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To investigate theoretically the heavy-fermion state in cerium and uranium compounds, the low-
energy excited states in an Anderson lattice are studied at absolute zero. The coupled Dyson equa-
tions for both the Green’s functions of the f electron and the spin fluctuations are set up in the case
of the finite correlation interaction energy. The vertex functions are approximately determined to
fulfill the Ward-Takahashi relations which originate from the spin-rotational invariance, in the
low-energy region. In the spectral density of the f-electron Green’s function which is numerically
calculated, it is found that a sharp peak corresponding to the state of quasifermions with heavy
masses appears near the Fermi level, and a broad peak similar to the resonance peak in Kondo im-
purity systems appears in a relatively-high-energy region. As the temperature increases, the quasi-
fermion peak diminishes and changes to the resonance peak.

I. INTRODUCTION

Both cerium and uranium compounds have attracted
much attention because of their unusual properties. Some
of these compounds have extremely large coefficients of
specific heat at low tempertures and are called the heavy-
fermion compounds.! If cerium ions in the heavy fermion
compounds such as CeCug are replaced by lanthanum
ions, the coefficient of specific heat becomes smaller and
comparable to those of usual metals. This fact indicates
that the f electrons of cerium ions are responsible for the
large coefficients of specific heat in the compounds.
When temperature is relatively high, the electrical resis-
tivity in typical heavy fermion compounds increases with
decreasing temperature in a manner similar to that in
Kondo impurity systems. As temperature further de-
creases, the resistivity attains a maximum at a certain
temperature and then decreases. At low temperature, the
resistivity is proportional to the square of temperature.
This behavior at low temperatures is very different from
that in Kondo impurity systems, in which the resistivity
has the large value of unitarity limit. In this low-
temperature region, the coefficient of specific heat is ex-
tremely large and it has a maximum at some temperature
in compounds such as CeCug,?>3 CeAls,* and CeCu,Si,.’
This temperature is much lower than the temperature at
which the resistivity has a maximum. Let us call this
low-temperature state characteristic in these compounds
the heavy-fermion state. The central problem in the
heavy-fermion system is to understand the nature of the
heavy-fermion state, and the crossover between this
heavy-fermion state and the impuritylike state at high
temperatures.

A model appropriate for treating the heavy-fermion
system may be an Anderson-lattice model. In this model,
the f-electron ions whose f-electron energy levels are in-
side the conduction band are regularly placed at all the
lattice sites. The conduction electrons and the f electrons
are mixed by the mixing interaction. The strong correla-
tion interaction acts between f electrons when two f elec-
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trons sit on the same site. Many theoreticians expected
the existence of a narrow renormalized band of quasifer-
mions near the Fermi level in the Anderson lattice. They
used the following various methods for calculating the re-
normalized band: a single-site approximation for the
self-energy of the f electron,~® the Korringa-Kohn-
Rostoker (KKR) calculation by using the Nozieres
Fermi-liquid theory of the Kondo impurity,”!? the boson
theory,!!~13 variational calculations,'*~'® and others.!”—%2
In spite of their great efforts, it seems that these ap-
proaches, including ours, are not satisfactory. Therefore,
in the present paper we try to attack the Anderson-lattice
problem in a rather orthodox way. The Green’s functions
for the f and conduction electrons contain the self-energy
of the f electron which originates from the correlation in-
teraction between the f electrons. We consider that the
spin fluctuations dominantly contribute to the self-energy
in a system in which the f-electron energy levels are
placed deeply below the Fermi level. Then we set up the
coupled Dyson equations for both the Green’s functions
of the f electron and the spin fluctuations in the case of
the finite correlation interaction energy. Between the
self-energy and the vertex functions there are Ward-
Takahashi relations which originate from the spin-
rotational invariance. The vertex functions are approxi-
mately determined so as to fulfill the Ward-Takahashi re-
lations in the low-energy region. We numerically solved
the Dyson equations which are expressed by the coupled
integral equations. The numerical results for the spectral
density of the f-electron Green’s function are as follows.
When the wave number is fixed and the energy is
changed, a very sharp peak appears near the Fermi level,
corresponding to the quasifermion state. The energy
dispersion of the quasifermion is very weak. This fact in-
dicates that the effective mass of the fermion is very
heavy. The quasifermions with the heavy mass may be
responsible for the large coefficient of specific heat at low
temperatures. Along with the sharp peak, a broad peak
appears in a relatively high-energy region. This broad
peak corresponds to the resonance peak which is similar
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to the resonance peak in Kondo-impurity systems. The
appearance of the quasifermion and resonance peaks near
the Fermi level mentioned above is the characteristic
feature in the heavy-fermion state. Although our calcula-
tion in the present paper is restricted at 0 K, we can infer
the occurrence of the crossover between the heavy-
fermion state and the impuritylike state at a finite tem-
perature. The appearance of the quasifermion peak of the
spectral density of 0 K is due to the fact that the imagi-
nary part of the self-energy is extremely small at the pole
of the Green’s function appearing near the Fermi level.
When temperature increases, the quasifermion peak di-
minishes since the imaginary part increases. Above a cer-
tain temperature the imaginary part becomes considerably
large, and the quasifermion peak changes to the resonance
peak. This change leads to the occurrence of the cross-
over from the heavy-fermion state to the impuritylike
state when temperature increases.

In Sec. II we give the formulation for deriving the self-
energy, the spin fluctuations, and the vertex functions for
the Anderson lattice. In Sec. III we describe the pro-
cedure of the numerical calculation and present the results
of the numerical calculations for the spectral densities of
the Green’s functions for the f electron and the spin fluc-
tuations. In Sec. IV we give discussions and summary.

II. FORMULATION

We consider an Anderson lattice in which conduction
electrons (s electrons) and strongly correlated electrons (f
electrons) are coupled through a mixing interaction. We
denote the field operators for the s and f electrons with
spin o, respectively, by ¥,(x) and ¢,(x). The Hamiltoni-
an is then expressed as

H=Y [ d’x{$5x)e(—V)g(x)+Eed(x)g,(x)
VP X)) + 5 (x)0,(x)]

+1UsN )b (X)_o(x)bs(x)} ,  2.1)
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§—V)= -V .

Py 2.2)

Here, E is the atomic f-electron level measured from the
chemical potential u, V is the mixing parameter, and U is
the correlation energy. This Hamiltonian gives the fol-
lowing equations for ¢,(x) and ¢,(x):

[13, —e( = VD) Wolx)=V(x) ,
(i3, — Eo)do(x)=Vh,(x)+ Ud! ,(x)d_,(x)dy(x) .

