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Correlated random walks on two-sublattice systems. II. Monte Carlo simulations
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Correlated random walks on two-sublattice systems, with a potential difference between the sub-

lattices resulting in site-dependent hopping rates, are studied by Monte Carlo simulation techniques.

Large effective samples, consisting of approximately a million particles each, are used. Equally im-

portant, the systems are monitored over long effective times, e.g., up to 1000 Monte Carlo steps per
particle (MCS's/P) for the three-dimensional lattices of NaC1 and CsC1 types, and up to 2500
MCS's/P for their two-dimensional analogs. The data are analyzed to accurately estimate the
labeled-particle diffusion rates. These high-precision Monte Carlo estimates are compared with the
predictions of the theory described in the preceding paper. Qualitative agreement between the two

sets of results obtains over a wide range of effective potential differences between the two sublat-

tices. Quantitatively, however, the agreement is found to be reasonable only as long as the

effective-potential differences, reflected through the intersublattice hopping rates ratio cr, are not too
large, or, equivalently, as long as o lies within the restricted range ( Z —2) & o p 1/(Z —2). (Here Z
is the coordination number for the relevant particle hops. )

I. INTRODUCTION

Simple rate equations, describing stochastic hopping
motion of classical particles, have been used to describe
transport phenomena in a wide class of physical systems.
Examples include ionic motion in fast-ion conductors,
diffusion of hydrogen and its isotopes in various metal hy-
drides, and tracer atom diffusion in hot solids via the va-
cancy mechanism. Relevant aspects of the microscopic
motion are investigated by NMR, incoherent scattering
of slow neutrons, and tracer diffusion measurement tech-
niques.

Theoretically, the rate equations have been studied by
several different methods. ' In view of the precision in-
herent in the theoretical predictions, and the relative com-
plexity of the actual physical systems, " the cleanest test
of the theories is provided by Monte Carlo simulation pro-
cedures. ' ' Most of the existing "theoretical and nu-
merical works deal with spatially uniform lattices. Two
sublattice systems are not only more complex to treat
theoretically, ' ' generally less is known about them ei-
ther from laboratory or numerical experiments. ' '

It is therefore of interest to study, by computer simula-
tion techniques, the dynamics of tracer diffusion in two
sublattice systems. In particular, the following three
salient features observed in the course of the theoretical
work presented in the preceding paper (henceforth to be
referred to as I) would at fimt appettr to be worth examin-
ing. The detailed notation follows that in I. These are the
foBowing.

(a) As the effective potential difference between the sub-
lattices incretmes, giving rise to either an increase in o, the
ratio of the intersublattice hopping rates, beyond its uni-
form lattice value of unity, or equivalently a decrease in tr

below the value 1, a dip in the tracer diffusion correlation
factor, f", is occasioned whenever the case of half-filled
lattice is approached.

(b) The frequency-dependent response of the tracer is
found to embody two characteristic frequencies: namely
J z and crJ z Super. ftcially, this situation is reminiscent
of the occurrence of the two distinct time scales in the
Richard's model" of tracer diffusion in hydrogen-
concentrated metal hydrides. However, in detail there are
essential physical differences between the two problems.
Nevertheless, it would be interesting to gain some insight
into this aspect of the phenomenon.

(c) Finally, the wave-vector dependent correlation factor
E(k,O), which is related to the tracer response Gk [see
Eqs. (5.2}—(5.6) of lj, is found not only to undergo a
change in its behavior as the average vacancy concentra-
tion V spans from 1 to 0, but additionally it is found that
for larger V values, a characteristic dip also appears half-
way across the k range whenever o is large (or equivalent-
ly "small"} compared to unity. Note that this behavior is
to be contrasted with the corresponding uniform lattice
case (i.e., where cr=1}, which portrays only a transition
from a minimum to a less pronounced maximum at the
center of the k range without any hint of an additional
characteristic dip.

