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A short-range model for the %'(001) reconstruction phase transition is presented and its properties
are analyzed by means of a Monte Carlo calculation. The latter determines ordering properties as
well as properties that reveal the local character of the atomic displacements, including the integer-

order diffraction beams and distributions of displacements. New measurements of the behavior of
the integer beams through the transition are also presented and interpreted in terms of the simula-

tion results, The question of the character of the transition, displacive or order-disorder, is dis-

cussed from the perspective in which those two possibilities are limiting cases. Variation along this

spectrum is determined by important physical characteristics of the electronic driving force. Impli-
cations of our results for the proper understanding of the Debye-%'aller behavior of W(001) and for
measurements of critical exponents in this system are also discussed.

I. INTRODUCTION

Although tungsten is not a material of unusual techno-
logical iinportance, and its surfaces do not seem to have
significant potential for catalysis or interesting surface re-
actions, there have been an amazing number of studies of
its (001) surface especially. (For a summary of this work
see Refs. 1—3.) This great interest has been sparked most-
ly by the subtle reconstruction phase transition exhibited
by this surface, which has encouraged the testing of new
theoretical and experimental techniques on a very chal-
lenging, almost notorious, problem.

Notwithstanding this great dedication, progress toward
an understanding of the driving force for the reconstruc-
tion and toward agreement on the nature of the phases
and transition has not been rapid. Recently, however, at
least the former issue seems to have been clarified. ' The
suggestion of Terakura et al. (based on parametrized
tight-binding calculations), that the mechanism involves
states throughout the d band and amounts to a very
short-range driving force, has been borne out by more so-

phisticated, first-principles, total-energy calculations. '

Simultaneously, consensus is emerging regarding the
character of the transition and high-temperature (HT)
phase (the earlier controversy —not yet entirely
resolved —and the current picture will be outlined below)
and these are consistent with qualitative expectations for a
short-range driving force and simulation results based on
a simplified model. Thus it now seems appropriate to ex-
tend the study of Ref. 7 to a model with the full symme-
try of the surface allowing: (i) further clarification of the
nature of the transition and HT phase; (ii) direct confron-
tation with new experimental studies using low-energy
electron diffraction (LEED)—also included in this
paper —af the long-range order and local disorder of the

surface atom displacements; (iii) determination of sensi-
tivity of measurable parameters to variation in model pa-
rameters; and (iv) quantitative study of perturbations of
the systein due, for example, to adsorption, s' ' or to the
presence of uniformly spaced, oriented surface steps. "
The present study, including the following paper, ad-
dresses these issues by means of a Monte Carlo simula-
tion, which is used to calculate quantities appropriate for
full characterization of the phases throughout the tem-
perature range of interest and for elucidating the energet-
ics of the transition.

A. Nature of phases and phase transition

The character of the clean, reconstructed phase (to be
denoted LT, for low temperature) was first deduced by
Debe and King' ' on the basis of an elegant symmetry
argument, and later verified by Barker et al. ' using
dynamical LEED calculations. The surface layer atoms
displace along the diagonal directions in the surface plane,
exhibiting long-range c(2&& 2) order as shown in Fig. 1(d).
The most extensive LEED study to date, that of Walker
et al. ,

' gives a displacement magnitude at temperature
T =200 K [T,=210 K (Ref. 14)] of 0.16 A, in good
agreement with the calculation of Fu et a/ which for th.e
same structure finds a total energy minimum at displace-
ment magnitude uo ——0.18 A. ' [The correspondence is
further improved by the implication in our model calcula-
tion that the average displacement magnitude should de-
crease between T =0 (total energy minimum) and the vi-
cinity of the phase transition. ]

The characters of the phase transition and HT phase
were initially controversial, although some convergence
has now occurred. Debe and King' initially suggested
that the transition has order-order character and the HT
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FI(y. 1. Possible (001) surface displacive ordered states of (a)—(c) p (1 X & ) and (d)—(e) e (2 X2) character. Designations "diag" and
"axis" refer to the orientation of the displacements.

phase has p(1X1) bulk termination character [Fig. 1(c)j
with displacement magnitudes typical of thermal vibra-
tions at the appropriate temperature. (At room tempera-
ture one might estimate a root-mean-square amplitude of
p,„~=0.07+0.02 A. ) King~ has recently summarized
the arguments for this view, and mentions another possi-
ble ordered form for the HT phase, that of Fig. 1(b), first
mentioned by Debe and King. ' A third ordered possibili-
ty, that of Fig. 1(a), was suggested by Walker er al. 's

Barker and Estrup, on the other hand, have suggested a
disordered character for the HT phase in which individual
atoms retain displacement amplitudes comparable to those
below T„butlose long-range order.

It has been realized for some time from related work in
the theory of structural phase transitions ' that for a
short-range driving force the HT phase must have disor-
dered character in the immediate vicinity of the transi-
tion. ' "Vicinity of the transition" means the tempera-
ture range where the correlation length g of c(2X2) fluc-
tuations remains significantly greater than the W lattice
constant.

Well above T, (including room temperature) theoretical
indications are lacking and experimental evidence is diffi-
cult to interpret conclusively (see below), so the situation
is less clear. The important characteristics of local disor-
der in terms of theoretical impact are (i) the mean-square
amplitude, (ii) degree of short-range correlation, and (iii)
the details of the distribution of displacements, which
varies between the displacive limit —Gaussian distribution
of width typical of thermal displacements —and the
disordered limit —a highly anharmonic distribution with
well-localized maxima at displacement magnitude similar

to that in the low-temperature (LT) phase not too far
below T, . In this temperature regime the various
viewpoints' ' ' are not too well defined, but signifi-
cant differences probably remain with Refs. 1 and 2
favoring the displacive picture and Ref. 22 inclining to-
ward the disordered picture. Unfortunately, these differ-
ences are of considerable consequence for both theory (see,
e.g., Ref. 26) and interpretation of experiment. In fact,
the lack of firm experimental evidence for the character
of the HT phase, which bespeaks the limited ability of
most probes to determine the degree of local disorder on a
surface, is due in large part to that consequence. We illus-
trate this point by briefly discussing the sensitivity of
various popular surface techniques for determining the
degree and nature of structural disorder.

B. Experimental sensitivity to disorder

There are several dynamical LEED studies of the HT
phase (a list appears in Ref. 21). Although the energy
dependence of diffraction peak intensities is, in principle,
sensitive to disorder, the technique fails in practice due to
the difficulty of calculating comparison spectra for disor-
dered models. The direct approach is unfeasible due to
lack of symmetry, and the only alternative technique for
handling disorder is suitable only for Debye-Waller-
type, i.e., fully uncorrelated, Gaussian-distributed disor-
der.