Let us introduce an f-electron causal Green’s function de-
fined by

go(x —p)=(d,(x)bo(y))

(2;)4 [ d'pg,(ple?=—»,

where p is the four-dimensional vector (py,p). The equa-
tion for g,(x —y) can be obtained by using Egs. (2.3) and
(2.4) as

{i0,—Eo—V?*/[id,—e(—V))]}go(x —p)
=i8%(x —p)+U(d! ,(x)d_,(x)d(x)d5 (1) .

Using the self-energy function =,(p) defined by the rela-
tion

U o(x)h_o(x)o(x)d] (1))

(2.3)
2.4)

(2.5)

(2.6)

i

=G | PP pexplipx —p)1, 2.7
we find
2.(P)=1/[po—Eo—V/(po—g)~Z,(p)],  (2.8)
where
& =p'/2m . 2.9)

To construct the Dyson equation for =,(p), we rewrite
the two-particle Green’s function on the right-hand side
of Eq. (2.6) in a more convenient form. For this purpose
we define a causal Green’s function for the f-electron spin

with fluctuations and three-point functions as follows:
|
Alx —p)=(o (x)o_(y))= (2i v f d*q A(@)explig(x —y)], (2.10)
T
. 2 . Lo
(o ()1 (x1)g](x2)) = (2;)4 [ d' [d%le,(pg,(p +9)—A@T . (pig;p +9)8,(p)g(p +@)e ™ TH T
(2.11)
. 2 . s .
(- Blx) = | S | [ d'p [ daleuip +9081(0)—A@T_(p+a:0:0)8,(p a8 (p)]e T T
(2.12)

where o+(x)=¢¥(x)¢¢(x) and a_(x)=¢r(x)¢,(x). In
Egs. (2.11) and (2.12) the electron spin fluctuation vertices
I' 1 (p;q;r) were introduced. The structure of the three-
point functions is illustrated in Fig. 1. The two-particle
Green’s function in Eq. (2.6) is then rewritten in the form

I
(¢1 o (x)d_o(x)bo(x)dL (1))

_ —(0_(x)¢¢(x)¢;r(y)> for o=1,

T (o6, 06Ty foro=y. 1Y
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FIG. 1. Graphical representation of the three-point func-
tions. (a) (o, (x)d,(x,)d(x,)), (b) (o_(x)$,(x1)$](x,)). The
solid and broken lines represent, respectively, the Green’s func-
tions for the f electron and the spin fluctuations.

Substituting Egs. (2.11) and (2.12) into Eq. (2.13) and us-
ing the relation (2.7), we obtain the equation for the self-
energy function,

> (p)=Un{+U—"

J @*8@)T _(p+4;0:p)

2m)*

Xgip+q), (2.14)

El(p)=Un{+U(2l v [ d*qA@T L (p—g;q;p)
T
xgilp—q), (2.15)
where
i

== [d'g..p). (2.16)

To solve Egs. (2.14) and (2.15) we need equations for
the spin-fluctuation Green’s function and the vertex func-
tions. The equation for A(g) can be obtained by observing

(o, (X)o_(y))=— 1ir(§1+ (04 (x)y(t,,y)8] (1, +1,y)) .

(2.17)
Substituting Eqs. (2.10) and (2.11) into Eq. (2.17), we have
the equation
i
(2m)*
i
(2m)*

Alg)=— [ d'rgipgip+e)

+ fcd‘*p AQ)T (p;g;p+q)

Xg+(plg.,(p+q), (2.18)
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equations to determine the f-electron self-energy and the
spin-fluctuation Green’s function if we have a knowledge
about the vertex function I'y(p+gq;q;p). The graphical
representation of the Dyson equations, (2.14), (2.15), and
(2.18), is shown in Fig. 2.

Let us next study the vertex functions I'1(p+g;q;p).
The exact determination of the vertex functions is, in gen-
eral, quite difficult and so we have to make a certain ap-
proximation for the vertex functions. The approximation
we adopt is to replace the vertex functions in Egs. (2.14)
and (2.15) by a renormalized coupling constant A, in the
following way:

(2.19)

with pr=(0,pr).2 In this case we have the following ap-
proximate equations for the self-energy:

C+(p£q;q;p)~T +(pr;0;pr)=A,

3,(p)=Un{+A; [ d*ag.p+q)alg), (220

i
(2m)*

(2;)4 fd“qgr(p—q)A(q). (2.21)
Here we replaced also the bare coupling constant U by the
renormalized one, following the renormalization rule.?*
The above approximation corresponds to the one-loop ap-
proximation in which the self-energy diagram is com-
posed of a loop formed by the spin-fluctuation and f-
electron propagators. This type of approximation was
successfully used in a formulation of itinerant electron
ferromagnetism by Matsumoto et al.?> As is well known
in the theory of itinerant electron ferromagnetism, we
must be careful of an approximation to the vertex func-
tion in the equation for the spin fluctuations.>~2® For in-
stance, the application of the approximation (2.19) to Eq.
(2.18) along with the use of the self-energies (2.20) and
(2.21) breaks the spin rotational invariance of the system.
The rotational invariance plays an important role for the
low-energy properties in magnetic systems, therefore we
believe that a correct theory describing the heavy-fermion
state of the Anderson lattice should not violate the spin
rotational invariance of the system. For this reason, we
seek an approximation to the vertex function in Eq. (2.18)
which insures the spin rotational invariance. This can be

3,(p)=Unf +A?

i A

-0 .+
247) @

t .

SE) = O 4 /,p N
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S - Q + e
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FIG. 2. Graphical representation of the equations for (a) the
where the integration path c is taken as Imp, > 0. Equa- self-energy functions and (b) the spin-fluctuation Green’s func-
tions (2.14), (2.15), and (2.18) provide a set of coupled tion.
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achieved by using the Ward-Takahashi relations obtained
from the spin rotational invariance of the system in the
following way.

To derive the Ward-Takahashi relations we add the fol- Pt P+q |
lowing symmetry-breaking terms to the Hamiltonian (2.1),
since the Hamiltonian is invariant under the spin rotation 1"'
for the f- and s-electron systems by the same angle, wt

—(hy 208 (K)ol — (hy /208 (x)osb(x),  (2.22) k+q 1 k1

where o3 is the Pauli spin matrix. The terms are

equivalent to the Zeeman term if the parameters h; and

hy are taken to be an external magnetic field. In the pres-

ence of the term (2.22) the equation for the three-point FIG. 3. Graphical representation of the vertex function
function (2.11) can be obtained as follows: Tyulp,k+g;p+4q,k).

