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%e discuss the interaction between interfaces that is mediated by critical fluctuations, and in par-
ticular the universality of the corresponding finite-size amplitudes. In the case of the two-

dimensional Ising model we address the universality with respect to anisotropy. For this purpose we

derive the exact free energy of a finite, anisotropic triangular lattice on a cylinder. For the rectangu-

lar Ising Inodel we verify universality also with respect to the magnitude of the boundary f&elds. In
mean-field theory we display the mechanism for this universality and for that with respect to the
surface coupling enhancement. Numerical results, which are of experimental relevance, are obtained

employing a renormalization. -group approximation for three-dimensional systems.

I. INTRODUCTION AND SUMMARY

In various physical systems' of experimental and
theoretical interest, correlated fluctuations mediate
interface-interface interactions that decay as an inverse
power of distance. In the example we consider in detail in
this paper, the fluctuating medium is a fluid or solid at an
Ising critical point. In this context one may think of the
attraction between identical parallel plates immersed in a
critical fluid, or of the interaction governing the thickness
of a partial wetting layer of a phase that is critical in bulk.
Some of our results are expected to be valid also in the
case of the XY' transition, of which the k transition in su-
perfluid helium is the paradigm, and in the case of transi-
tions in other universality classes.

One of the most intriguing aspects of these finite-size
interactions is the mounting evidence of the univer-
sality of their amplitudes measured in units of kttT. To
be more precise, in the Ising universality class in three di-
mensions, e.g., there are at most eleven different ampli-
tudes. They are associated with systems with different
types of surfaces, as characterized by the presence or ab-
sence of symmetry breaking fields, and the degree of
enhancement of the interactions at the surface.

In order to discuss the scaling theory of the interaction
between surfaces, we consider a lattice in d dimensions
consisting of z layers of n Xn X . (d —1 times) sites
each. Layers 1 and z are top and bottom surfaces of the
slab; each of the layers is assumed to be macroscopic in
size (n ~~z). The total free energy measured in units of
k&Tis written as

where Z is the partition function. The surface free energy
per column is defined as

fs lim (F zn" ——'ftt—)ln (1.2)

fs =f i +fi+5f (z, h i, hz, u ~, ui ), (1.3)

where f; (i = 1,2) is the surface free energy per surface site
in the limit of a semi-infinite system (z~oo). We have
allowed for the presence of surface ordering fields h; and
surface coupling enhancements u;. The term 5f, which
vanishes for z~oo, represents the finite-size interaction
free energy between the two surfaces. If the bulk is criti-
cal, then the following finite-size homogeneity relation
holds for the singular part of the interaction free energy:

t t

5f„„s(z,h;, 5u;)=z' X(z "h;,z '5u;) . (1.4)

The 5u; denote the scaling fields u; —u;* that describe the
deviations of the surface enhancements away from their
fixed-point values. As usual, we distinguish (in dimen-
sions d & 2) the fixed points associated with the ordinary
( 0), the surface-bulk multicritical, or, in other words, spe-
cial (SB), and extraordinary (E) surface transitions. ' The

where ftt is the bulk free energy per lattice site (per unit
volume in the continuum case). We remark that with this
definition the surface free energy is singular at the critical
point of the d-dimensional bulk, where the layer itself,
strictly speaking, is noncritical: In general, a thick layer
will be critical close to, but not at, bulk criticality. How-
ever, our definition is the appropriate one for describing
equilibrium between the slab and a bulk reservoir.

%'e can write
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critical exponent y~ is the scaling index of the surface or-
dering field. The exponents y are the scaling indices of
the surface enhancements. They are relevant only at the
SB transition. Here we shall consider only the thick-film
limits (z~ ao, all other parameters fixed) of the crossover
function X. The values of X at the various fixed points,
i.e., the finit-size interaction amplitudes, are denoted
hp p, where P;=+ if It; &0, P;= —if h; &0, P;=0 at
the ordinary transition, P;=SB at the surface-bulk mul-
ticritical point, and P; =E at the extraordinary transition.
Obviously, in the latter three cases, h; =0.

The remainder of this paper is organized as follows. In
Sec. II we present results of exact calculations for the
two-dimensional, triangular Ising model, and for the rec-
tangular model with surface fields. In Sec. III we discuss
the finite-size amphtudes in mean-field theory. Finally,
Sec. IV is devoted to a Migdal-Kadanoff renor-
malization-group calculation of these quantities. Now we
proceed to present an overview of the main results, some
of which were reported in a previous publication. ' Very
recently, finite-size amplitudes in d =2 have been related
to the central charge of the conformal algebra. " These
results agree with the exact results reported in Ref. 5.

For the anisotropic triangular Ising model we have cal-
culated exactly the surface free energy of a finite cylinder.
The dominant finite-size correction for a cylinder with in-
finite perimeter and finite height z decays with 1/z, as
predicted by finite-size scaling. We obtain the amplitude
b,o o ———ir/48, and verify that it is universal with respect
to the lattice anisotropy, provided that the cylinder is re-
scaled so as to render the decay of pair correlations isotro-
pic at large distances. Note that this provides an explicit
verification and generalization of assumptions that under-
lie results obtained in Ref. 11. Our result is more general
in the sense that in addition to a rescaling of one of the
two principal axes (space-space or space-time}, also a rota-
tion may be needed to restore universality. In the special
case of the isotropic square lattice, this agrees with a re-
sult of Au-Yang and Fisher. From their expression for
the rectangular strip with boundary fields (hiIiq &0) we

0,+=2
with d =4. Furthermore,

~sa, + ——2- ~++,-d

with d =4. Finally,

(1.6)

~+,+= — +, —~

16
(1.8}

In mean-field theory this holds with d =4, but also the
exact results in two dimensions satisfy this relation.