There are also recent studies ' of the surface 4f&zi
core levels. Beginning in the HT phase the shifts of these
levels attendant upon H-adsorption to produce the
c(2X2)-H phase, and upon cooling into the LT phase
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were measured. The shift is one-third as large in the case
of the latter. Interpretation of these shifts is, however,
subtle, requiring first a structural model (presumably con-
taining appropriate disorder) and then accurate calcula-
tion of the local density of states. (We note in passing
that the smallness of the measured shifts between the HT
and I.T phases could not be reconciled in Ref. 28 with
model calculations. This may have been a consequence of
the assumption of an ordered, undisplaced HT phase. As
the core levels are sensitive to the local environment of the
atom, one expects that the assumption of a disordered HT
phase, if the calculations could be carried out, would have
led to a smaller shift. )

One faces the same intrinsic difficulty in searching for
evidence of disorder in measurements of occupied states
nearer the Fnmi level. i'3 Calculating surface band
structures is challenging enough for fully ordered struc-
tures. Incorporation of reahstic surface layer disorder in-
volves an intractable loss of symmetry. (Campuzano
et al. ' have suggested that a significant degree of disor-
der would smear out surface states near M, although to
the present authors' knowledge, the effects of disorder on
this scale—about 5—7% of the lattice constant —have not
been investigated. }

Work-function changes have also been measured, ' ' i

but the variation is small and is not concentrated near the
transition. In any case, the connection to surface disor-
der is unclear.

Ion scattering' is directly sensitive to surface layer dis-
order, but interpretation requires a simulation in which
the details of the disorder, i.e., the degree of correlation
and the shape of the displacement distribution, obviously
play a role. Significantly, the study of Stensgaard
et al. indicates that there is little difference in the num-
ber of displaced atoms between the HT and c(2)&2)-H
phase and in the latter all the atoms in the surface layer
are thought to be displaced.

Diffraction measurements throughout the surface Bril-
louin zone do offer information on the order of intermedi-
ate range, and as pointed out by Debe and King, '6 the
temperature dependence of the integer beams is related to
local disorder, although, as pointed out in Refs. 22 and 33
and established in detail in the present work, existing
analysesz' are not adequate. Multiple scattering, of
course, complicates detailed study of disorder by this ap-
proach.

The above catalog establishes both the importance of
accounting for disorder in interpreting experiments and
the (related) difficulty of experimentally characterizing
the disorder. However, the last mentioned approach does
seem to hold some promise. Thus, a main part of the
present work is devoted to new measurements of the tem-
perature dependence of diffraction intensities throughout
the Brillouin zone, including the background and integer-
beam intensities, and a careful analysis of these variations
in the kinematic approximation. Our study establishes
the experimental basis for a disordered HT phase. In ad-
dition, by establishing the sensitivity of the character of
the HT phase to some aspects of the physics of the driv-
ing force, we offer some indications concerning the latter.
We also find that the Debye-Wailer factor behaves

anomalously for this system, this having implications for
critical exponent studies. ' By introducing a very general
short-range, small-displacement model we also can assess
the effect of perturbations due to low coverage adsorp-
tion ' ' and reduce the parameter space of such models
by (rigorous) elimination of the T =0 displacement mag-
nitude as an independent variable. Finally, we also model
the effect of oriented steps on the transition. This study is
presented according to the following outline.

In Sec. II the general short-range interaction, small-
displacement model is introduced and analyzed qualita-
tively. Two sets of choices for model parameters, meant
to be representative for the range of possibilities for the
actual system, are given. In Sec. III we describe our
Monte Carlo code and the "observables" it calculates. In
Sec. IV we display our Monte Carlo results for the
behavior of both models over an extensive temperature
range, T=0 to T=3T,. In Sec. V the experimental re-
sults are presented and discussed in the context of model
simulation results. The anomalous Debye-Wailer varia-
tion is also noted there. In Sec. VI we present our con-
clusions and discuss the limitations of this work. The fol-
lowing paper extends the study to assess the effects of per-
turbations due to low-coverage adsorption and oriented
surface steps. Some further aspects of our study pertain-
ing to the total energy-surface atom and a comparison
with first-principles calculations have been included in
another work.

II. SHORT-RANGE MODEL

Our model for the energetics of the W(001) reconstruc-
tion has been described before, ' but appears in more gen-
eral form here. The model is two-dimensional with the
energy written in terms of ( u; ), the displacements in the
surface plane of surface layer W atoms. In the real sur-
face the motion in the direction perpendicular to the sur-
face does not exhibit c(2X2) order. There may of
course be a relaxation of the entire layer inward or out-
ward, and there will certainly also be vibrational motion
in this direction. However, neither of these affect either
the character of the transition or that of the ordered
phase, and therefore we have not included z-component
displacements in our model.

The model includes short-range interactions between
nearby surface W atoms and a local potential for each W
atom which can be thought of as arising from underlaying
layers in the crystal. The evidence for a short-range driv-

ing force is summarized in Refs. 1, 7, and 9. The local
potential is discussed in more detail below. In this section
we introduce these two contributions to the Hamiltonian
and develop a convenient set of parameters using the sym-
metry of the surface to restrict their number as much as
possible.

A. Interaction terms

It is convenient to describe the short-range interactions
in terms of (2 X 2) dynamical matrices:



L D. ROELOFS AND J. F. %ENDELKEN 34

B. Local terms

J)+It. )
4(+ai)= J) —X) (2.2a)

4(+az) must also be diagonal, and by noting that fourfold
rotations connect 4(ai) and 4'(az) we find that

@(+a~)= J)+E] (2.2b)

Thus the nearest-neighbor interaction can be seen to be
the sum of two parts: a dot-product term

J) 0
4J(+ai) =4J(+ay) =

() 1

(2.3a)

and a twofold term,

(2.3b)

We defer the detailed discussion of the character of these
terms to Sec. II C. The NNN interaction can be similarly
restricted and decomposed into

and

J2 0

0 2
(2Aa)

0 E2
@x(+(ai+a2))= —+x(+(ai —a2)) = ~ (), (2.4b}

2

where Eq. (2Aa) is evidently another dot-product term,
while the more complicated Eq. (2Ab) will be discussed in
Sec. II C.

Thus, the most general form for NN and NNN pair-
wise interactions on this surface is seen to be describable
in terms of only four parameters, J„Ki,Ji, and Kz as
defined in Eqs. (2.3) 8Ill (2.4).

where (ij ) i denotes the set of nearest-neighbor (NN) pairs
of sites and (ij )2 the set of next-nearest-neighbor (NNN)
pairs. The vector R; is the location of bulk termination
site i Th. e sums on a and P range over the x and y com-
ponents. We take the basis vectors of the surface to be
ai ——ax and a2 ——aP so that the NN dynamical matrices
are 4(+ai) and 4(+a2}, and the NNN dynamical ma-
trices are 4(+ai+az). The square symmetry of the sur-
face restricts the forms of these matrices. Consider first
the NN dynamical matrix 4(ai). Off-diagonal elements
may not appear in this term since a surface with just this
term has a mirror plane in the y direction. The transfor-
mation u~~ —u~ for all i changes the sign of off-
diagonal terms, which therefore must vanish. For later
convenience we thus take

including all possible terms up to fourth order in the dis-
placements. The restoring forces, i.e., the fourth-order
terms, are put in V since the second-layer atoms, being the
closest, are the most responsible for the repulsive stabiliz-
ing force.