(—id,+hp){o (X)y(x1)Bl0x2)) =i8W(x —x)g, (x] —x7) —i8¥x —x)g, (%] —X3)

— V[0, 00— $}()8, (018, (x1 )8 (x2)) . (2.23)

Equation (2.23) leads to several useful Ward-Takahashi relations in our Anderson-lattice system. First we consider the
case x| =x,=y. In this case we find, noting g, ,(0)= —n{;, from (2.23),

— M8 (x —p)=(—id,+h) 0, (x)o_(»)) + V{[$}(x),(x) —Pl(x)$,(x)]o_(»)) , (2.24)

M; being the f-electron polarization,

M;=nf—n{. (2.25)
The three-point functions in Eq. (2.24) are rewritten as

(Bl x)o_(») =—iV [ d*2S,(x —2)($}(x)$,(2)o_(») (2.26)

(¢¥(x)¢1(x)o_(y))= —iV f d*z8,(z —x)X ()¢, (x)a_(»)) , (2.27)

where S, (x —z) is the unperturbed conduction electron Green’s function, i.e.,
S, (x)=i[id, —e(— V) +h;03/2]718¥(x) . (2.28)

Using Egs. (2.26)—(2.28) and (2.12), we obtain the Fourier transformation of Eq. (2.24),

] —qo+hs+e +q— €
M;=(go—hs)A(Q) + V*— d* Pra__P g1 (p)
S="0= 01 (2m)* f p(po-+—qo—ep+q—-hs/2)(po—ap+h,/2)g‘(p+q &P
[ —40+h,+8 + — €,
B d4 ptd P r ;q;0)A(q) . (2.29)
(2 f p(po+q0—e,,+q—h,/2)(p0—e,,+h,/2)g‘(p+q)g’(p) -(p+4;9;p)Alg)
From this relation we have the following relation in the limit ¢—0:
Mf=—thf+ths , (2.30)
where
X;=A00), (2.31)
j 1
X, =V2—. d* 1—A(0)T_(p;0; . 2.32)
e J P po—ey—hy /2 po—egt by 2y L~ AOT P30l (P2 (p) (

Thus the magnetic susceptibility of the f-electron system is given by (—X s+ X).

Let us next consider the Fourier transformation of Eq. (2.23). Unfortunately, the third term on the right-hand side of
Eq. (2.23) cannot be expressed in terms of the electron spin-fluctuation vertex functions ' +(p +¢;q;p). Hence we intro-
duce a vertex function with four f-electron external points I';, ,,, which is illustrated in Fig. 3. The two-particle Green’s
function in Eq. (2.23) is then Fourier transformed as
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(610, (x)— Pl (x), (x) ], (x 1Bl (x2))

i —qo+hs+eprq—¢
=V d*p [ d* prd P P8, (p+q)
o J 424" (Po+do—Eprq—hs/2)po—t,+hy/2) 51 P 8VP T

. _ h —_
Lt . fd“k qo+Ns+Ekrq—Ek
(27) (ko+9o—€xrq—hs /2N ko—ex+hs/2)

Xg(p)g,(k +@)Ty, (p,k+q;p+q,k)g,(p +49)g,(k)

X explipx, +igx —i(p+q)x,] . (2.33)

Substituting Eq. (2.33) into Eq. (2.23), we can obtain the following equation after some calculations:
VA —qo+hs+€pyq—Ep)
(Po+90—E€prq—hs/2)po—ep+hs/2)

g p)—gr p+q)=—(go—hs)+(go—h)AQT L(p;g;p+q)+

i fd4k "‘qo+hs+£k+q"€k

+Vi—
(27) (ko+qo—8k+q—hs/2)(k0—£k+h,/2)

g.(k+q)g, (KT, +(p,k+q;p+q;k) .

(2.34)
Since the f-electron Green’s function is written as
g (p)=po—Eoth;/2—V?*/(po—epths/2)—3, (p), (2.35)
we can relate the vertex functions to the f -electron self-energy,

2(p+9)—2(p)=(qo—hs)AQT (p;q;p +q)

2 (2;)4 [ a% (ko+q0—_.c.fi:—h;:/;‘;?l:;—szk+hs/2)g‘(k )8, OT (P + 430+, k) .
(2.36)
In the limit ¢g—0, Eq. (2.36) is reduced to
2,(p)—Zp)=—hsA0)T (p;0;p)
+hy d 2 f d*k v g, (kg (k)4 1+(p,k;p,k) . (2.37)
(2m) (ko—ex—hg/2)ko—ex+hs/2)
When only linear terms with respect to &, and h; are retained, we find from (2.37)
3,(p)—34(p)=—2h; aj:fp) h=o——2hx %—;l(sp—) .
i v?
:—th(O)I‘+(p;O;p)+hs(2—Tr—); f d“k—(;;—_—e—k)z—gl(k)gt(k)l"n,“(p,k;p,k) . (2.38)
This equation indicates the following relations:
aZ,(p) 1
ah, h=0= A (p;0;p) , (2.39)
[%ﬂ T T (27’7)4 [ d* (kOKZEk)zg;(k)g,(k)I‘“,H(p,k;p,k) . (2.40)

These relations are the Ward-Takahashi relations resulting from the spin rotational invariance of the Anderson-lattice
system.?’ Furthermore, noting the relation in the case g—0,

Sp+q)=2,p)=[Z(p+q)—2 (P ]+[Z,(p)—Z=,(p)]
3Z,(p) 0Z,(p)
9po ap

~qq +[2,(p)—2,(p)], (2.41)
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we also have the Ward-Takahashi relations from Eq. (2.36) in the limit of 4, and h;—0,

9z ,(p) ; 2

=A(O)T, (p;0;p) — i g BT (ookip k)
o |h-o +PiEP (2m)* f (ko—ek)zg‘ 81 1D, K5p

_ 82 , [ 3%,(p) o

ahf h=0 ahs h=0
9Z,(p) de,
k)g,(k)I" kip,k) . (2.43)

) J A (2Tr4 f (ko_.gk)l akgl( 181 (K)T+y, 14(p,K 5,

Since these relations are the manifestation of the rotational invariance of the system, we can make use of the relations as
a guiding principle for solving approximately Eq. (2.34) for I' , (p;q;p +¢).