Of these three features of the theory, historically the
one most susceptible to error has related to the hydro-
dynamic limit where the wave vector k and the frequency
to are both vanishingly small. Indeed, for the uniform lat-
tice case, where both the strengths and the weaknesses of
the Tahir-Kheli and Elliot (TKE) decoupling have been
extensively studied, ' ' ' it has been found, by compar-
ison with precision Monte Carlo data and some exact re-
sults available in one dimension, that the TKE does best
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for lattices with large coordination number and for sys-
tems with the weakest correlations (i.e., when the back-
ground is not too slow compared to the tracer). When the
correlations are not small, the predictions of the unembel-
lished TKE noticeably deteriorate. Yet, when this occurs,
it does so primarily in the limit of large particle displace-
ments and long elapsed times. For short times ' ' and
for small particle displacements, correlations remain weak
and are well described by TKE even without the embel-
lishments included in the self-consistent evaluation of the
repeated tracer —vacancy-pair scat terings. Thus, for finite
k and r0 [i.e., that is when k is at least 1/Zth of the zone
size and c0) (J Z)/Z], the TKE predictions are not only
qualitatively correct, they are also quantitatively accu-
rate. '

It is therefore clear that the first order of business in
verifying the usefulness of the theory presented in I is to
test the accuracy of its predictions for the diffusive re-
gime, where k and co are small. The plausible assumption
here is that in view of the established properties of TKE,
if the results of I are found to be satisfactory for small k
and r0, they can be expected to be reliable for finite k and
N.

II. MONTE CARLO SIMULATIONS
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The well-established Monte Carlo regimen can be ex-
tended to treat the case of two interpenetrating' ' sublat-
tices without any serious difficulty. Therefore to save
space, we refer the reader to the earlier works for intro-
ductory details. The only additional points worth making
are that, unlike in the previous works &8, i9 the Monte Car-
lo averages were taken over large samples (involving NG
different particle trajectories where NG is in excess of one
million for each of the cases studied). Equally important,
the systems were monitored over long periods of time,

[r,„was 1000 Monte Carlo steps/period
(MCS's/per) for the three-dimensional lattices and 2500
MCS's/per for the two-dimensional case]. After the long
time limit sets in, i.e., for ~)~o-500 MCS s/per, the sta-
tistical fluctuations scale roughly as [NG(r,„ro)]-
Moreover, the rounding off errors, which would be of or-
der I/ro, are further decreased by analyzing incremental
displacements after ro as, for instance, is described in Ref.
1S.

III. COMPARISON WITH THEORY
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FIG. 1. f" (theory, +; simulation, o) is plotted against o
for fixed vacancy concentration V=0.5, for (a) the CsC1 struc-
ture; (b) the NaCl structure; (c) the two-dimensional lattice. The
data were taken from Tables I—III.

We analyze four systems: Namely, (i) the CsC1 struc-
ture with two interpenetrating sublattices with Z=8, (ii)
the NaC1 structure with two interpenetrating sublattices
with Z=6, and (iii) their two-dimensional analogs.

For the purposes of tracer diffusion the two-
dimensional analogs of these two structures are topologi-
ca11y equivalent, reducing to the quadratic lattice with
Z=4. This equivalence provides a powerful check on the
two sets of prograins (i) and (ii). Even though the details
of these programs are very different, their two-
dimensional analogs are very simply achieved by eliminat-
ing the third dimension from all the three-dimensional do
loops.

Of the three lattices being analyzed, the CsCl lattice has
the largest value of Z and thus is the most mean field
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TABLE I. CsCl—body-centered-cubic structure. Monte Carlo results for the tracer diffusion corre-

lation factor f'" are compared against those pmvided by the theory of paper I. The labeling in column 1

(e.g. , +,f, g) is merely to assist the eye in locating results belonging to a particular class, e.g. , for fixed
C8

0.50000
0.45000
0.40000
0.35000
0.30000
0.25000
0.20000
0.75000
0.687 50
0.625 00
0.593 75
0.562 50
0.8545
O.7324'
0.6104
0.4883
0.3662

0.50000
0.55000
0.60000
0.65000
0.70000
0.75000
0.80000
0.75000
0.81250
0.875 00
0.906 25
0.937 50
0.8545
0.8545
0.8S45
0.8545
0.8545

1.00000
0.669 42
0.44444
0.289 94
0.18368
0.111 11
0.062 50
1.00000
0.507 69
0.238 10
0.151 19
0.085 71
1.0000
0.4661
0.2667
0.1625
0.0984