C. Ordered states and the effect of the interaction terms

It is useful to begin by examining the angular depen-
dence of V. Let 8; be the angle relative to ai (see Pig. 1)
made by u;. Then we can separate the last term in Eq.
(2.S} into a contribution independent of 8; and one which
describes the variations of V versus 8;. Then Vbecomes

V( u; ) = —,Au; + —,
'
Bu; ——, Vq u; cos(48; ), (2.6)

where 8 =B+—,Cand V& ———4C.3 1

The total Hamiltonian H =HI+ V [Eqs. (2.1) and (2.6)]
is general in that it is appropriate for any surface of
square symmetry with short-range interactions, at most
small displacements and a relatively inactive bulk. De-
pending on the values of the parameters (which could in

principle be extracted from a sufficiently accurate, first-
principles total-energy electronic structure calculation)
many possible behaviors ranging from a nonreconstructed
ground state to incommensurate phases can be realized by
this model. The former occurs, for example, when A is
positive and sufficiently large (see below) to dominate the
J and j' interaction terms. %e are more interested, how-
ever, in parameter choices that lead to a reconstructed
ground state.

With the local potential of Eq. (2.6) it is clear that one
of two possible sets of displacement directions must be
favored, I0, n/2, n, 3m/21 (axis. ) or tn/4, 3m/4, Sn./4,
7m/41 (diag), the former if V4 )0 and the latter if V4 &0.
The other two terms of (2.6) and the J-type interaction
terms, Eqs. (2.3a) and (2.4a) are independent of absolute
angle. The remaining interactions, Eqs. (2.3b) and (2.4b),
are also consistent with either of the above sets, and so all
possible fully ordered states can be constructed with dis-
placements chosen either along the axes or along the diag-
onals. These states are tabulated in Figs. l and 2, carry-
ing in each case a designation of "diag" or "axis" as ap-
propriate. The interactions must determine the character
of the order that develops. Table I displays this connec-
tion. The designation "un" denotes "uncoupled, " i.e., the
interaction makes no contribution to the ordered-state en-

ergy. "Favor" indicates that the energy of the particular
ordered state decreases in proportion to the strength of the
associated parameter and "oppose" denotes the reverse.

A second necessary ingredient in our model is a local
term which can be thought of as arising from the interac-
tions of an individual surface atom displacement with the
underlying layers of the W crystal. Again we begin by
determining what sorts of terms are allowed by symmetry.
The local terms have the symmetry of the undistorted sur-
face so that we can describe the local part with complete
genera1ity:

(2.S)
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(a} p{ 2 2} diag {s)

(c } p( 2 2) diag (r )

(b) (2*1) slide

(d} {2 1} diiner

so that the latter term is responsible for driving the transi-
tion. Although this choice appears somewhat arbitrary,
taking one or more of J2, II}.&, and E2 to be nonzero
would not change the qualitative aspects of the transition
so long as they are not comparable in magnitude to Ji (see
next paper).

This is not to suggest that the terms J2, E~, and K2 are
not important. We have previously noted '0 that the ef-
fect of an adsorbate at low coverage on the transition can
be understood as a variation proportional to the adsorbate
coverage of these terms. For example, bridge-site adsorp-
tion increases Ji, and tends therefore to enhance the
reconstruction. ' On the other hand, adsorption into the
hollow site leaves Ji unaffected but increases Ji, K„and
Ki in the positive direction. ' In Ref. 10 it was suggested
that an increase in Ji opposes the c(2X2) order, while
the increases in Ki and Kz would have little effect due to
the absence of coupling. The following paper verifies
these suggestions and also demonstrates via explicit simu-
lation that including J2, K&, or E2 in the model up to a
strength of —,

' J, does not alter the character of the transi-
tion. Meanwhile it seems safe to base a qualitative study
of the transition on the choice J i )0, Jp Ki ——Kp————0.

FIG. 2. Possible (001) surface ordered states of (2X1) and
(2)&2) character. States (a) and (c) can be experimentally dis-
tinguished via the glide plane present only in (c). The designa-
tions s and r denote "squeeze" and "rotate. "

As we wish our model to describe clean W(001) which
has c(2X2)-diag character at low temperature, we clearly
must choose J, —Ji to be positive and the other parame-
ters, Ki and Ei, not to be large in magnitude, since they
tend to induce ordered states of incorrect character. The
states induced by @x (NNN) (in the unlikely event of it
being dominant over the NN interactions) are like those
induced by Cx (NN) (hence our notation which em-
phasizes their similar character) except that they occur on
one c(2X2) sublattice of the surface. They thus have
2(v 2X2v 2)R 45' and (v 2X2v 2)845' symmetry.

The model whose study is the main subject of this pa-
per has been chosen to have Jz ——Ki —Ki ——0 and Ji—& 0

D. Parameter choices for the local potential

We must still specify the parameters of the local poten-
tial and here one might expect the choices to have a more
significant effect on the qualitative character of the tran-
sition and HT phase.

For example, there is first the question of whether there
are wells in the local potential at nonzero displacement.
This would occur if A were chosen to be negative in Eq.
(2.6). Note that 8 must in general be positive to keep the
individual u;s bounded. In terms of physical implications
this would mean that a significant part of the driving
force of the reconstruction arises from coupling between
electronic states in the surface layer with those in the
second and deeper layers. There is some experimental evi-
dence from photoemission studies ' supporting an effect
from coupling to the second layer. A surface resonance
which crosses the Fermi energy near the point (m/a, rr/a).
in the surface Brillouin zone was found to be even with

TABLE I. Coupling between order of various types and the interactions included in the model.
"diag" and "axis" refer to all possible fully ordered states that can be constructed with displacements
chosen either along the axes or the diagonals. "un" denotes "uncoupled, " i.e., the interaction makes no
contribution to the ordered-state energy. "Favor" indicates that the energy of the particular ordered
state decreases in proportion to the strength of the associated parameter and "oppose" denotes the re-
verse.

p {1 & 1) e (2g 2) p (2)(2)diag( s) p (2 &(2)diag( r) (2 ~ 1)slide (2 g 1)dimer

4J(NN) Jl &0 favor
J& ~0 oppose

x, go
Kl )0

J2 ~0
J2 &0

oppose
favor

favor
oppose

un

oppose
favor

oppose
favor

favor

oppose

oppose
favor

favor
oppose

oppose
favor

oppose
favor

oppose
favor

4g(NNN) I{ 2 ~0
I%'2) 0
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TABLE II. Parameter choices for two models.

4
5 v3

respect to reflection through the mirror place containing
the displacement direction. A state of even symmetry
would couple more readily to an atom in the direction of
the nearest second-layer atom than to the nearest surface-
layer atom.

Inglesfield, ' however, points out that most theoretical
studies emphasize the importance of a band of states of
odd symmetry [which cross the Fermi level closer to
(m /a, tr/a) in theoretical studies ' than in experi-
ment ' 2] which would be more consistent with interac-
tions between surface layer atoms. It seems relevant to
add, on the other hand, that the recent calculation of Fu
et ttl. demonstrates a "bonding enhancement between
surface and subsurface atoms, " that Ohnishi et al. ex-
plicitly display states involved in significant bonding be-
tween first- and second-layer atoms, and that the observed
inward relaxation of the surface layer, ' also suggests an
interaction with the second layer.