The approximation we adopt in solving Eq. (2.34) is to replace the last term on the right-hand side of (2.34) by the ex-
pression in its small g limit, i.e.,

2 i f 4 —40+hs+5k+q_5k
(2m)*

198 Jk+q; k
(Kot go—ersq)lko—eg 5K TOB KT 0Pk + g0 +4,k)

i v?
~(—qo+h) 3 [ d*% o &1 Rg (O i (pokesp k)

(ko

i V aEk
+q- dik—— % ]
d (2m)* f (ko—gy)? Ok 8.(k)g(K)Ty, 1(p,k;p k)
aZ,(p) a3
=2(g0—hy) |57 2dp) (2.44)
ahs h =0 ap h=0

Here we assumed #h;~0. Substituting Eq. (2.44) into Eq. (2.34), we obtain the approximate vertex function
T, (p;q;p +¢) in terms of the self-energy,

VA —qo+hs+epq—Ep)
(Po+90—Ep+q—hs/2)(po—ep+hs/2)
92,(p) 0z ,(p)
ahs ap

The relation, of course, is compatible with the Ward-Takahashi relations (2.39), (2.40), (2.42), and (2.43), as can easily be
checked.

The equation for the spin-fluctuation Green’s function (2.18) can be rewritten in the form consistent with the equation
for the self-energy (2.20) and (2.21) by making use of (2.45). To do this, we rewrite Eq. (2.18) in the following form:

(go—h)A@Q@T L (p;g;p+9)~g 7 (p)—g . (p+q)+(go—hy)—

—2(go—hy) (2.45)

_q.
h=0

h=0

( —h)A(Q)=— —h **'——i d“p p p+q -+ i d4p p p+q
90 f) q) (‘IO f)(2 >4 fc gt( )gt( ) 2 )4 fc gf( )gx( )
x(qo—hf)A(q)I‘+(p;q;p +q) . (2.46)

Then, substituting (2.45) into (2.46), we obtain the equation in the limit of A, h;—0 as

—Qq0+Ep4+q—E&p
Alg) d'p 2 (p)g.(p+q)
90A(q)=—V* )4f P ot do—tn. o po ) 81 PE P+
i 9Z,(p) 9= (p)
— [ a4 . 47
Lypyn fc P&+(p) { ah, gl(p+q> o f ‘pg.(p) =Og;(p+q) (2.47)
Along with Eq. (2.20) or Eq. (2.21) this equation provides III. NUMERICAL CALCULATION
a set of coupled equations to determine the self-energy
and the spin-fluctuation Green’s function self- In this section we illustrate how to solve Egs. (2.20),

consistently. The renormalized coupling constant Ar in (2.21), and (2.47). To procure the self-consistent solution,
Eq. (2.20) or Eq. (2.21) is given by the relation (2.39) at we will try to make an iterative calculation. In the
P=Pr. present paper we obtain the lowest-order solution in the
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iterative calculation.

First we rewrite the equations for the self-energy and
the spin fluctuations in a more convenient form for the
numerical calculations, using the spectral representation
for g,(p) and A(q)

~ o(w) O(—w)
ga(p)_fdwp,,(w,p) Po—w+i8 = po—w—id
(3.1
_ O(w) O(—w)
(3.2)

where p,(w,p) and D(w,q) are the spectral functions,
O(w) is the step function, and § is an infinitesimal posi-
tive number. Substitution of Egs. (3.1) and (3.2) into Egs.
(2.20) and (2.21) leads to

3(p)=Un{+ [dw3,,(w,p)

x |2l _Ow ) g,
po—w+id = po—w—id
3,(p)=Unf+ [dw3Zy(w,p)
x | Bl _Ow)_| -y
Do—W—+id  po—w—id
where
3, (w,p) szdqof 3p1(W+40,P+q)

(2m)

X D(q0,9)[O(g0)—O(go+w)] ,

(3.5)
Sow,p)=A2 [ dgo frz—q);pf(w 90,P—q)
X D(q0,9)[O(g9)—O(go—w)] .
(3.6)

In zero field the self-energy does not depend on the spin
direction, so we use Eq. (3.3) in which the spin index is
dropped. As noted from the Green’s function (2.8), the
bare f level E, always appears in combination with the
self-energy in the form Ey,+2(p). We divide the com-
bination as follows:

where
Ey=E;+3(0,pf), (3.8)
3(p)=Z(p)—2(0,pF) . (3.9)

Here pr is the Fermi momentum which will be defined
later. Using (3.3), we have

iz(O:PF)
w

f duw Zz(w,p

ReS(p)=3,(p)= ,  (3.10

ImZ(p)= —vzz(po,p)sgn(po) . (3.11)

The lowest-order approximation is employed in the fol-
lowing calculations. First we approximate the spectral
function p(w,p) in (3.5) in the form

p(w,p) ~polw,p)=8(w—Eq—V?*/(w —gp)) . (3.12)

This expression corresponds to the Hartree-Fock spectral
function with the renormalized f level, E,. The spectral
function of the spin-fluctuation Green’s function,
D(qy,q), in (3.5) is calculated in this approximation as
follows. As seen from the equation for the spin fluctua-
tions (2.47), we have to estimate the derivatives of the
self-energy. When the spectral function (3.12) is used,
they are given by

9Z,(p)
ok, h=0_U(an$/ah,)h=o
=-UX,/2, (3.13)
)
ﬁ)— =0. (3.14)
ap h=0

In deriving Eq. (3.13) the relation (2.30) was used. Substi-
tuting Eqgs. (3.13) and (3.14) into Eq. (2.47), we obtain

qoA(q)=—P(q)+ UX:q0Q(p) , (3.15)
with
p(q)=V2(2;)4 S (Po+q‘(l)oj’7ii:‘;(1?§i€p)
xXg(plg.(p+4q), (3.16)
and
Q(g)= [ d%repgp+q) . (3.17)

(2 )*
P(q) and Q(q) can be rewritten by using the spectral rep-

Ey+3(p)=Ey+2(p), (3.7)  resentation (3.1) as
J
d’p —W+Eq—8
P(@)=V*[dw | 4 (pos
D=V [dw [ dpo [ 305 (Po+w—ep ) po—ep) PP
O(w) o(—w)
Xpolpo+w,p+q)[O(po) —O(po+w)] do—w 418 T go—w—id (3.18)
_ d3? _ O(w) (—w)
0(q)=[ dw [ dpo [ E5popoppotpo+u.p +aOUp0) —OMpg +w)] | S Lot S 319
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Thus the spectral function for the spin-fluctuation Green’s function is obtained from Eqgs. (3.15), (3.18), and (3.19) as
VA —go+€p1q—Ep)
D(qo, d - PP 1 UX; |po(po,P)Po(Po+90,P+Q)[O(po) —O(po+40)] . (3.20)
90,9)= f Pof 211')3 20(Po+90—Epsq)Po—Ep) s |PolPo;P)Po(Po+ 90, +4)[O(po Po+90)]