To see how fluctuations affect the amplitudes of the
finite-size interaction and to obtain estimates in three

derive b,o+ ——tr/24, b, + + ———ir/48, and explicitly check
the irrelevance of the magnitude of the surface fields, and
of the lattice anisotropy in the same sense as above. We
further conjecture that b, + ——2 b,o+ ——m/6 (also see
mean-field results below). '

Within mean-field theory we obtain the order-
parameter profiles that minimize the free-energy function-
al per unit area of a slab. It turns out that only two pro-
files exist in the scaling limit. Truncated appropriately
they satisfy the various boundary conditions at the slab
surfaces. Our study suggests that, in general, like boun-
daries attract (b, &0), but unlike boundaries repel (5 & 0).'

Universality with respect to the magnitude of surface
fields and surface-coupling enhancements holds, but the
amplitudes do depend on the spin quantum number
(which we have taken to be —,

'
), and on the lattice coordi-

nation number q, in this approximation. We obtain that
6o o, ho sa and hsa sa all vanish, which reflects that fluc-
tuations have been ignored. The other amplitudes are
nonzero, and we find hoE—-11.82/q . Furthermore, we
find that the following equalities hold:

Ape b,p+ if P—=—O, SB, E, or + .

These equalities are physically quite obvious, and most
likely of general vahdity even beyond mean-field theory.
Also, we obtain the equality'2

TABLE I. Migdal-Kadanoff renormalization-group estimates for the finite-size interaction ampli-
tudes b, corresponding to the ordinary (0), surface-bulk (SB) for d y 2, and extraordinary (E) transi-
tions of a surface without boundary fields, and as a function of the signs of boundary fields. Space
dimensionality d equals 2, 3, or 4. Numbers in parentheses are exact, conjectured, or from e expansion.
Furthermore, Lpg=Ag+, Lsa g=ksa+, SEE=DE+=6+ +.

—0.055
( —0.065)'

—0.015
( —0.023)

—0.007
( —0.014)'

0.017

—0.003

0.019

0.130
(0.131)

0.051

0.017

0.017

0.012

0
( —0.065)

0.881
(0.524)'

0.279

0.100

'Reference 2, exact.
bReference 5, exact.
'References 2 and 5, conjectured.
Reference 3, e expansion. Systematic expansion of first order in @=4—d yields —0.023, whereas use
of Eqs. (4.4) and (4.9) in Ref. 3 at @=1 yields —0.101.

'Reference 3, exact.
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dimensions, we have performed a Migdal-Kadanoff
renormahzation-group calculation. Universality with
respect to all surface parameters arises quite naturally. In
Table I we present the numerical results. Equalities (1.5)
hold whenever applicable (d &2). The numerical perfor-
mance of the Migdal-Kadanoff approach is surprisingly
good, as comparison shows with exact values in d =2 and
4 (the numbers in parentheses in Table I). A further test
of the accuracy in d =3 is provided by a comparison with
a recent Monte Carlo computation, where a finite-size
amplitude related to, but different from 5, was computed
(see Sec. IV for details). Again, the agreement is excellent.

A final remark concerns the comparison of the mean-
field-theory amplitudes with those obtained with the re-
normalization approach in d =4. Taking the coordina-
tion number q =2d (hypercubic lattice), we conclude that
the mean-field results are typically an order of magnitude
larger.

II. ANISOTROPIC, TRIANGULAR ISING MODEL

In this section we investigate the universality of the am-
plitude of the finite-size interaction between the surfaces
of the exactly solvable, two-dimensional, anisotropic hing
model on a triangular lattice. Of course, this includes the
square and rectangular lattices as special cases. First, we
discuss the effect of anisotropy on this universality. Then
we present the results of the analytic calculations for this
model. Finally, in the case of the rectangular lattice we
also present results for the universality with respect to the
magnitude of the boundary fields.

We consider a lattice system bounded by two infinite
surfaces a fmite distance apart. What is the effect of an-
isotropy in the coupling constants on the finite-size in-
teraction between the two surfaces? If the interactions
perpendicular to the free surface are made weaker, while
at the same time those parallel to the surface are
strengthened to maintain criticality, the effective distance
between the surfaces increases in the sense that correla-
tions between them are expected to decrease. This leads to
a smaller finite-size amplitude. In other words, the
finite-size amplitude is unlikely to be universal, if the dis-
tance between the surfaces is expressed in units of the lat-
tice spacing. However, one would expect universality to
be restored —and this is corroborated by our analytical
calculations —if the units of length, used in the definitions
of the thickness of the system and of the surface free ener-

gy per unit length (in two dimensions), are chosen in a
way such that isotropy is restored to the bulk correlations
at large distances in these units. In two dimensions,
where contours of constant correlation are expected to be
ellipses, this implies, as discussed in detail below, that the
finite-size amplitude is a umversal number times a func-
tion that depends on the eccentricity and on the orienta-
tion of the principal axes.

We consider a finite lattice (n rows and m columns) of
Ising spins sj k

——I, j= I, . . . , n and k = I, . . . , m, with
cylindrical boundary conditions: periodic in the k direc-
tion, sj, —sJ +, and with free surfaces at j=1 and

j= n. The Hamiltonian, divided by —k~ T, reads

Ei g g sj,ksj, k+ i+E2 g g sj,ksj+i, k
j=l k=1 j=l k=1

n —1 rn

+E3 g g sjksj+i, k+1
j=l k=1

(2.1)

For simplicity we assume all interactions to be ferromag-
netic (E, ~0).

The total free energy (in units of ka T) F=nm f= —lnZ
is expected to be of the form

I=nmf =nmf„+m(f, +f, )+m5f, (2.2)

where f is the free energy per spin and fi+f3 is the ex-
cess free energy per column in the thermodynamic limit,
while 5f contains the finite-size contributions, again in
units of kji T. For ni ~ oo, 5f is of the form

5f=j3o,on '+o(n ') . -
(2.3)

Using standard techniques, ' the free energy of the tri-
angular lattice can be calculated, and the finite-size ampli-
tude can be extracted (see Appendix A 1). We find

(2.4)

Si+S3
(2.5)

with C; =cosh (2E;) and S;=sinh (2E;), where the S; and
C; are related via the condition of criticality S~S3
+$2S3 + S3Si 1 ~

' In the special case of the square
lattice (Ei ——E3 and E3 ——0) the right-hand side of expres-
sion (2.4) reduces to n/48 —We now. show that the fac-
tor Cz/(S&+S3) indeed has the geometric interpretation
discussed above.