If interactions with the second layer are not significant,
the local potential should be taken to lack wells at finite
displacement and would provide only a restoring force.
Clearly this choice may affect the local character of the
phases, and might even cause a difference in transition or-
der.

Given the present uncertainty, to delineate sensitivity to
this characteristic we have adopted two choices for the
parameters of the local potential. These choices we term
models I and II and they are given explicitly in Table II.
Model I has a local potential with minima at finite dis-
placement and is shown in Fig. 3(a). Model II lacks wells

[see Fig. 3(b)], but retains the anisotropy favoring diago-
nal displacements required by experiment.

E. Eliminstion of uo

The model as it now stands has four parameters: Ji, A,
B, and V4. It is possible to reduce the number of in-

dependent parameters to two without further approxima-
tion by noting that tto, the equilibrium zero-temperature
displacement magnitude, serves only as an integration
scale factor in statistical averages. We are currently con-
sidering the Hamiltonian:

H= Ii g u; u +g —,Au;+ —,'Bu;
&ij&I

——, Vstt; cos(48;) .

We note first of all that H has the symmetry

H( —V4) =H( V4),

since changing the sign of V4 and rotating all the u s by
45' brings H back into its original form. We can thus

FIG. 3. Plot of assumed local potentials for {a) {top) model I
and {b) {bottom) model II. V{u„,u„)is represented by the verti-
cal direction and the square beneath each plot is oriented with
its edges along the (100) and (010) directions.
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take V4 to be negative, favoring diagonal displacements
without loss of generality. H is also invariant with
respect to the usual ferromagnetic-antiferromagnetic
transformation, in which we take u;~ —u; for all i on
one c (2X 2) sublattice and simultaneously change the sign
of J, . Thus the model needs to be studied for only one
choice of sign for Ji, which we shall take to be positive,
favoring the order of Fig. 1(d). It is worth emphasizing,
however, that because of the above two symmetries, our
study has a broader application than just to the transition
between the LT and HT phases. For example the same
surface with H coverage in the range (0.11—0.25) exhibits
an ordered phase like Fig. 1(e}, describable by the same
model but with V4 &0. Thus our study can be readily ap-
plied to that case. Another case would be the disordering
of a uniformly displaced phase such as that of Fig. 1(a) or
1(b). Such structures have recently been proposed for the
clean Pd(110) surface (rectangular symmetry) and for the
H/W(110) system (centered rectangular symmetry). is

Next we take advantage of eliminating the length scale.
The zero-temperature equilibrium displacement uo is ob-
tained trivially from Eq. (2.7) as the (uniform) magnitude
of displacements that minimizes the energy. In conse-
quence of our choice of signs for Ji and V4 we choose
c (2X2) displacements in the diagonal direction, and find
the energy per site to depend on the displacement u as fol-
10%vs:

1 (4Ji —A)
Ep ——E(uo) = ——

4 8+2V4

= ——,(4Ji —A)uo
l 2 (2.11a)

2= —Jiuo(1 r)— (2.11b)

where r = 3/4
~
Ji

~

.
Another expression for Ep is

Ep ————,
' (8+2V, )u(~)

= ——,&uo(1 —s) (2.11c)

where s =2
~

V~
~

/8. (We have defined r and s to refiect
the symmetries V4~ —V4 and Ji ~—Ji.) Equation
(2.10) reveals conditions on the parameters that must be
respected in order for the model to display the phenomena
attributed to W(001). First, to have the reconstruction at
all we require 4

~
J,

~

—A &0 (r &1). To keep the indivi-
dual displacements bounded we require 8 ~ 0 and
8 —2

~
V4

~
&0 (0&s & 1). The partition function, which

we write here for a system with E sites, is

Z =f d ui f d u2 f d uz exp[ —(1/kT)H],

(2.12)

E(u)= —2Jiu + —,'Au + —,'Bu + —,
'

Vqu

so that the minimum occurs at

(2.9)
with H as in Eq. (2.7) and k and T being Boltzmann's
constant and the temperature, respectively, and indeed any
observable can be written in the form of such an integra-
tion. It is advantageous to change variables in this in-
tegration to a dirnensionless length variable

up ——[(4Ji —A)/(8+2Vg)]'~

The energy per site at u =up is

(2.10)
wi ui/up ~

so that

(2.13)

2 N 2 2 . . . 2 1Z=(up) d wi d wz d wN exp — Jiuo g w;.wj+ —,
'

Anode w;+ —,'Bup g w;
&J&,

——,
'

V4uo gw; cos48; (2.14)

Using Eqs. (2.lib) and (2.11d) we find

Z —up' f dew f d2 . . . fd2, g w,"w.+ gw2+ gw; [1+scos(48;)]
kT

L

=uo d wi d w2 . . dew~exp. —:g w w+2rgw +2N 2

(lj ) I

g w; [1+scos(48;)], (2.15)
l

kT(1 —r) kTT— 2
( —Eo) Ji up

Inspection of Eq. (2.16} reveals that we have reduced the
number of independent parameters to two (r and s), by
scahng the temperature according to Eq. (2.16) and
pulling the length-scale factor out of the integral. This
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means that a study of the Hamiltonian for one choice of
the original four parameters can be trivially extended to
all other choices of parameters that are consistent with
the same values of r and s (Table II also lists the values of
r and s for our models I and II). For example, our study
of model II thus can be applied to any choice of model
parameters that satisfy the relations 3 =

~
Ji

~

and

V4 ——+ —58. One merely adjusts the temperature scale in

accord with Eq. (2.16).

III. MONTE CARLO CALCULATION

In this section the particulars of the Monte Carlo calcu-
lation are given. We use the standard Metropolis algo-
rithtn. This method has been applied most often to sys-
tems whose fundamental degrees of freedom are
discrete, but has also been used less frequently in the
continuous case. ' ' Since the method is well-proven and
fairly standard, we describe only the observables calculat-
ed and our choices for lengths of runs, etc.

A. Monte Carlo parameters

Except in our study of the effect of steps on the transi-
tion, we used periodic boundary conditions. The sizes of
lattices studied were 12)(12, 24)&24, and 48&(48. The
length of runs varied since we were interested in the
behavior not only close to the transition, where conver-
gence times are long, but also well away from T„where
they are comparatively short. Typically in the latter case
we used 5000—20000 move attempts per surface atom
(hereafter simply "MC steps" for Monte Carlo steps), and
near T, we used 40000—100000 MC steps. In all cases
we discarded the first 10% of the MC steps to allow for
equilibration. For both our models uo has the value V 3.
To ensure that the W(001) atoms could move between the
minima in the potential, we considered separately random
but simultaneous changes in u;„and u;s uniformly distri-
buted in the interval [—2.5,2.5]. Under these conditions
the rate of acceptances of the changes was about 17, 22,
and 29% at 10% below T„T„and10% above T„
respectively, in the case of model I. The rates were com-
parable for model II, but slightly smaller below T, . The
execution time per MC step on a 24)&24 lattice including
calculation of observables every tenth step was about 0.3
CPU (central processing unit) seconds on a CDC Cyber
175.