Let us proceed to the calculation, using the spectral function (3.12). Since the spectral function (3.12) is rewritten as

PO(PO»P)'—‘_““—‘—“’;( )p| [8(po—A L (P))+8(po—A_(p)], (3.21)
where
A4 (p)=[(Eo+e,)tB(p)]/2, (3.22)
B(p)=[(Eg—e,?+4V*1'2, (3.23)
the integration by p, in (3.20) can be performed as follows:
D(g0,9)=D1(q0,9) +D>(40,9) +D3(q0,9) +D4(g0,q) (3.24)
where
Di(g0,9)= f(?_v3 BP)B(p+q)< UXs | A4 (P)—€p| |qo+4 4 (P)—epaq
-Vz(_qo+8P+Q_EP)Sgn{[q0+A+(p)“€p+q][A+(P)-€p]}/(Io)
X8(go+A4,(p)—A4 ,(p+g)[O(4,(p))—6(go+4,(p)], (3.25)
1
D,(q0,9)= Trf (217,)3 B(p)B(p+q)(UXS|A+(p)_ept 1q0+A+(p)_EP+q1
—V(—qo+ep1q—ep)sgn{[go+4 4 (P)—gpqll 4. (P)—£,]} /g0)
X8(go+4 1 (p)—A_(p+q))[O(4 ,(p))—O6(g0+4,(p)], (3.26)
sgoa=r [ 2 27)3 B(p)B(p+q)<ux,|A_<p>—ep| |go+4_(P)—&pq|
_VZ(_QO+Ep+q"‘Ep)Sgn[[QO+A——(p)—Ep+q][A—(p)_ep]}/40)
X8(go+A_(p)—A ,(p+g@)[O(A4_(p)—O(go+4_(p)], (3.27)
qo’ f 2,”3 B(p)B(p+q (UXS'A—(p)_Ep‘ |q0+A—(P)_€p+q|
“Vz(_QO+5p+q_£p)Sgn{[q0+A~(P)_5p+q][A—(p)_€p]}/‘IO)
X&(go+A_(p)—A_(p+g)[O(4_(p))—O(gq+A4_(p))] . (3.28)

To make the momentum integrations we rewrite the bare
conduction-band energy as

ep=p>/2m —p=¢gp,+&—Ep, (3.29)

Eprq=Epp—Epy+Ep +26, 764 PcosO+ £, (3.30)
where O is the angle between p and q, and

€p, =PF/2m —pu, £,=p>/2m . (3.31)

Here the Fermi momentum py is given by the relation

Epp= V2/E, . (3.32)

I

This relation is obtained in the following way. The energy

spectrum of our system is determined by the equation
Po—Eo—V?/[po—ep]l—2(po,p)=0 . (3.33)

If the system is metallic, po=0 and p=pr must be a
solution of Eq. (3.33), i.e.,

—Eo+V?/e,,—2(0,pp)=0. (3.34)

(3.32) because
=0 owing to the definition (3.9). The integration

This relation leads to the relation
3(0,pF)
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variable p in Eqgs. (3.25)—(3.28) can be changed into the (P)=1/[po—Eo—V*/(pg—¢,)—2(po,E,)
variables £, and ©. The results of integrations of Egs. &p [Po—Eq Po=% poS,
(3.25)—(3.28) and the imaginary part of the self-energy
function Z,(p,£, ) are given in the Appendix.

Since the f-electron Green’s function is expressed in
terms of 2,(po,&,), and 2(po,£,) obtained from the in- the spectral function of the f-electron Green’s function

tegral (3.10) as can be calculated from the relation
|

+im25(po,&p )sgn(po)] , (3.35)

iz(po,§p )
Po—Eo—V?/(po—tp)—Z1(p0, & ) P+ [725(po, €, 1

Now we present the numerical results for the low-energy properties of the Anderson lattice. The parameters which we
use are E0/§pp, V/Epe» Ups(§p,), and D /§, . First we choose the following values of the parameters, E, /§p = —0.003,

V/Ep,=0.02, Ups(§pF)—01 and D/§, =15. In this choice we suppose the case Sop ~10* K, |Ey| ~10K, and

V~ 1021( In Fig. 4 the imaginary part of the spin-fluctuation Green’s function is plotted as a function of the normal-
ized energy q0/§pF for the various wave numbers &, /§PF As seen in this figure, a double peak structure is seen in the

low-energy region. This structure originates from the two peaks in the f-electron spectral function which will be shown
later. The wave-number dependence is very weak for the most part except the low-energy range. This means that the
spin fluctuations in the f-electron system are almost localized on the lattice site. Figure 5 shows the energy dependence
of the imaginary part of the f-electron self-energy function near the Fermi level po=0. The imaginary part of the self-
energy vanishes at the Fermi level. Its energy dependence near the Fermi level is given by Im=(p,,p) « p4. This result is
easily obtained by considering Eq. (3.5) as follows. In the case of p,~0 Eq. (3.5) is expanded as

(3.36)

P‘PO:gp)=

Satpop~—22 [ S )spao p+q)D(0, q)po+—2— (79); 3qq [P 90 P+ D0, ] | g=0§+0(p3) . (3.37)
Since the spectral function of the f-electron spin fluctua- (a) _«:‘?_50
tions D(qo,q) linearly depends on g in the low-energy re- g F /& =12
gion as seen from Eq. (3.20), £
N
FE Ve, q—E€p) £t
D(q0,q) ~ __I% UXS_____P_"'Q_L I
(2m) €pp+q T
-00I5 -00I -0005 (o} 0005 00l 0015
X po(0,p)po(0,p+q)go+O0(gg) ,  (3.38) Po/€pe
g L
:% F5.0
gt &p/épe=1.0
"
L ET
1o} T
- % /¢pe=005 -00l5 -00l -0005 O 0005 0Ol 005
tor L Po”&pe
i i . . ) . (c) T
| I 001 002 ol
bl | &/€p =002 E_ L $p/&pe=0.8
g |t g {50
Siorftor o1 oo2 21
92 i I fq/pr'0.0i =1
£ R . . L
= 00T g4/ »0005 002 | /\
G 0005 ool 005 002 -00I5 -00l -0005 O 0005 001 00I5
90/ &p, PO/EPF
FIG. 4. Energy dependence of the imaginary part of the FIG. 5. Energy dependence of the imaginary part of the f-

spin-fluctuation Green’s function. The following values of electron self-energy function near the Fermi level. The follow-
the parameters are used: E°/§Pp=_0'003’ V/§,F=O.O2, ing values of the parameters are used: Eo/§,F=-O.003,