In order to do this we introduce an anisotropic metric
that renders correlations isotropic as follows. Denote by
g; the correlation length measured in units of the lattice
constant in the direction of the bonds with interaction
strength E;. Upon approaching the critical point, these
correlation lengths diverge, but ratios a; =$3/g; remain fi-
nite and precisely define the anisotropy that is relevant
here. One finds (see Appendix A 2)

x3——1,
lr3 ——Ci/(Si+S3),
Ki ——C3/(Si+S3) .

(2.6)

so that a=a. i, y=ai, and p= —,'(a.&+a3—1).
Converting from the surface free energy per column to

a free energy per unit 5 length, and also measuring the
width of the strip in these 5 units, the finite-size ampli-
tude changes to Rhoo, where R=[y/a —(P/a) ]'~ is
the 5 distance between rows divided by the 5 distance be-

We define the 5 distance from a point (x,y) in the lattice
to the origin as 5 (x,y)=ax +2Pxy+ yy3. Here, a, P,
and y are determined so that the contours of equal corre-
lation are circles in this metric. This requires that

5 (I/a. i, 0)=53(0, 1/ai)=5 ( a3 ', tc3 ')=1, —
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tween neighboring lattice sites at the boundary. Since it
follows from Eqs. (2.6} that R =(Si+Sz)/Cz, the finite-
size interaction using the appropriate units indeed is
universal for the anisotropic triangular Ising model.

Two special cases deserve mentioning. Firstly, for the
isotropic triangular lattice one has S; = —,

' at criticality, so
that F1=2~3/3, which is the expix:ted ratio of nearest-
neighbor and row-row distances of the undistorted tri-
angular lattice. Secondly, for the rectangular lattice
S =0, and S,S =1. In this case q=l/Z=(S IS,)'~z.

This turns out to be the ratio of the correlation lengths
perpendicular and parallel to the strip, which is precisely
the geometric ratio needed to restore isotropy of correla-
tions in this case.

Finally, for the rectangular lattice we derived the
finite-size amplitudes from the expression for the free en-

ergy of an infinite strip with boundary fields, as given by
Au- Yang and Fisher (second of Ref. 2). We find here ex-
plicitly that in the thick-film limit only the signs of the
fields are relevant. The results are b, + +—ho o
= —rim/48 and b,o +——rior/24. This implies that univer-
sality is regained also in the presence of boundary fields
upon rescaling lengths in the physically obvious way.

III. MEAN-FIELD THEORY

In this section we obtain estimates of the amplitudes of
the finite-size contribution to the surface free energy of a
system of finite thickness employing a Landau theory at
bulk criticality. The free energy per unit area of an infin-
ite slab is obtained as the minimum of a functional of the

I2 2

PMM + FM;
i=1

where M=M(x) is a magnetization profile which varies

across the slab li &x & lz, M =dM/dx. The functions P
and F; will be specified below.

To find the free energy per unit area as a function of
the thickness z = lz —1 i we consider the change of the free
energy, 5F, upon varying M~M+5M, I;~l;+51&..

F=f" '~- " '~ 5Md
BM dx 5M

dF;
(bllrl —M51)+&51 + g hill;,

M

Equation (3.3) has a first integral,

aM
(3.5}

with E a constant for given thickness z.
It also follows that 50F, the change in the equilibrium

free energy per unit area, i.e., for a profile satisfying Eqs.
(3.3) and (3.4), due to variations 51;, is given by

50F= E5—z .

We consider the case

P = —,
' CM'+ —,'BM',

(3.6)

(3.7)

(3.8)

The absence of a term quadratic in M in (3.7) refiects the
fact that the system is at bulk criticality. The boundary
fields are H; in (3.8) and we allow different surface-
coupling enhancements V; for both surfaces. With (3.7)
and (3.8), (3.5) and (3.4) assume the form

m —m"=E/~E (,
m —Dim+hi =0, x =li,
m+Uzm —h2 ——0, x=lz,

(3.9)

(3.10)

where m =(B/4 [ E ~

}' M, g=(B
~

E
~

IC )' x,
m=dmldg=[CI(2)E (

)]'~2M, U;=(BC (E ( ) '/
V~,

and h; =(2C
(
E

(
)

' ~H~.

We shall employ the following two solutions of (3.9).
For E y 0 the inverse profile g =((m) is given by

g= f (1+v ) '~ dv, (3.11)

corresponding to an antisymmetric profile [Fig. 1(a}].
The reduced magnetization rn diverges at

+/=X. —= f, (1+v')-'"dv. (3.12)

Close to these boundaries the right-hand side of (3.9) is
negligible so that

m-=+(K, +g) ', 0&@,+g«1. (3.13)

m =-g, i g i « 1 . (3.14)

Close to /=0, on the other hand, we can neglect m in
(3.9), so that

where &DAN =M51+5M.
The equilibrium profile satisfies the equations

BP 8 BP =0, I& &X&l2x BM

(3.2)

(3.3}

The approximate forms (3.13) and (3.14) will be used in
the analysis of the various boundary conditions.

For E &0, one has a solution

i(i= f, (v4 —1) 'idv, (3.15)

corresponding to a symmetric profile [Fig. 1(b)] which
close to

aw =0, x =li
BM

BE2
=0, X =12

BM

as follows from variations with 51 i
——5lz ——0.

(3.4}
can be approximated by

m= (E,+g) ', 0&K,+g«1—.