B. Averages

During a Monte Carlo " experiment'* one can calculate
average values for any observable expressible in terms of
the configuration of the system. In order to compare our
model with experiments on W(001) we have determined
the average values and variances of several energetic and
ordering observables of our model.

Order parameters and half order-
(kinematic LEED features)

The kinematic LEED intensity at point k=(k„,kr) of
the surface layer atoms is

I(k)=
( g exp —ik (R;+u; )

+exp( —ik R;)exp( —ik u;)
)

.
~ ~

~

(3.1)

(3.2)

(3.3)

X 5i, G+ k g u; exp( i k—R; ). 2

l

—)Ppx u g (k u;)
)

.
l

(3.4)

Equation (3.4) is valid to second order in (k u;). G
denotes a reciprocal-lattice vector of the undistorted sur-
face.

The half-order LEED features occur
k(i (tria, ——+tria). Define

at

v =g u; exp( i ko R—; ) . (3.5)

(v is a real vector since the phase factor only takes on
values +1.) Then

I(ko )=((~'/a')(u„+uy)'),

I(k, ) =((~'/a')(u„—u, )') .

(3.6a)

(3.6b)

Thus to compare half-order LEED intensities with experi-
ments we calculate the thermal averages ((u„+ur) ),
((u„—ur) ), and their variances. I(ko ) is nonzero in the
ordered phase when the displacements are along the [110]
direction and I(ko ) is nonzero when they are along the
[110]. In a real experiment on a flat surface there are
roughly equal numbers of domains in the two directions,
so to facilitate comparison with experiment it is con-
venient to calculate the average of the two intensities in
Eqs. (3.6):

I,„(ko)=(m /a )( +u)u. (3.7)

Because of the unknown scattering power of % atoms,
multiple scattering, and other complications, it is not pos-
sible to determine the absolute magnitude of these intensi-
ties. However, after normalization we can compare the
temperature variations of these quantities with experiment
in a straightforward way. These half-order intensities also
contain the squares of the two component order pararne-
ters and therefore are a convenient way of extracting the
order parameter values. (See, however, Sec. V B.)

(Throughout this paper the notation ( ) denotes a parti-
tion function average implemented as an average over a
Monte Carlo run. ) For the purpose of comparison with
experiment we are interested in the low-order, diffraction
beams only. Since the equilibrium low-temperature dis-
placements are known to be smaller than 0.2 A, '

~

(k u;)
~

&& I and we can expand the second exponential
in Eq. (3.2). Hence,

2

1(k)=( +exp( —ik R;)[)—ik u; ——,'(k u;)x]
l
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2. Integer-order LEED features

2

-xy ".. ),
2

—xz «» ),
L

(3.8a)

(3.8b)

A second item of experimental information by which
we can assess our model is the behavior of the integer-
order LEED features. We use Eq. (3.4) again this time
with the k vectors of the (10) and (01) beams:

4. Distribution of displacement magnitudes

At any given temperature we calculate the expectation
value of the square magnitude of the displacernents (u ),
but this by itself does not adequately define the character
of the phase. It is useful to have in addition a determina-
tion of the characteristic spread of values of u about its
average. Therefore we also determine the time average of
this spatial variance:

' 2 1/2

(3.10)

where bJ is the change in the kinematic intensity due to
the nonzero displacements. The first terms on the right-
hand sides of Eqs. (3.8a) and (3.8b) are negligible in the
ordered state, but above T, are of order N( u ) /a,

(3.9)

while the second terms are of order X (u )/a, and so
dominate the change in intensity. The variation of the in-

teger intensity is essentially determined by the variation of
(u ). Our Monte Carlo program also calculates the aver-
ages of the quantities defined in Eqs. (3.8) and (3.9) and
their variances.

3. I'eatures related to the energy

One of the key realizations emerging from our work
stems from the coupling that occurs in this model between
the local energy and the bonding energy. Therefore, we
also calculate separate averages and variances of each
term in Eqs. (2.1) and (2.6), and the average and variance
of the total energy. These latter calculations are of some
additional interest because they reveal the characteristic
singularities that one would see in a study of the tempera-
ture dependence of the integrated half-order intensity
through the transition. Also, the separate expectation
value of the bond energy, though not experimentally ob-
servable, is directly proportional to the nearest-neighbor
correlation, an important quantity in characterizing the
disorder. These results are discussed in Ref. 36.

The ratio (b,u )/(u ) along with (u ) itself character-
izes the degree of local order at any point in the phase dia-
gram. For a benchmark we note that a phase with the
displacements distributed uniformly in the (u„,u ) plane
out to a magnitude of up would llave (u ) = —,up and
(b,u )/(u ) =I/@ 3=0.58.

Since the calculation produces many equilibrium con-
figurations of any given phase we can also accumulate
histograms of displacement magnitudes at any point in
the phase diagram.

IV. RESULTS

In this section we present the results of the Monte Car-
lo calculation described in the preceding section. A more
extensive discussion follows in Sec. V.

A. Transition and high-temperature phase —model I

In both experiment (see Sec. VA) and simulation the
phase transition can be seen either by observing the half-
order beams or the integer beams, in the former as a
dramatic drop in intensity to nearly zero and in the latter
as a coincident (but smaller in magnitude) increase in in-
tensity. Figure 4 shows our calculation using a 12&&12
lattice of the temperature dependence of the average half-
order intensity defined in Eq. (3.7), and the variation of
the average (10) and (01) integer intensities as in Eqs.
(3.8). (Because our model demonstrates diagonally orient-
ed ordering, the two integer beams calculated always come

0.0
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FIG. 4. Plots of simulated kinematic half-order intensity and decrease in integer-order intensity versus temperature for model I.
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out very close, but not—because of statistical
fluctuations —exactly equal in magnitude. ) Some features
of Fig. 4 which should be noted are (i) the half-order
beams show an apparent Debye-Wailer decrease in inten-
sity below the phase transition which occurs—located by
the inflection point of the curve —at T, =2.20+0.05 (all
temperatures are given in units of Ji); (ii) some of this de-
crease in intensity is evidently contributing to an increase
in the intensity of the integer beams; however, not all of it
is, and the remainder is appearing as a diffuse contribu-
tion throughout the Brillouin zone due to the increasing
disorder in the magnitude of the displacements (see Fig.
5); (iii) at the transition it is likewise clear from Figs. 4
and 5 that the loss of long-range order and consequent ra-

pid decrease in half-order intensity coincides with a rapid
decrease in (u ) and concomitant gain in integer intensi-

ty; but (iv) the character of the simulated HT phase in the
vicinity of the transition is clearly disordered, in that
(u ) remains significantly larger than (b,u ); while (v)
as the temperature increases above the transition, the in-

teger beams begin to decrease in intensity again due now
to the thermally driven increase of (u ) and (b,u ) that
now resume.

This is essentially the character of the transition en-
visioned in an earlier approximate study of this short-
range model, ' with the refinement that we now have a
detailed calculation of the variation of ( u ) and the resul-
tant effects on the integer beam intensities.