Ups(§,,)=0.1, and D /£, =1.5. V/8p,=0.02, Up,(£,,)=0.1,and D /£, =1.5.
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we have
ImE(po,p)

_&2_ d’k _q_
m)? 2r)

2
V (Ek+q'“€k)
s
€€k +q

Xpo(O,p+q)po(0,k)po(0,k+q)p%sgn(po) R

(3.39)

for py~0. We also see in Fig. 5 that the imaginary part
of the self-energy has a large peak below the Fermi level.
Using this self-energy function, we calculated the spectral
function of the f-electron Green’s function near the Fermi
level for several values of the momentum. The result is
presented in Fig. 6. The spectral function near the Fermi
level has one sharp peak in the energy domain very close
to the Fermi level and a broad resonance peak above the
sharp peak. The sharp peak corresponds to the quasipar-
ticle excitation in our Anderson lattice system since the
lifetime of the excitation with the Fermi momentum is in-
finitely long [Fig. 6(b)]. Therefore the Anderson lattice
behaves as a Fermi liquid. The resonance peak lying
above the quasiparticle states originate from the many-
body interaction and is similar to the resonance peak seen
in the Kondo regime of the single-impurity Anderson
model. To understand the nature of the excitation we plot
the real part of the inverse f-electron Green’s function

_ (a)
(e': 0.3r Ep/pr'l,Z
[e]
& i
g o2
-003 002 -00I 0 00l 002 003
Po/€p,
(b)
a 0.3} 8 functiol
?03 Ep/Ep =10 [0 N
a
S oz2f
0.1}
-003 -002 -001 O 00l 002 003
Po/ &b
2 03
G P gprépm08
it
T o2}
QU
o1t
1 1 i i »
-003 -002 -001 O 00l 002 003
Py /€p,

FIG. 6. Energy dependence of the f-electron spectral func-
tion near the Fermi level. The following values of the parame-
ters are used: Eo/§, =—0.003, V' /£, =0.02, Upyp,(£p,)=0.1,
and D/§,F= 1.5.

g4 {(o )
< &p/ép=1.2
€ 2|
w
-001 0005 o /\——'
0005 00l
- Po/p,
_2 -
&al
¢ 4 (b)
¢ 7 €p/ &p,=1.0
€2}
w
<0005
0005 00l
- P./&
o/ SR,
.—2 . F
g4 (c)
g | é/&.=08
€ 2t
w
-001  \c0005 o /\__
0005 00l
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FIG. 7. Energy dependence of the real part of the inverse f-
electron Green’s function near the Fermi level. The following
values of the parameters are used: Eo/g,,r= —0.003,

V /£, =0.02, Up,(£, )=0.1,and D /&, =15.

F(po,£p)=Reg ~(po,£,)
2

=po—Eo— —ReZ(po,E,),  (3.40)

O“Ep

as a function of the energy p, for fixed £, in Fig. 7. Here

a-

¥

Q

w

0.0005¢+
08 09\Jo 11 2
€p/$p

-0.0005}

FIG. 8. Energy spectrum of the quasiparticle. The following
values of the parameters are used: E0/§,F= —0.003,

V /&, =0.02, Up,(£,)=0.1,and D/, =1.5.
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| + F €q/¢€p.=0.005

al . L i ool ooz
&z} | i &q/8&p, = 002
gl T ‘ ‘ N
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=i Eq/{pr=0 [o]}
d4 ef
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FIG. 9. Energy dependence of the imaginary part of the
spin-fluctuation Green’s function. The following ‘values of the

parameters are  used: E"o/g,,p=o.003, V/§,F=0.02,
Up,(gpF)=0.l,andD/§,,F=1.5.
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£ ts0
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FIG. 10. Energy dependence of the imaginary part of the f-
electron self-energy function near the Fermi level. The follow-
ing values of the parameters are used: Eo/§,F=0.003,

V /6, =002, Up,(§, )=0.1,and D /&, =1.5.

the last term Rei(po,_é,'p) is calculated by using the rela-
tion (3.10). Note that the zero points of this function give
the stable single-particle excitation energy if the imagi-
nary part of the self-energy is infinitesimal. As seen in
Fig. 7, the function (3.40) has two zero points. The zero
point being closer to the Fermi level gives the single-
particle state seen in the spectral function of the f-
electron Green’s function (see Fig. 6). When the zero
point appears at py,=0, the single-particle excitation is
perfectly stable, because the imaginary part of the self-
energy is infinitesimal. On the other hand, the other zero
point which is apart from the Fermi level does not give a
single-particle-like excitation, since the imaginary part of
the self-energy is quite large at this energy as seen in Fig.
5. The resonance peak at po/§, ~0.01 in Fig. 6 comes

from both the real part (3.40) and the imaginary part of
the self-energy being small in that energy range. In Fig. 8
we show the energy spectrum E, of the single-particle
states as a function of &, /&p,- In this selection of the pa-
rameters we have a holelike excitation spectrum. The ef-
fective mass m* of the quasiparticle in our Anderson-
lattice system can be obtained from the relation

* aEP
m /m=1/ | (3.41)
agp Pr
4_
04 (a)
& 03}
s $p/<pe=1.2
5y
001 002 003
P /&
o4t o’ %Pr
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3 o3l
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s o2l
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-003 -002 00l O 0Ol 002 003
o4l Fo¢pe
(c)
a
& o3t
s €p/&p.=08
T o2}
o1t
-003 -002 -00I 0 00l 002 003
Po/ép,

FIG. 11. Energy dependence of the f-electron spectral func-
tion near the Fermi level. The following values of the parame-
ters are used: Eo/€, =0.003, V' /&, =0.02, Up(£,,)=0.1, and

D /g, =15.
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FIG. 12. Energy dependence of the real part of the inverse
f-electron Green’s function near the Fermi level. The following
values of the parameters are used: Eo/§,F=O.OO3,

V /&, =0.02, Up,(§, )=0.1,and D /£, =1.5.

Using the results given in Fig. 8 for the relation (3.41), we
obtain the mass ratio |m*/m | ~400. Thus, we see that
a fermion state with quite heavy mass is realized in the
Anderson-lattice system.