For small
~ g ~, on the other hand, one has

(3.16)

(3.17)
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boundary fields and is given by

=16K,C /38 . (3.21)

8. Case2: h, h, &O

I
3

+Q
I

t

I

We choose hi &0. The only difference with case 1 is
that the boundary conditions can now be satisfied only by
truncating the symmetric profile (3.15). The result is

(3.22)

under the same conditions (3.20).

C. Case 3: hi&h2 ——0

The following subcases have to be treated separately:
(a) ordinary surface transition (uz&0); (b) surface-bulk
multicritical point (ui ——0); (c) extraordinary surface tran-
sition (u2 &0).

(a) Ordinary ( uz & 0). Choosing h i & 0, the antisym-
metric profile can be truncated at g= —E, +5li and
g= —512. As above, expression (3.19) holds, but now only
for 51i. For 512 we find, substituting (3.14) into (3.10),

(3.23)

From
~
512

~

&&1 it follows that

ho+ ——E~C /38, (3.24)

FIG. 1. Mean-field-theory magnetization profile in reduced
units: {a) EgO, Eq. {3.11);{b) E g0, Eq. {3.15).

independent of h~ and u&.

(b) Surface-bulk (u2 ——0). Choosing hi &0, the sym-
metric profile truncated at g = E, +51 i a—nd (=0,
respectively, satisfies the boundary conditions so that

Lhsa+ —— E, C /38 .— (3.25)

m=1+(, ~g~ &&1. (3.18)

We shall consider four separate situations: (1) h ibad &0,
(2) hihg &0, (3) hi/h2 ——0, and (4) hi ——hi ——0.

A. Case 1: hih2&0

Without loss of generality we choose h i &0. A profile
satisfying the boundary conditions can be found in this
case by truncation of the antisymmetric profile given by
(3.11), at g= —E, +51i and g=E, —512, respectively.
Substituting the expressions (3.13) into the boundary con-
ditions (3.10), one finds kg+ ———16EsC /38 . (3.27)

(c) Extraordinary (uq &0). The profile found in (a) sat-
isfies both (3.9) and (3.10), but has to be rejected as a solu-
tion that maximizes the free energy, since it has the un-

physical feature that a boundary field of one sign on one
side of the system induces a magnetization of opposite
sign on the other. Apparently, the symmetric profile must
be truncated at g= E, +Mi, with —5li given by (3.19),
and g=E, —5!z, with

(3.26)

51;=[u;+(u;+4ih; i

)' ]/2ih; i, (3.19)
D. Case4: hi ——h2 ——0

which can be done consistently as long as 5l; && 1, i.e.,

( h;
~

&& 1+u; . (3.20)

Under these conditions the width of the system in reduced
units differs negligibly from 2E, .

Expressing this result in the original units and ernploy-
ing (3.6), we find that the finite-size interaction decays as
z to leading order, as finite-size scaling would predict
in d =4. The interaction amplitude is independent of the

In this case, it is relevant whether the values of u; on
both surfaces are the same or different. %e find that the
magnetization vanishes, and therefore no interaction re-
sults, whenever Ui & 0 and U2 & 0. This lack of interaction
is a consequence of neglecting the fluctuations in the
mean-field approximation. On the other hand, when

ui &0 and uz &0, we find that the symmetric profile must
be truncated at g= —E, +51i, with 51, =

~
u~

~

', and at
g=E, —M2, with 512=

I u21 '. This refiects that the
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spontaneous magnetizations have the same signs on both
surfaces, so that

hgE ——6+ + . (3.28)

bok ——2 tI), + (3.30)

Before presenting the numerical results, we remark the
following concerning the connection between the Landau
theory developed above and the mean-field theory (as dis-
tinguished in Ref. 16).

In the mean-field theory, (3.7} is modified to contain
higher-order terms, and takes the form (at T=T, )

~=-,' CM'+ -,'aM'+O(M'), (3.31)

where the higher-order terms in M result in a bounded
magnetization. We show that the finite-size amplitudes
are insensitive to these higher-order terms. The inverse
profiles (3.11}and (3.15) are not significantly modified for
sufficiently large z. On the basis of (3.31), (3.9) becomes

m 2 —m —O(M )/fE
/
=E/iE i,

so that the antisymmetric inverse profile changes to

t= f (&+~'+O~ IE I'"~'~&IE
I I '"d~

which yields

g=g(m)+O(z '},

(3.32)

(3.33)

where g(m) is the inverse Landau profile defined in (3.11),
and we have used m —

[ E )

'~ and [ E
~

-z
For the symmetric profile the same result (3.33) holds,

as one verifies easily.
We can convert the expressions for the 5's into num-

bers, taking 8=—, for Ising spin- —,
' particles, and

C =q, where q is the lattice coordination number.
Here we have followed Nakanishi and Fisher. 'b' We ob-
tain, for example

b o xl l.82/q . 2 (3.34)

The other amplitudes are either zero or simply related to
this one via the equalities mentioned above, and also the
following equality,

/4, (3.3S)

which relies on the fact that K, =2K,
In terms of complete elliptic integrals of the first kind,

F(q),a), we have

K, = , F(n, n'/4) =F(m/2, -m/4) =-1.854

Kg ——(~2/2)F(n. /2, m/4) -=1.311 .

Next, considering UI ~0 and U2
——0, me must again in-

voke the symmetric profile, but now truncated at
K,—+Mi, with 5li ——

~
ui

~

', and at /=0, so that

(3.29)

Finally, examining ui &0 and u2 ~0, the antisymmetric
profile applies, truncated at g =—K, +M i, with 51i
=

~
u(

~

', and at g= —512, with 512 ——uz ', so that

The present results extend and also correct the mean-field
theory amplitudes given in Ref. 5.

Unsatisfactory features of the mean-field results are the
absence of finite-size interaction for many cases with zero
fields (hi ——hz ——0), and the dependence of the amplitudes
on spin (through B) and lattice coordination number
(through C ).