B. Role of wells at finite displacement in local potential

All of the features discussed in Sec. IVA are non-
universal and thus dependent on the parameters in the
model. (The one exception is the order-disorder character
of the high-temperature phase in the immediate vicinity
of the transition, if it is second-order. ) Thus it is in-

teresting to consider the same features in model II, which
has the same low-temperature distortion magnitude, but
lacks minima at finite displacement in the local potential.
In this case, the interactions not only determine the char-
acter of the ordered phase, but also drive the displace-
ments. Figures 6 and 7 show plots for model II analogous
to those of Figs. 4 and 5. Since T, for model II is about
—,
' that of model I the temperature scale has been expand-

ed.
Although there are no obvious differences in the

behavior of the order parameter between models I and II,
it is clear that there is a quantitative difference at least in
the behavior of the integer beams, due ultimately to the
disparate behaviors of (u ) as seen in Figs. 5 and 7. In
the latter case, the decrease of (u ) is nearly twice as
large as the former between T=O and T=T„although
even for model II the average displacement slightly above
T, is still about 0.56uo, significantly larger than estimat-
ed normal thermal disorder. A second difference can be
seen by considering the ratio (hu ) /( u ). This quantity
is small but increasing for both models below T, . Well
above T, it is about 0.6 for model I and 0.8 for model II.
These values both indicate a very disordered HT phas, e.
To explicate its character a bit more clearly we have also
used our simulation runs to obtain the distribution of

values of
~
u,

~

and
~

u~
~

that occur at various tempera-
tures in the two models. The results are shown in Figs.
8(a) and 8(b). We note that in both cases this distribution
peaks at nonzero values at all temperatures shown, and as
expected from Figs. 5 and 7, this peak value shifts in the
direction of decreasing magnitude with increasing tem-
perature. The shift is much more rapid in the case of
model II and above T, the relative weight of the small

~
u„~ part of the distribution is much larger in model II

than in model I. One should also note by examining the
trend in Fig. 8(b) from T, to 1.1T, to 1.3T, that the dis-
tribution function changes most rapidly in the range
( T„l. 1T, ) and varies rather slowly above 1.1 T, .

Model I ()2 )2 j

P{ux)

0.9 Tc

Tc

1 Tc

005—

0.0

Model II {)2 )2)

0.15—

P{ux j I
I

I
\

--- T =0.9 Tc

Tc

T=)1 Tc
T- 1.3 Tc

0.10—

0.05—

t0.0 "x
FIG. 8. Distribution of u„values occurring in simulation of

(a) model I, and {b) model II for various temperatures near T, .
The bin size of the histogram through which the smooth curves
were drawn is indicated. The arrow denotes uo„, the zero-
temperature equilibrium value of u„.
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V. DISCUSSION AND COMMENT ON EXPERIMENT

In this section we discuss the results presented in the
last section more fully, particularly in the context of ex-

perimental results which are presented in this section and
the limited experimental results which have been pub-

lished previously. Implications for further study are also
discussed.

A. Integer beams

The behavior of the integer beam going through the
transition is important because, as emphasized by Debe
and King, ' this indicates whether a transition has order-
disorder or displacive character (although we show this
relationship to be less obvious than previously thought in
light of the short-range interaction model). In the latter
case, one expects in the kinematic approximation that the
intensity which disappears from the half-order beam will

reappear in the integer beams as the displacement magni-
tudes go to zero." In the extreme order-disorder limit, in
which the atomic displacements disorder but do not di-
minish in magnitude, one expects this intensity to be
spread throughout the surface Brillouin zone. We begin
by reviewing the available experimental information.
Debe and King published the first study of the integer
beams' in which the temperature dependences of the (00)
beam at three different energies and that of the (01) beam
at one energy were obtained. These data were invoked
there and elsewhere' ' in support of the displacive pic-
ture of the transition. Strictly speaking, however, this in-
terpretation has two difficulties. First, the variation of all
four intensities shows a change in slope near the transition
rather than an actual increase. Thus it might be more ac-
curate to say (as pointed out in Ref. 22) that the Debye-
Waller factor seems to vary in the vicinity of the transi-
tion, rather than that these data are direct evidence for a
transition of displacive character. Heilmann, Heinz, and
Mulleri in fact determined a change in the surface Debye
temperature (from 400+100 K in the I.T phase to 210+40
K in the HT phase) of W(001) by studying the tempera-
ture and energy dependence of the {10)beam. Secondly,
the (00) beam has momentum transfer totally in the z
direction, i.e., perpendicular to the surface, and so is in-
sensitive to variations in the x and y components of the
surface atom displacements. One would thus expect for
the specular beam irrespective of the character of the tran
sition, to see exactly what is seen, i.e., at most a variation
of the Debye-Wailer factor.

In a recent study by %'endelken and %ang, ' a more
dramatic behavior of the integer-bean intensities was
mentioned in connection with a study of the phase transi-
tion on a W(001) surface of exceptional quality. The
integer-beam data mentioned in that study was not pub-
lished there but is shown in Fig. 11 along with additional
data. We attribute the differences in this data from that
previously published primarily to the exceptionally large
terrace widths which were determined to be greater than
400 A (hence we refer to this surface as "fiat"). In this re-
cent study' it was shown that steps on the surface with
an average terrace width of 30 A could strongly influence
the phase transition through finite-size effects.

Plotted in Fig. 11(a) is intensity versus temperature data
for the ( —,', —,

'
), {ll), and (10) beams at an energy of 42 eV

for the "flat" W(001) surface. The ( —,, —,
'

) beam exhibits a
local intensity maximum at this energy. An intensity gain
in each of the integer beams is clearly observed to be
correlated with the loss of intensity in the ( —,', —,

'
) beam as

the temperature is increased. The data were obtained by
heating the sample to above 1000 K and then measuring

FLAT W(001)
BFAM ENERGY=42eV

50

5 Q

O

6—
ill

UJ

R

55 ev

l l

STEPPED W(001) SURFACE

BEAM ENERGY = 42 eV

(10)

I

200
I I I

400 600 800
TEMPERATURE (K)

1000

FIG. 11. Experimental measurements of electron diffraction
intensities versus temperature for W(001}. (a) A comparison of
the (1/2, 1/2}, (11) and (10) beams at 42 eV for a "flat" surface
(see text) which show clearly the intensity shift between the frac-
tional order and integral order beams associated with the phase
transition. In addition, measurements obtained at fixed angles
of —1.0 and + 0.75' relative to the beam angle at 100 K are
shown for the (11) beam. (b) Measurements made of the (10)
and (11) beams at an energy of 55 eV. (c) Measurements made
of the (10) and (11) beams at an energy of 42 eV, but with a

0
stepped surface with a 30 A average terrace width.
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the transient intensities as the sample cooled. Owing to
the good angular resolution of the electron spectrometer
used for these measurements ( ~1.0 full width at half
Illaxiinuiil), lt was necessary to oscillate the detector in ail-

gle during the cooling cycle in order to track the beams
which moved due to the thermal contraction of the cool-
ing crystal and the small thermally induced distortions in
the crystal mounting. The importance of this is indicated
clearly in the lower two curves of Fig. 11(a), which were
obtained for the (11) beam at fixed detector angles dis-
placed +0.75' and —1.00' from the position in which the
maximum intensity is obtained at 100 K.