In Figs. 9—13 we show the results from a selection of
the values of the parameters Eo/§pF=O.OO3, V/Ep,

=0.02, Ups(er)=0.1, and D/§,,F=1.5. In this case we

chose Ej to be positive. These results are qualitatively the
same as the previous ones. A difference lies in the peak
position in the imaginary part of the self-energy. That is,
the large peak appears above the Fermi level in contrast
with the previous case as seen in Fig. 10. Whether the
peak is situated above or below the Fermi level depends on
the sign of E,. In this selection of the values of the pa-
rameters, a broader resonance peak appears below the Fer-

mi level (Fig. 11). The dispersion of the quasiparticle en- -

ergy is shown in Fig. 13, which is obtained from the zero
points of the function illustrated in Fig. 12. In this case
we find a particlelike excitation spectrum with the mass
ratio m*/m ~290.

Figures 14 and 15 show the results when we take a
much smaller value of Ey, i.e., Eq/§, =0.0015, keeping

O
S

Ey/
o p/&p.

i I 1

08 09 Ao I 12
$p/Epe

-0.0005¢

FIG. 13. Energy spectrum of the quasiparticle. The follow-
ing values of the parameters are used: Eo/gpF=0.003,

V/&p,=0.02, Up,(£,,)=0.1,and D /§, =15.

the other parameters unchanged. In Fig. 14 we see that
spectral function is sharpened more and the resonance
peak is much more narrow compared with the previous
cases. The effective mass ratio of the quasiparticle ob-
tained from the energy spectrum shown in Fig. 15 is
m*/m ~1100.
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FIG. 14. Energy dependence of the f-electron spectral func-
tion near the Fermi level. The following values of the parame-
ters are used: Eo/§,,=0.0015, V/E, =0.02, Up,(&,)=0.1,

and D/§PF= 1.5.
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FIG. 15. Energy spectrum of the quasiparticle. The follow-
ing values of the parameters are used: E’o/§,F=O.0015,

V /£, =0.02, Up,(£, )=0.1,and D /£, =1.5.

IV. DISCUSSION AND SUMMARY

In the present paper we investigated the low-energy
properties in the Anderson-lattice system by making a
one-loop correction due to the spin fluctuations to the f-
electron self-energy at 7=0 K. The formulation present-
ed here is also applicable to the single-impurity Anderson
model. In the single-impurity Kondo case, our theory
which includes the one-loop approximation satisfies the
exact relations among the self-energy, the vertex func-
tions, and the susceptibility,” 33 and leads to the correct
feature of the resonance state around the Fermi level.**
Therefore, we consider that this approach is also suitable
for treating the Anderson-lattice system. We believe that
the result obtained in this paper does correctly delineate
the behavior of the low-energy excitations in the Ander-
son lattice.

We found that the low-energy excited states in the An-
derson lattice-system are composed of both a quasiparticle
state with heavy mass and a many-body resonance state
when the renormalized f-level parameter E, is close to
the Fermi level. In the single-Kondo-impurity system, as
is well known, the resonance state appears just around the
Fermi level below the Kondo temperature. However, no
stable quasiparticle state exists because of the lack of the
translational symmetry. Thus the features of the excita-
tion in the Anderson lattice clearly differ from those in
the single-impurity system on the point that the well-
defined quasiparticle state exists just around the Fermi
level. Therefore, the heavy fermion state in the cerium
and uranium compounds may be identified with the
quasiparticle state obtained in the present calculation.
The large electronic specific heat observed in the heavy
Fermion compounds such as CeCu,Si,, CeAl;, and CeCug
is attributed to this quasiparticle excitation.

The nature of the quasi-fermion state can be explained
in the following way. We suppose a quantum-mechanical
superposition of the f-electron states of up and down
spins. Then the level of this f-electron state is lifted up
near to the Fermi level due to the correlation interaction
acting between the f electrons with up and down spins.

(0] P,

FIG. 16. Schematic representation of the f-electron density
of states near the Fermi level at T=0 K.

The f-electron state at each lattice site is partially hybri-
dized with the conduction-electron state by the
conduction-electron—f-electron mixing interaction. This
hybridized state is a Fermi liquid state near the Fermi lev-
el. The mass of the Fermi liquid is strongly enhanced by
the renormalization effect due to the spin fluctuations.
Accordingly, the heavy fermions in the Fermi liquid state
are the conduction-electron—f-electron hybridized elec-
trons which are heavily dressed by the spin-fluctuation
cloud.

It is noted that the width of the quasiparticle band is
very narrow compared with that of resonance level as seen
from the f-electron spectral functions obtained in Sec. III.
The density of states of f electrons is obtained by sum-
ming the spectral function (3.57) over the entire p space.
However, the accurate evaluation of the density of states
is quite difficult owing to the singular behavior of the
spectral function around the Fermi level. Therefore, we
illustrate the density of states schematically in Fig. 16.
As shown in this figure we expect to have two characteris-
tic energy scales Tyg and Ty, which correspond, respec-
tively, to the heavy-fermion band width and the energy of
the resonance peak position. We suppose that Tyg takes
a few Kelvin in typical heavy-fermion systems. The other
energy scale T} is similar to the Kondo temperature in
the single-impurity case. The values of Typ is almost 1

Pi(Po)

—
>

(0] Py
FIG. 17. Schematic representation of the f-electron density
of states near the Fermi level at a temperature between Tyr and
Ty.
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order of magnitude smaller than T7.

Our theory presented in this paper is restricted to abso-
lute zero. Now we are extending our theory to finite tem-
peratures and planning to calculate the specific heat and
the electrical resistivity at finite temperatures. For the
present, we may speculate the temperature variation of the
state in the Anderson lattice on the basis of the above pic-
ture for the energy excitation. At finite temperatures the
thermal fluctuations lead to a finite value of the imagi-
nary part of the self-energy even for py=0. As tempera-
ture increases above Tyr the imaginary part increases and
then the quasiparticle state cannot be well defined
anymore. In the temperature range, Tyr < T < T}, thus,
we expect only the resonance peak in the f-electron densi-
ty of states near the Fermi level as shown schematically in
Fig. 17. This structure change of the density of states in-
dicates the occurrence of the crossover behavior from the
heavy-fermion state to the single-impurity-like resonance
state seen in the heavy-fermion compounds.