A last remark me mant to make is that, in the Landau
theory studied by Lipowsky and Seifert, the finite-size in-
teraction between a wall and the interface between a near-
critical wetting layer and a bulk vapor phase (spectator
phase) can be calculated in complete analogy with the cal-
culations described above. ' It is seen that our interaction
energy E corresponds to their scaling field t describing
the deviation from critical-endpoint coexistence. At coex-
istence the wetting layer would have infinite thickness and
represent a critical bulk phase. Away from coexistence,
we obtain' the layer thickness z explicitly as a function of
t. Furthermore, as far as the calculation of the finite-size
amplitude is concerned, the spectator phase ean simply be
replaced by the boundary field hz acting at the interface
between the wetting layer and the vapor phase. From the
definition of the bulk potential, it is clear that hz ——g 2,

where g is the bulk correlation length in the vapor phase.

IV. MIGDAL-KADANOFF
RENORMALIZATION-GROUP

APPROXIMATION

+db —d y b
—dk (k)

k=O
(4.1)

The term —dKt) is the reduced energy per spin in a con-
figuration of complete spin alignment. It occurs separate-
ly because me choose to @ark vvith a normalized '

Boltzmann weight exp[KB(s;sj —1)] for each pair of
nearest-neighbor spins s;,sj. The term proportional to ln2
results from summing over the dangling spins that remain
after bond moving. The infinite sum features regular
functions gB"', where k refers to the kth RG iteration.
Explicitly,

gs '=»I —,'[(1+p' ') +(1—p'"') ]), (4.2)

pB"'= [exp( 2KB)1'—"—
-(k)

( (k))bd

Consider a d-dimensional Ising model on a hypercubic
lattice consisting of z layers of n Xn Xn (d —1

times) sites each. The interactions are between nearest
neighbors: surface couPling Ks Jsiks T wi——thin the two
surface layers, and bulk coupling KB JB/kt) T.——Surface
fields hi and h2 act on top- and bottom-layer spins,
respectively.

To obtain the surface free energy per column, fs, as de-
fined in (1.2), we first compute the bulk free energy per
spin, fB. Performing a Migdal-Kadanoff (bond-moving)
renormalization-group (RG) transformation'9'2 with
length rescaling b, one finds

—fB—dKt) ——ln2[b~ —1 d(b ——1)]/(b —1)
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-(k) k (1 -(k))b
(k+i) ( +P s }—

(4.3)
(1+ (-k))b+(1 -(k))b

We proceed to compute F, the total free energy of the
slab of z layers. For fixed rescaling b, we restrict the
values of z to b +1, where m is integral. This restric-

tion becomes unimportant when we take b infinitesimally
close to 1, a procedure with many advantages. After
m RG iterations the slab is reduced to a double layer
(z =2) and renormalization then proceeds in a way that
exactly solves the double chain (d =2), as outlined in Ap-
pendix 8 1.

In the case h
&

——h2 ——0, one obtains

F!n—d ' —[(bm —1)d +l]E —2(d —l)E y (bi —d)k+iI[d(bm —k —i —1)+1] (k)+2(d —1) (k)}

k=0

(b) —d)k+1(d 1) (k) (4.4)

The contribution of the danghng spins is omitted since it
vanishes for i~ i. Furthermore,

g(k) 1 I
( [(1+-(k))b+(1 -(k))b]]

where

-(k) i (k) i(bd —I —b~ 2)/2t (k) abd -2

(4 5)

(b 1 —d)k+l[dbm —k —i (k) (d 1) (k)] (4 7)
k=m

where we have replaced z in (1.2) by z —1, a more con-

with

ps =—exp( 2Es },—(k) (k)

and the recursion relation for ps is as in (4.3), replacing

pa by ps.
The first sum in (4.4} corresponds to the first m RG

iterations which reduce the slab to two layers of
(n/b )

' sites each, with intralayer coupling Es ' and
interlayer coupling j;~ '. Denote a top-layer spin by s;
and its nearest-neighbor bottom-layer spi.n by t*. As ex-
plained in Appendix 8 1, new Boltzmann weights
x (s;,t;;sj, ti) are defined for pairs (s;, t;) and (sj, tj), where

s; and s~ are nearest neighbors. Every further RG itera-
tion contributes a term proportional to gt) to the free en-

ergy, where

gD ——lnmax x(s;, t;;s, , t, ), (46)
I S(,1l,'SP t ~ )

ensuring proper normalization of the Boltzmann weights.
The surface free energy per column now follows from

combining (4.1) and (4.4),

fs g (b ) + (d 1)(ga —2gs )
k=0

I

venient choice of thickness of the reference bulk system in
this case. Furthermore, terms that do not depend on z or
that vanish for b ~1 have been omitted.

It is now evident that, at bulk criticality, fs depends on
z through b/z ' for z~co. Take Es Ett ——E——,'"', for
example. The bulk coupling is then at the critical fixed
point E~ ——E,' ', and E~ renormalizes to Eo associated
with the fixed point of the ordinary transition The. differ-
eiice gt) —2gs in the first sum of (4 4) converges to its
fixed-point value gs —2go exponentially fast. Therefore,
in the limit z ~ N) (rn —+ 0() ), a contribution

(bl —d)m

bd —l
(d —1)(gs —2go }

results. Analogously, the second sum of (4.4) contributes

b)-d m ao

(d 1)(bl —d)m ~ (bi —d)k+1 (m+k)
b —1d

k=0

Taking the limit of an infinitesimal rescaling b=l+e,
0 g e g~1, the previous two results add up to

z' 2g o
—(d —1) f dl e" gDo(l):z boo

I

(4.8)
where g =—11m& o(g/e), and gD o(l =0)=gD(Ett, Eo). —

In the following, we consider the case h(&O=h2. To
obtain the amplitude ho+, for example, the appropriate
RG fixed point is Es —E,' ', Es Eo, and —hi ————+ co.
The spins in the top layer are then frozen (s; =1) and once
the Boltzmann weights have been normalized this layer no
longer contributes to the free energy. After bond moving,
the spin chains that terminate on one end at the top layer
are decimated just like spin chains further down in the
slab. The part of the surface free energy that yields 6o +
is then given by

PFf —1 Co

(h + ) y (b) —d)k+1(d 1)(g(k) (k))+ y (bi —d)k+1[db —k —) (k) (d 1) (k)( )]

where gt)( 0() ) is obtained as explained in Appendix B2.
Result (4.9) differs from (4.7): contributions gs

' to the
free energy arise only at surface layers with zero boundary
field; after m RG iterations the double layer presently

(hi ——+ 0() ) consists of a (d —1)-dimensional single layer
of spina on which a field of strength Es ——E,' ' acts.