In Fig. 11(b) additional data is shown for the (11) and
(10) beams at an energy of 55 eV which corresponds to a
minimum in the ( —,', —,

'
) beam intensity. Note that in this

case, the (10) beam is very insensitive to the phase transi-
tion with only a small change in the slope or Debye-
Waller factor displayed. In fact, it is a general impression
based on observations at other energies with this crystal as
well as a second flat crystal which was prepared to similar
standards, that the (10) beam is generally less sensitive
than the (11) beam, but that the exact behavior is com-
plex, probably due to multiple-scattering effects. The
change in slope seen in Refs. 16 and 33 is present and
qualitatively similar in our data as well, although it is dif-
ficult to make quantitative comparisons due to the variety
of energies, beams, and temperature ranges employed for
the different studies.

Measurements made with the 30-A terrace-width crys-
tal (referred to above' ) of the (10) and (11) beams are
shown in Fig. 11(c). In this case we see virtually no effect
of the phase transition in the integer beams other than a
very slight increase in intensity of the (11) beam at the
phase transition and a very small change in the slope of
the curves. We speculate that the small but genuine in-
crease of intensity in the integer beams was smeared out
in Debe and King's (01} beam data as a consequence of
the 85-A average-step separation of the crystal used in
those measurements. (See the next paper for a discussion
of the consequences of steps in our model. )

A glance back at Figs. 4 and 6 provides an explanation
for some of the key experimental features. The increase
in intensity in the vicinity of T, is manifest in the simula-
tions as a decrease in the magnitude of the integer-beam
intensity loss, which occurs as a result of the decrease in
(u ) [see Figs. 5 and 7 and Eqs. (3.8)]. Note that Barker
and Estrup envisioned just such a decrease in (u ) in
their characterization of a disordered HT phase.

The decrease in (u ) must be understood on the basis
of the energetics specified by Eq. (2.7). It occurs because
as order is lost the atom displacements partially lose the
effect of the J& coupling [see Eq. (2.3a)] which tends to
increase the magnitudes of the displacements when NN
displacements are oppositely directed. This same mecha-
nism should operate in the real surface as well.

The change in the apparent {see Sec. V B) Debye-Wailer
factor can also be readily understood at least for the non-
specular beards. Below T, our simulation indicated that
the integer beams actually increase in intensity as the tem-
perature rises, gaining some, but not all, of the intensity
lost by the half-order beams. This is due again mostly to

the decrease in effectiveness of the interaction term as
thermally induced disorder develops. In fact, the experi-
mental (10) beam data shown in Fig. 11(a) appears to
show this as a dominant effect, but the other beams ob-
served only show a less negative slope below T, . %'ell
below T, this disorder is primarily in the form of varia-
tions in displacement magnitude. (Note that if one dis-
placement increases in magnitude to uo+b, and a neigh-
bor decreased in magnitude to uo —5, their dot product
decreases in magnitude, uo —6 . Sma11 variations in an-

gle similarly decrease
~
Ji u; ui ~

.) As the bond energy de-
creases in magnitude, (u ) decreases and hence the in-

teger intensity increases. Some of the loss of half-order
intensity, however, is spread throughout the Brillouin
zone because of the disorder in the surface layer. Near T,
this simple picture breaks down as the disorder becomes
more varied and more extended in range. Above T„
(u ) begins to increase again due simply to thermal dis-
order. The result upon comparing the situation below and
above T, is a significant change in slope, besides the in-

tensity increase at the transition. It is important to note
that in neither regime is this behauior the same as the clas-
sical Debye %aller -effect. We return to this point in Sec.
VB.

To understand why the slope of the specular beam also
changes, we need to go beyond the physics included in our
model, which allows only displacements in the surface
plane. Allowing the displacements to have a z component
as well would have two effects. First, there would be an
additional Debye-Wailer contribution affecting the inten-

sity of each beam of the form

D, (b,k) =exp( —h, k, (u, )), (5.1}

where b,k is the momentum transfer for the beam in ques-
tion and b,k, is its component normal to the surface. The
specular and low-order integer beams have a relatively
large hk„so this factor would steepen the descent of all
beams significantly and would also convert the increase
seen in the integer beams in the simulation below T, to a
decrease. Secondly, Eq. (5.1) also allows an understanding
of the experimentally observed change in slope for the
specular beam. If motion in the z direction is completely
uncoupled from motion in the surface plane, we would ex-
pect ( u, ) to be simply proportional to temperature in line
with equipartition of energy. However, it is entirely
reasonable to suppose that the atoms move in a three-
dimensional potential in which there is very strong cou-
pling between u, and (u„,u~). One can see this coupling
directly in the slab ele:tronic structure calculations of Fu
et al. {see especially their Fig. 3). Given this hypothesis,
changes in (u ) would drive similar rapid changes in
(u, ), thus providing an explanation even for the change
in slope of the specular beam. [In the kinematic approxi-
mation one could not, however, account for any increase
in specular intensity like that which occurs for the (11)
and {10)hams in Fig. 11(a) using this hypothesis. ] Hav-
ing accounted for the data we return to the issue of the
character of the transition.

The terms "displacive" and "disordered" represent lim-
iting cases of a rich spectrum of behavior. Neither case
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can be perfectly realized in a model with short-range in-
teractions. Perfect order-disorder behavior in which the
displacement magnitudes remain constant cannot occur
because disorder inherently decreases ( u ) . Perfect
displacive behavior is also impossible because of the per-
sistence of short-range order weil above T„' again be-
cause of the interactions. (The temperature is high
enough for long-range order to have been disrupted, but
not so high as to make the Boltzmann factor for a NN
bond negligible. ) The factor which in large degree deter-
mines where in this spectrum a given model on the real
system falls is the relative importance of the interactions
[Eqs. (2.1) and (2.4)] uis a uis the local potential [Eq. (2.6))
in forming the reconstructed state. Our choices of models
I and II are meant to roughly represent reasonable limits
of this variation.

One might then be tempted to investigate the physics of
the driving force by experimentally determining where on
this spectrum the clean W(001) reconstruction transition
falls. Model II would be consistent with a mechanism
concentrated very much in the first layer. Model I would
require some involvement in the driving force of the bulk,
i.e., at least the second layer. Since slab-based electronic
structure calculations are gaining in sophistication to the
extent that total energies of various fully ordered phases
can now be reliably calculated, the time would seem to be
propitious for such an undertaking. We caution, however,
that to obtain information on this point from diffraction
data like that of Fig. 11 will require very careful study of
the effects of multiple scattering.