Finally, we briefly discuss the experimental results for
the specific heat in the heavy-fermion compounds. In the
compounds such as CeCu,Si;, CeAl;, and CeCug the
quantity of the specific heat divided by temperature C/T
has extremely large values below 1 K. In CeCu, it has
been observed that an application of magnetic fields of
several Teslas strongly depresses the quantity C/T below
1 K. The temperature and field dependences are con-
sistent with the present theoretical result that a narrow
quasifermion band exists near the Fermi level only at very
low temperatures. In some of the heavy-fermion com-

structure in the density of states of the quasiparticles.
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APPENDIX

In this appendix we make the momentum integrations
given in Sec. III using the new variables £, and 6,

d3 D
—2—(27)3< ) =pul&y,) [ dEpEp /8,0

1
X+ [_ dcoso) ),

(A1)

ps(pr) being the density of states of the bare conduction
band with band width D at §p =§pF, i.e.,

ps(£p)=(2m*)\ 28,2 /(2m) (A2)

Using (A1) for (3.25)—(3.28), we can perform the integra-
tions by cos© and have the result for the spectral function
of the spin-fluctuation Green’s function,

D(q0,9)=D(q0,&,)
Ps(gpp)

= W[51(40,§q)+52(40,§q)
q9°pPp

Di(g0.£)= [, d&, |UX, -

Dy(go&q)= [, d& |UX, —

Ds(qo.£,)= fcsdg,, UX, —

D D A
pounds the quantity C/T has a maximum below 1 K. +D3(90,6)+Dal90,6,)1, (AI)
The appearance of the maximum may result from fine

where
]
VIE,—¢,+B(g,)]
[go+A4 4 (e,)—e, —X(g0,e,) 1[4 4 (e,)—¢, 1[2g0+B(e,) —Eg+¢,]
o 9o+ A(e)—ep—X(goe,) | |A4(e))—¢, [[O(A,(e)))—Olgo+4, (cp))] (Ad)
B(e,)| X(qo,e,)—Eg+¢,+[B(e,)* —2(Eg—¢,)X(go,€,) +X(go,€,)?1 2|
VI{Eo—e,+B(g,)]
[go+A4 4 (g))—€, —X(g0,,) 1[4 4 (,)—€,1[290+B(e,) —Eg+¢,]
|40+A+(Ep)‘5p “X(‘IO,Ep) | ] A+(Ep)_5p | [e(A+(5p))_e(QO+A+(Ep))] (AS)
B(e,) | X(go,e,)—Eo+e, —[Ble,* —2Eo—e,)X(go,€,) + X(go,€,)?1 2|
VYE;—e,—B(g,)]
[go+A4_(g,)—e, —X(qo,€,) 1[4 _(g,)—&,1[290—B(e,) —Eg+¢,]
% |go+A4_(g,)—€,—X(qo,e,) | | A_(g,)—g, | [O(A_(€,))—Olgo+A_(g,))] ’ A6)

Bl(e,) | X(qo,e,)—Eq+¢, +[B(e,)* —2(Eq—¢,)X(q0,8,) + X (go,€,)2]' 2 |
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54(q0’§q)= fc4d§p UXs—

VI Eo—e,—Bl(g,)]

[go+A4_

o Lg0+A_ (&)~ ~X(go,cp)| | 4_(e)—c, | [O(4_(e,))~Olgo+4_

(e,)—€, —X(qo,€,)1[A_(€,)—¢,1[290—B(e,) —Eg+¢,]

(g,))]

B(e,)| X(qo,e,)—Eo+¢, —[B(e,)*—2(Eg—¢,)X(qo,€,) +X(q0,€,)*1'? |

where
B(e,)+Eq—
X(go,ep)= dolBley)+Eo=gp] (A8)
[290+B(e,)—Eg+¢,]
- Ey—¢,—Bl(g,)
X(qo,ep)= qolEo d p] (A9)

[2g0—B(e,)—Eo+¢,]

The integral domains ¢|—c4, are taken in such a way that
the integration variable £, satisfies the conditions

X(q0,8,) <290+ B(g,)

and (A10)
£, —26,7%EL2 <X(qo,8,) <&y +2£,°E}* for e, ;
X(qo,ep) > 290+ B(e,)

and (A11)
£, 2§1/2 ]/2<X(qo,8p)<§q+2§“2 172 fore, ;

X(go,e,) <2g0—B(g,)

and (A12)
§q—2§,1,/2§l/2<f(qo,£p)s§q+2§1/2 12 for ¢y ;
X(g0,€,)>2g0—B(g,)

and (A13)
£, —26,"6," <X(qo.8,) <&, +28,%6" for ey .

Let us next calculate the susceptibility X, in the in-
tegrands in Egs. (3.25)—(3.28). The equation for X, is
given from Eq. (2.32) and the Ward-Takahashi relation
(2.39) in the limit h;—0 by

. V2
X,=v—— [a*
G [ 4 (Po—¢, )2

92,(p)
ohy

-2

h =0

xXg.,(pg:(p) . (A14)

1/2
32PorEp) = [[Arps &, P /(261/)) f b g 1 4

) (A7)

When the approximate spectral function (3.12) is used, we
find

)
20 Y 0)=1ux, (A15)
Ohy  Jh—o
Then, Eq. (A14) leads to
X;=R(1-UX;), (A16)
with
i &
= d* (p)g+(p)
a7 J 4 s e s
=Vpy(§ ) /(E 5+ V) . (A17)

On the other hand X, can be obtained from Eq. (2.47) in
the limit go—0, §—0 as

X;=A0)=R—-UX,Q, (A18)
with
Q= (2 v [ d*pei(pig(p)
=Vpy(&, ) /[EHEF+ VD] . (A19)
From Eqgs. (A16) and (A 18), we obtain
=R(1-UQ)/(1—U?QR), (A20)
X;=R(1—UR)/(1-UQR) . (A21)

The imaginary part of the f-electron self-energy can be
calculated by substituting the above results for D(go,§,),
Egs. (A3) and (3.12) into Eq. (3.5). The integration by g,
in Eq. (3.5) can be performed in the same way as in the
above calculation for the spectral function D(go,§,). The
result for 2,(po,£,) is given by

+(&)—e [ [O(A (k) —po) —O(4 ()]

1 ~
X f__ldtD(A (&) —po,Ex +E, — 26176} 1)

1/2
+{[Arps (e, )12/ (26577} f db g | 4-

Xf dt D(A_ (Ek)—P0s§k+§p——2§1/2 1/2,

(ex)—ex | [O(A _(gx)—po)—O(A4 _(g;])

(A22)
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