Next consider h]h2 ~0. To obtain 5+ + the appropri-
ate fixed poin~ is Et)=E",", h, =h, =+m. The value of
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Eq (& —oo) is irrelevant since the surface spins are all

+ 1 or all —1. In the mth RG iteration, spin chains are
decimated which connect top to bottom layer and have
both end-point spins + 1 or both —1. The contribution
to the free energy is exactly the same as if both end-point
spins were free. However, this iteration now terminates
the renormalization of the slab. The part of the surface
free energy that yields b, + + is

eg —1f (i) iI + ) g (y 1 d)k—+I(g 1)g(k)
k~0

It follows that I(),+ +
——0 in the limit b~ 1. This lack of

interaction appears to be a peculiarity of the Migdal-
Kadanoff approximation.

In the case h )hi ~0, to extract b,+, the appropriate
fixed point is EE E——,' ', hl ———Ilq=+ oo. Unlike in the
previous case h)hz &0, the rnth RG iteration now deci-
mates spin chains with opposite end-point spins. This re-
sults in a different contribution to the free energy given by

(m —1)(+ ) 1 I
1 [(1+ (m-—1})b (1 -(m —l})b)

I

(y 1 d)k-+)gym k —1 -(k)
ga

(4.10) It follows that

(m —1),
1

(m)=gE + VE (4.11)

m —2 (Nf (i I + ) y (g 1 d)k+1(g— 1)g(k)+ i (I d)m[g—g(m —1) g(m —1)(+ )]+ y (y 1 d)k+—lgi m —k —lg(k)

k=0 k=m

=fs(hi=h2 ——+00}—(b' d) lnpE (4.12)

Therefore, in this approximation,

=5+ ++2E,(8) (4.13)

Up to now the surface coupling EE has been either re-
normalizing toward Eo (ordinary transition, h; =0), or ir-
relevant (in the presence of a surface field). In the follow-
ing, we examine the cases hi hq ——0 and——hl ——0&hi,
which involve the fixed points of the surface-bulk and ex-
traordinary transitions.

Consider h I
——h2 ——0. The appropriate fixed point for

COIIlputlllg EE E is EE=E~, EE=EE= + oo 011 both
surface layers. Nearest-neighbor spins on the same sur-
face are now fixed to the same value. By calculating
analytically the free energy of the double layer to which
the slab reduces after m RG iterations, one sees that in
the thermodynamic limit (n ~ oo) the only surviving con-
figurations have the same spin orientation on both surface
layers. Therefore, BEE 6+ +. %e ex——pect this result to
be generally valid: if both surfaces are at the extraordi-
nary transition, they order in the same direction in equili-
brium. This is physically indistinguishable from the case
where the surfaces order due to fields in the same direc-
tion.

Next we turn to b,su su, corresponding to the fixed
Point EE E,' ', Es ——Esa o——n both surfaces (})I

1
——hz ——0).

This amplitude is computed similarly to Ao o, replacing
Xo by Xss

Also cases where top and bottom layers have different
surface couphngs are interesting for iI ) =62

——0. Consider
first l(},oE, associated with the fixed point EE ——E,'"',
Eq Eo (toP), Eq ——EE——(bottom). Since one surface is or-
dered, we expect the equality ho E ——5@+ to hold in gen-
eral. Two more fixed points exist: Eq ——Esa (top} with
Eq ——Eo or EE EE (bottom}, at——which two new indepen-
dent amplitudes are computed: Ao sq and hs~ E.

In the following we take h) ——0&hz. Consider then
Ks ——Ksa or &s ——Kz on the top layer. Following the

b,(0)=b,o o —Y, (4.14)

where Y is defined as the amplitude of the z' "contribu-
tion to the free energy per column of an infinite slab of z
layers with periodic boundary conditions in all directions.

TABLE II. Migdal-Kadanoff renormalization-group fixed
points Ea for the bulk coupling E~ at criticality, and K0 and
Ksa for the surface coupling Eq at the ordinary and surface-
bulk transitions, respectively in 2, 3, and 4 dimensions.

6f x,'=z,'" Ko Esp

0.4407
0.1398
0.0501

0.0915
0.0266
0.0094

0.3393
0.1102

same reasoning as above, we expect that, in general,
bsu + ——hsa E and hE + b, + +. ——

In the remainder of this section, we discuss the numeri-
cal results and test their accuracy. For completeness, we
show in Table 11 the numerical values of bulk and surface
fixed-point couplings. In Table I (see Introduction) we
have presented the finite-size interaction amplitudes. Ex-
act results are available in two ' and four dimensions.
They are included in the table, in parentheses. The
Migdal-Kadanoff RG results agree surprisingly well with
the exact numbers, suggesting that we may trust the RG
results in d =3, at least in order of magnitude.

One direct check of the accuracy in d =3 lies in the
computation by Migdal-Kadanoff RG of the finite-size
amplitude Y of the excess free energy per column of a
periodic slab, i.e., with periodic boundary conditions also
in the direction perpendicular to the layers. Besides com-
paring the result in d =2 with the exact value, one can
check the prediction in d =3 against a recent Monte Car-
lo estimate by Mon and Nightingale, who computed
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TABLE III. Migdal-Kadanoff renormalization-group esti-

mates for the finite-size amplitudes L(0)=500—F, and F in

various dimensions d. Numbers in parentheses are exact results

or Monte Carlo estimates.

