
determined solely by the topological character of the de-
fect. (AB=1 in the Q-type case and AB=o in the P-type
case.) Since this change is independent of the value of 7,
the average number of jags at a given radius is also in-
dependent of 7.2’ The density of jags therefore goes like
1/r and the total number of jags like L, where L is the
length of the system. In any local region, the density of
jags is proportional to the gradient in B or, equivalently,
the gradient in the phason field w. If we associate a finite
energy with each jag (which, it may be recalled, is associ-
ated with a mismatch in the Penrose tiling), then there is a
contribution to the energy of a dislocation that is propor-
tional to | | Vw | <L, where the integral is over the sam-
ple. This result from the unit-cell description differs from
the standard elasticity result which predicts a phason con-
tribution proportional to f (Vw)?«<InL. See Sec. IIC for
a more complete discussion of the physical significance of
these results.

VI. CONCLUSIONS

The principal goal of this paper has been to relate the
unit-cell and density-wave descriptions to form a unified
theory of quasicrystal structure. Some remarks are in or-
der concerning the relation of this work to current experi-
ments. While the nature of defects in quasicrystal tilings
is an interesting subject in its own right, the authors were
also motivated by the possible relevance of this analysis to
the recently discovered icosahedral phase of Al-Mn and
related alloys. In this regard, the most important result of
the analysis is a clearer understanding of the nature of
phasons in quasicrystal structures. Whereas previous
treatments of incommensurate systems considered
phasons only as relative shifts in the phases of incom-
mensurate density waves, we now have a microscopic (or
atomic) model of phasons in quasicrystals.

In terms of density-wave images (or, equivalently, elec-
tron micrographs), we have shown that a spatial variation
in the phason variable results in jags in the lines connect-
ing the high-density regions, whereas variations in the
phonon variable produce curvature without jags in the
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lines. This result has immediate experimental relevance
since many electron micrographs of the icosahedral phase
of Al-Mn and related alloys show the jags (without curva-
ture),!’ representing clear evidence of quenched strains in
the phason variable. In terms of the unit-cell picture, we
have shown that spatial variations or strains in phason
variable correspond to special rearrangements (without
distortion) of the unit cells and that such strains can relax
by local rearrangements of the unit cells. We have dis-
cussed two plausible descriptions of the dynamics of
phason relaxation, both of which involve local diffusion
of atoms. Since diffusion is very slow compared to pho-
non relaxation, processes such as dislocation motion and
annihilation or relaxation of phason strains take place
over long time scales.!® These observations also answer
one of the criticisms of the quasicrystal model which sug-
gests that mismatches produced during rapid aggregation
of unit cells may inhibit quasicrystal growth. Such
mismatches correspond to phason strains which do not
represent a significant impediment to quasicrystal growth
since their energetic cost is small and they can relax in a
smooth way through local rearrangements of atoms.

These results may be useful in explaining several experi-
mentally measured properties of rapidly quenched
icosahedral phases that deviate from the predictions of the
ideal quasicrystal model. If phason relaxation is a slow
process, as we have argued, then it might be expected that
phason strains would be quenched when the samples are
rapidly solidified. The fact that jags are observed in elec-
tron micrographs is direct evidence supporting this hy-
pothesis. (The variation in the phonon variable should re-
lax quickly to its equilibrium value in the presence of the
phason strain. The absence of significant curvature in the
electron micrographs suggests that the elastic constant
coupling phonons and phasons is small.) Strains in the
phason variable can also produce intrinsic broadening of
the diffraction peaks which does not vary uniformly with
wave number.”® Broadening that varies nonuniformly
with wave number has been observed in x-ray powder dif-
fraction.?® Furthermore, anisotropic strains in the phason
variable have been shown to produce nonuniform shifts
and anisotropic broadening of the diffraction peaks, as
might be observed in electron diffraction experiments.?
Recently, such nonuniform shifts have been observed in
careful measurements of low-intensity diffraction peaks in
the icosahedral phase of rapidly quenched alloys.?®%*
Thus, the quasicrystal model for the icosahedral phase,
which naturally predicts slow relaxation of phason strains,
leads to a simple explanation for a number of different ex-
perimental observations.
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FIG. 1. hite dot is placed at all
points r where the value of p(r) exceeds + of its maximum
value. (a) A perfect pattern with 3 éa, =0. (b) A distortion of
pattern (a) corresponding to spatial variations in the phonon de-
gree of freedom u. (c) A pattern containing variations in the
phason degree of freedom w about the value used in pattern (a).
(d) A dislocation. Note that both phonon variations (curvature)
and phason variations (jags) are present.
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FIG. 2. Density-wave images. (a) A perfect pattern with

varies linearly from

0.3. (b) A pattern in which ¥, ¢g
zero on the left to 0.5 on the right. Variations in 3 ¢ corre-

S do,

n

spond to variations in local isomorphism class in the unit-cell

picture.
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FIG. 3. Penrose tilings. (a) A portion of a perfect Penrose til-
ing. The shaded unit cells compose a segment of a “worm.” (b)
A distortion of the tiling of (a) corresponding to variations in
the phonon degree of freedom u,. The unit-cell shapes are dis-
torted, but their arrangement is the same as in (a). (c) A tiling
containing variations in the phason degree of freedom w, about
the value used in (a). The shaded rhombuses form a flipped seg-
ment of a worm. [Compare to same region of (a). For more de-
tails on worm flips, see Fig. 5.] The large dots at the ends of the
shaded segment indicate edges along which the Penrose match-
ing rules are violated—deviations from the Penrose local iso-
morphism class. This picture contains several other such
mismatches and flipped worm segments. To find them, use Fig.
4 as a guide. (d) A dislocation in a Penrose tiling. At large dis-
tances from the core the distortion of the unit cells and the den-
sity of mismatches both become small, although neither can be
completely eliminated.
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FIG. 5. Illustration of a “worm” in a Penrose tiling and its
signature in the Ammann quasilattice. An open circle indicates
a type of vertex that is never found in undefected tilings of the
Penrose local isomorphism class. The right (left) half of the
broken Ammann line can be shifted up (down) to restore the
ideal quasilattice in the region depicted. The consequent re-
arrangements of the intersections of the Ammann quasilattice
cause the right (left) half of the worm to flip when the general-
ized dual technique is applied. The worm segments depicted
below are decorated to illustrate the Penrose matching rules.
The rules are that two tiles can join only along edges which have
the same color arrow pointing in the same direction. The seg-
ment on the right corresponds to the shaded segment above,
where the rightmost hexagon (formed from one thick and two
thin rhombuses) has been flipped, causing a matching rule viola-
tion (indicated by the single arrow). If the middle hexagon were
now flipped to relieve that mismatch, a mismatch would arise
along the edge indicated by the double arrow. Note, however,
that the top and bottom of the hexagon are decorated in the
same way, so that no other mismatches would arise.