In the absence of such a careful study, there are indica-
tions that favor the model I end of the spectrum that
should be mentioned. First, the IV profiles of the integer
beams are remarkably similar (see Figs. 5 and 6 of Ref.
16) in the I.T and HT phases. Although kinematically the
magnitude of (u ) contributes only an overall normaliza-
tion of the integer beam, certainly the multiple scattering
will be influenced by the average magnitude of the dis-
placements. Model II has (u ) decreasing by about —, be-

tween T =0 and T & T, and by about —, between 10%
below T, and 10% above T, . It is difficult to imagine
such a large change not leading to some more significant
changes in the IV profiles. The change in (u ), particu-
larly in the transition region, is much more moderate for
model I. A second indication is that the increase in
integer-beam intensity associated with the transition is, in
general, not dramatic, even though selected beams at ap-
propriate energies show striking effects. Systematic mea-
surements have not been carried out, but the impression
remains that on average only a fraction of the half-order
1ntenslty 1s Icappcarlng 1n thc 1ntcgcr beams. Thc remain-
ing intensity is presumed to go into momentum space as
diffuse intensity. Preliminary measurements of the dif-
fuse background have been obtained with the second fiat
W(001) crystal, and an example is shown in Fig. 12.
These data, at 42 CV and with the same small solid angle
as used for the beam studies, fail to show any sudden in-
crease in diffuse intensity, but this is perhaps not surpris-
ing in light of the large solid angle involved and the rela-
tive magnitudes of the total diffuse intensity and the in-
tensity lost from the half-order beams.

B. Implications of the variation of (u ) for measurement

of critical phenomena and Debye-%'aller effects

(5.2)

as do all short-range properties of a critical system

coupled to the energy. In Eq. (5.2),

(5.3)

and a, b, and c+ are consta-nts, the latter having possibly
different values above and below T, . In the case of an Is-
ing transition (which occurs for large anisotropy in the x-
y model '

) the
~

t
~

' term is replaced by
~

t
~

ln
~

t ~.
The average displacement magnitude, determined from

(u ), factors into the half-order beam intensity, as a nor-
malization constant. This means that in contrast to the
situation in a lattice gas, the half-order kinematic inten-
sity is no longer proportional to the squared order param-
eter. Instead, even if amplitude fluctuations are ir-
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FIG. 12. Background diffuse scattering intensity measure-
ment at 42 eV in a random direction with a second "Aat"
%'(001) crystal.

Interest in the experimental determination of critical
exponents in a bonafide two-dimensional x-y model, of
which the W(001) reconstruction is an example, ' is
great, since the model displays varying critical ex-
ponents and a Kosterlitz-Thouless transition. (Hydro-
gen absorption sweeps the anisotropy through zero, * thus
rendering the E-T transition accessible. ) Wendelken and
Wang' have already reported a measurement of the
order-parameter exponent P (result: P=0. 144+0.04) for
the clean surface reconstruction.

Technically, the pure x-y model with cubic anisotropy
would correspond to displacements of fixed magnitude,
and allowing them to fluctuate ("amplitude" fluctuations)
is hoped to be irrelevant. Our study indicates that (u )
actually displays our energylike singularity and therefore
should vary like
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relevant, there will be a singular correction near T, :

(5.4)

of an x-y model without amplitude fiuctuations, where M
is the order parameter. In general, M should vary like

M~ )r /~ (5.5)

below T, . Combining Eqs. (5.2), (5.4), and (5.5) indicates
that there will be new corrections to scaling that below T,
will have the form

(5.6)

in a very large system so that critical scattering contri-
butes negligibly. a and e are constants. The correction
obviously becomes relatively more important as one
moves away from T„limiting the range over which one
can expect simple power-law behavior.

Finally we raise the issue of the nature of Debye-Wailer
effects in this system. The classical Debye-Wailer effect2
refers to loss of coherent diffracted intensity due to in-
creasing thermal disorder which takes the form

(5.7)

VI. SUMMARY

In this paper we have extended an earlier study of
short-range interaction models for surface reconstruc-
tions to now include two-dimensional displacements and
four-fold symmetry appropriate for discussing the clean
W(001) transition. We have also presented important new
data for the behavior of the integer diffraction beams near
the transition. In reconciling these experimental results
with our simulations of the short-range models we have
achieved an important new understanding of the nature of
the W(001) reconstruction transition and its high-
temperature phase. The key points include (i) a model
with short-range interactions always displays a disordered
phase near and somewhat above the transition; (ii) param-
eter choices thai encompass the conceivable variations in
the physics of the driving force lead to high-temperature
phases with a high degree of disorder, although the aver-

in a simple harmonic crystal. We have demonstrated that
at least for (u„+u~) one has for the W(001) surface a
temperature dependence drastically different from Eq.
(5.7). [Equation (5.2) is a better description throughout
the entire temperature range we studied. ] Besides the sig-
nificance for the analysis of critical exponent data there
are also obvious implications for the analysis of ion-
scattering data (where a key role in the analysis is played
by Debye-Wailer effects ), and dynamical LEED analysis
of the HT phase (see Sec. I 8). If our model of the surface
atom behavior is realistic, the treatment of the Debye-
Waller effects in Ref. 49, being based on a simple in-
dependent oscillator approach, is entirely misleading.

age magnitude of displacement does vary significantly be-
tween these limits; (iii) current experimental indications
seem more consistent with the model displacing larger
displacements in the high-temperature phase, implying
that interactions with second-layer W atoms are signifi-
cant in the driving force; (iv) variations of the average dis-
placement magnitude also contribute corrections to scal-
ing in LEED-derived measurements of the phase transi-
tion order parameter; and (v) the W(001) surface displays
anomalous Debye-%aller behavior.

We should also point out the limitations of this study.
The range of interaction on this surface has not been ade-
quately established. Inglesfield' has, for example, es-
timated a range of 10 A, though presumably due to the al-
most chemical nature of the driving force, the dominant
part of the effect occurs at shorter range. A second issue
is that the validity of the small displacement approxima-
tion which allows one to write the interaction as quadratic
forms in the displacements [Eqs. (2.1) and (2.6)] has not
been establish'. In this context we mention that the
dependence of the total energy on displacement magnitude
as calculated by Fu et al. displays an initial small in-
crease before a decrease of about 0.01 eV to a minimum at
uo ——0.18 A. If the initial small increase in energy is
real, then fourth-order terms in the interactions may be
significant and sixth-order terms would be needed in the
local potential to bound the displacements. Inclusion of
such terms in the simulation would be straightforward
and we would not expect our conclusions to be altered.
However, the increase in the number of parameters needed
to fully characterize the driving force would be quite un-

pleasant. We should also mention that the decrease of the
correlation length in the real system —as seen in the beam
width plot of Ref. 1 i is more rapid than for model I
above the transition. Ying has noted that the correla-
tions become more persistent as the magnitude of the an-

isotropy, V4, decreases. This seems to us a promising ap-
proach for estimating the strength of the anisotropy in the
real system.

Finally, it must be acknowledged that multiple-
scattering complications have not been dealt with in our
study. One could imagine that the experimental increase
of integer intensity is a multiple-scattering effect due to
say a variation in the last layer spacing concurrent with
the transition. This seems quite unlikely to us, for the fol-
lowing reason. If this were a multiple-scattering effect
o;ie would expect that at some energies an intensity de-
crease would occur coincidentally with the transition, as
the effect would be as likely to result in destructive
changes as it would in constructive changes in interfer-
ence. %e have, however, never seen a decrease, despite
having rn.casu red the temperature dependence at a
moderate number of energies.

In the following paper we take up two other iinportant
questions that bear on the consistency between our short-
range interaction model and experiment, the effect of
steps on the transition and the effect of "perturbation
terms" not included in the simulations presented here but
allowed by symmetry. This latter topic is also important
in the context of the effect of adsorption on the recon-
struction.
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