0.086
(0.197)'

0.067
(0.1)"

'Reference 2, exact.
bReference 6, Monte Carlo.

—0.141
( —0.262)'

—0.082

—0.118

where I"~) is the total free energy of a slab that is periodic
in all directions. In analogy with the calculation that led
to (4.7), we obtain

f(P) g (b 1 —d)k+1[2dbm —k —1 (k) (d I) (k)]

To compute Y, we work with a periodic slab of z layers
and 2b n ' sites. We choose z=2b so that m RG
iterations reduce the slab to a double layer. The excess
free energy per column is defined as

(4.15)

ACKNO%LEDGMENTS

Useful conversations with Professor Nihat Berker, Pro-
fessor Michael Schick, and Professor Fred Wu, and help-
ful remarks by Dr. S. Dietrich and Dr. S. Leibler, are
kindly acknowledged. One of us (M.P.N. ) thanks the "In-
stituut voor Theoretische Fysica" of the "Katholieke
Universiteit Leuven, " where part of this work was done,
for its hospitality. Another of us (J.O.I.) thanks the Belgi-
an National Fund for Scientific Research for financial
aid. The research at the Massachusetts Institute of Tech-
nology was funded by the U.S. Army Research Office
under Contract No. DAAG29-85-K0058 and that at the
University of Rhode Island under National Science Foun-
dation Contract No. DMR-84-06186.

APPENDIX A: EXACT RESULTS

1. Free-energy calculation

To solve the triangular Ising model [see Eq. (2.1)] with
cylindrical boundary conditions, we employ the method as
used to solve the Ising model on a finite, simple quadratic
lattice with a boundary field (see Ref. 14, Chap. VI). Here
we sketch the derivation.

The counting lattice used is illustrated in Figs. 8.6 (p.
190), and 8.8 (p. 191) of Ref. 14. The partition function of
a lattice of m columns (free top and bottom) and n rows
(periodic) reads

(4.16) Z „=(2coshKi) "(coshE2coshK3) '" "(detA)'~

Note that the renormalization of the double layer is now
initialized with Es ' 2' (pe——riodic boundary condi-
tions) and Es ' —Er'). At the fi—xed point corresponding to
bulk criticality, we obviously obtain f(i"=Yz' . The nu-

merical results for Y and b (0) are shown in Table III and
compared with exact (d =2) (last of Ref. 2) and Monte
Carlo (d =3) (Ref. 6) results. The agreement is satisfacto-
ry. In particular, the Migdal-Kadanoff RG result for
b, (0) is of the same order of magnitude as that from the
Monte Carlo simulations.

with

detA = ff detB(8), (A2)

where the product is over 8=m (2p —1)/m, p = 1,
2, . . . , m. Here, B(8) is a tridiagonal, n )& n block matrix
with 6)& 6 blocks:

Bq~(8)=8 1

D 1

T
1

1

1 —1 —1+z)e'
0 —1 —1

—1 1 1 0
—1 1 —z]e '

1 —1

1&j&n

5 0

BJ &+)(8)=—BJ+) ~(8)=R 0
D 0

5 8 D T
0 0 z2 0

0 0 0 —z3e'

0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 0

0, 1&j&n
0

(A4)
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where z; =tanhK;. The rows and columns labeled R and I. are eliminated as follows. A matrix B (8) is obtained from
B(8) with B'(8)=T(8}B(8),where T(8) is block diagonal with blocks

U S
U 1 0

S 0 1

I —z&e
ie

1 —zie i8

D T I.
0 0 (1—z, e '}
0 0 (1—zie ' )

TJJ(8)=R
D

0 0 1

0 0 —(1—zie' )

T 0 0 1 —zIe

0 0 0
0 (1—

0 I —(1—zie '
)

1&j&n .

0 0 0 1

Since detT(8) =1,one has detB(8) =detB'(8). Expanding detB'(8) in the R and I. columns yields

detA = g [ I
1 —zie'

I
"detB(8)],

where B(8) again is a tridiagonal, n X n block matrix. This time the blocks are 4 X4,

D
D —a

8J) ——T 1+a
U b

1&j&n (A7)

D 0

J', J'+1 1+1,j
U z2

T
0
0
0

U S
0 0
0 0, 1&j&n
0 0

(AS)

S. O —z3e'~ 0 0.

a =2iz,
I

1 —z,e"
I

-'sine

b=(1—zi)
I

1 —z)e'

(A9)

(A10)

Denote detB(8) by F„, and by Q„ the determinant of the (4n —1)X(4n —1) matrix obtained by removing the first row
and column of the matrix B(8). It can be shown that P„and Q„satisfy the following recursion relations,

P„ A iv'IEc
I

ii/IEC—
I

F i I&/c IQ. -i
(Al 1)

1
»

—a

3 =(a +ri +2aricos8)/I 1 —zie'

iE= (2iyP sin8) /
I

1 —z, e'e
I

2,

iC= (2iaii sin8) /
I

1 —z
&

e'

F=(y +p +2ypcos8)/I 1 —z&e'

zi +z2z3» p z2+z3z1

y =z3+ziz2, 31= —(ziz2z3+ 1),
from Eq. (Al 1) it follows that

P~ =p+ k, + +p A,

(A12)
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/EC
/
+a fE I(A —A+)

HAEC

f
+(A —A, +)

(A —A+) —a /E [(A —A+)

/
EC

/
+(A —i(,+)

A +F+[(A —F) +4
/
EC

/

]'
2

= —2(1+zi)(1+Z2)(1+z3)—4z, z2z3 —cos(8)z, (1—Z2)(1 —z3)+ —,
' 5,

b,'=(1—z2)'(1 —Z3) (1+zi+2zicos8) +16(zi —z2z3)(z2 —z3zi)(z3 —ziz2)(ziz2z3 —1) .

with /k+ /
& /A,

From Eqs. (Al), (A6), and (A13), it follows that f= —lnZ„/mn, the free energy per site, is given by

f= —ln(2coshKicoshK2coshK3)+ (co—shK2coshK3) — g ln[
~

1 zie—'
~

"(@+i(.+ '+p A,
" )] .

P1 2plPl g
(A15)

From this expression the finite-size interaction for m ~ ao

is found
(i)

a&

2e d8 i(,
Qo= —lim n' ln 1+

n m 0 4m' A, +

'n '

gk' ——det

(i)a

(A19)

Dominant contributions to the integral come from the
neighborhoods of 8=0 and 8=2m, where

= 1 ——8+O(82)
+

=1——(2ir —8)+O((2m —8)'),
vl

where

with

(&i b(ii icu (&) iru-
g

(l')
b (i)e —l'aP

g (l')e l N

(A20)

with

(1+zi)(l+Z2)(l+Z3)+Sziz2Z3 2zi(1 —z2)(1 —z3)

4[(z i +Z2Z3)(Z2+Z3Zi )(Z3+ZiZ2)(ZiZ2Z3+ 1)]
C2

S)+S2
(A17)

where we used z; =(C;—1/S;) and SiS2+S2S3
+S3S,=1. One finds

a'"=2z;(1+zj )(1+zk)+4zjzk(1+z; ),
b"'=z; (1—z2 )(1—zk),
c'"=(1—zj )(1—zk)

(A21)

(i,j,k =1,2, 3 or cyclic permutations) .

One finds a„-e ', where g; can be expressed in terms
—n/g, .

of the closest singularity of the integrand in (A20) to the
rea1 axis:

ho o ——— d81n(1+e 2~™)=-
2m' 48

which is Eq. (2.4).

2. Correlation-length calculation

(A18)

where

(i)=lny+,

a (i) + [(a (ij)2 4b (i)c (i i]1/2

2c") (A23)

We need to find the correlation lengths along the three
directions of the bonds of the triangular lattice. We use
the following expression for gk", the spin-spin correla-
tion function of two spins k lattice sites apart along the
direction of the K; bonds:

From Eq. (A22) one can derive Eqs. (2.6) without further
assumptions.

We conjecture that g; defined in this way indeed is the
correlation length. Indeed, for the rectangular and the
isotropic triangular lattices this gives the correct results.
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1. Renormalization of a double layer

This appendix is devoted to the Migdal-Kadanoff RG
computation of the free energy of a double lay-er T. he
method which we employ is analogous to that of Ref. 28.

The intralayer nearest-neighbor coupling is Ks and that
between the layers is Kz .Denote a top-layer spin by st
and its nearest neighbor in the bottom layer by i;. Con-
sider two pairs, (s;,t;) and (sj, tz), where s; and sj are
nearest neighbors. The associated Boltzrnann weight
whose form is invariant under the bond-moving RG ap-
proximation is given by

Eg
x (s;,t;;sj,tj ) =exp (s;t; +sjt& —2)+Ks(s;si+ t;t~ 2—)+KD(s; tj +sit; 2)—+Kg(s;sjt; tj 1)—

2(d —1}
(81)

where the couplings E~ and KF repro':nt next-nearest-
neighbor (diagonal} and four-spin interactions, respective-
ly, which are generated by the RG transformation. Note
that the weights are normalized such that x (1,1;1,1)=1.
For simplicity only a single surface interaction is assumed
here.

The 4X4 transfer matrix X between i and j is now con-
structed as follows: Let the indices 1—4 correspond to the
four states of spins s and t, in the order + +, + —,
——,and —+. We then have

1 P 5 P
Pr PeX= (82)

P~pr
where, e.g., Xi& ——X(1,1;1,—1}=P.

The "bond-moving" step in the RG iteration amounts
to the replacement X~X, where

Xkt =(Xt t)' (83)

since the layer has dimension d —1 (the length rescaling is
b)

The next operation is the decimation step, which yields
the renormalized transfer matrix

I 0 1 0
U=~ 0 I and I=—

We finally obtain

a' d' 0 0
d' c' 0 0

~'=Uo 0~, 0U' ~

0 0 0 A, 'p

where

8 =Q)A, +Q) +VI/ V)
b b

b b
C =Q2A, +Q2+VpA, V2

d =itiA+Qp+Uik, Uz
b b

(85}

(86}

with A, + and A, the eigenvalues, and u and v the respec-
tive eigenvectors of the 2X 2 matrix

(84)

First, we compute U 'X U, which equals (U 'XU),
where

1+5 2P

2p y+e
Furthermore,

l', =(1—5)'
ance

(87)

(88)

The subsequent normalization of X' then determines the
contribution to the free energy gn via (4.6), which takes
the form

gD ——lnX~i ——ln[ —,
' (a'+A, &)] (89)

because X» is always the largest element of X in the actu-
al computations. We remark that for d =2 the RG pro-
cedure yields the exact free energy of the double chain.

8. Renormalixation of a single layer in a field

(811)

with p=x(1, —1) and y=x( —1,—1).
The "bond-moving" step of the RG calculation is again

defined by (83},and the decimation step by (84).
%'e obtain

0 d
(812}

where a', d', and c' are defined by (86), with A, + and A,

the eigenvalues and u and U the respective eigenvectors of
X.

In analogy with (89), we now have

gD(ao }=lnXi) =lna' ~ (813)

In this section we treat the renormalization of a single
layer of spins in d —1 dimensions, with nearest-neighbor
coupling Ks and magnetic field of strength h =Ktt.

The normalized Boltzmann weight between nearest
neighbors s; and sJ is then given by

Kg s +s —2
x(s;,si)=exp Ks(s;sj —1)+

(810)
where we have distributed the magnetic field terms over
the nearesf-neighbor pairs.

The associated 2 X2 transfer matrix then reads
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