Theory

0.8889
0.8864
0.8787
0.8653
0.8446
0.8145
0.7706
0.8163
0.8125
0.7964
0.7843
0.7684
0.7813
0.7973
0.8034
0.7994
0.7831

Monte Carlo

0.886+0.002
0.883+0.002
0.874+0.002
0.8S9+0.002
0.836+0.002
0.800+0.002
0.746+0.002
0.812+0.002
0.809+0.002
0.791+0.002
0.776+0.002
0.759+0.002
0.773+0.003
0.790+0.003
0.793+0.003
0.788+0.003
0.765+0.003

like. For this lattice, we therefore expect the TKE decou-
pling to give accurate results for the self-diffusion case
(with J =J, see paper I for notational details) as long as o
is not much less than about —,'. (Without any loss of gen-

eraHty we consider only the cases for which o & 1.) This
is borne out by the contents of Table I [see also Fig. 1(a)]
which refers to the CsC1 lattice.

Results for the V= —,
'

cases are listed first in Table I.
For cr= 1, the theoretical estimate f"=0.8889 is barely
resolvable from the Monte Carlo one, f"=0.886+0.002.
The situation is only slightly worse when cr falls to about

(see the second entry of the first column in Table I).
Now, for o =0.6694, f"=0.8864, according to the theory,
whereas the Monte Carlo result is 0.883+0.002.

Looking at other entries down the list, we observe that
for cr 0 18-37,. f" (Monte Carlo) =0.836+0.002 now lies
a full percentage point lower than the corresponding
theoretical estimate, f"=0.8446. This trend is continued
and by the time cr- —,', , the Monte Carlo estimates are ful-

ly 2% lower than those given by the theory. [See Fig. 1(a)
for a rough but easier comparison of these results. ]

Despite the noticeable discrepancy between the Monte
Carlo and the theory when o falls below ~ 1/(Z —2), the
qualitative behavior of the results as a function of o is,
nevertheless, accurately predicted by the theory. Even the
quantitative error is within "acceptable" limits.

To test as to whether the pronounced dip in f" for
small o, that is observed (see Table I) to occur for V- —,',

TABLE II. NaCl —simple-cubic structure. Comparisons and notations are the same as described in
the caption of Table I.

5.00000
0.455 20
0.398 30
0.341 40
0.284 50
0.25000
0.227 60
0.7500
O.SOOO*

0.4750
O.875 OO'

0.75000
0.625 00
0.50000
0.375 00

0.50000
0.54480
0.60170
0.658 60
0.715 50
0.75000
0.772 40
0.7500
0.7500
0.7500
0.875 OO

0.875 00
0.875 00
0.875 00
0.875 00

1.00000
0.697 93
0.438 08
0.268 65
0.15807
0.111 11
0.086 81
1.0000
0.3333
0.3016
1.00000
0.428 57
0.238 10
0.142 86
0.085 71

Theory

0.8494
0.8471
0.8363
0.8159
0.7838
0.7569
0.7354
0.7584
0.7841
0.7841
0.7077
0.7253
0.7345
0.7289
0.7075

Monte Carlo

0.846 +0.002
0.842+0.002
0.830+0.002
0.806+0.002
0.767+0.002
0.733+0.002
0.707+0.002
0.751+0.002
0.774+0.002
0.774+0.002
0.703+0.002
0.719+0.002
0.724+0.002
0.712+0.002
0.682+0.002
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TABLE III. Two sublattice square lattice. Comparisons and notations are the same as described in

the caption of Table I.

0.50000
0.45000
0.40000
0.35000
0.30000
0.25000
o.5556~

O.4889~

O.4000~
0.3556~
O.3111~
0.2667~
O,75O0O'

0.718 80
0.62500
0.50000
0.375 00

0.50000
0.55000
0.60000
0.65000
0.70000
0.75000
0.5556
0.6222
0.6667
0.7111
0.7556
0.&000
0 8AAA

0.75000
0.75000
0.75000
0.75000
0.75000

1.00000
0.66942
0 AHA 44
0.289 94
0.18367
0.111 11
1.00000
0.5808
0.4000
0.2708
0.1785
0.1129
0.0670
1.00000
0.851 59
0.555 56
0.333 33
0.20000

Theory

0.7244
0.7203
0.7081
0.6870
0.6560
0.6130
0.6949
0.6879
0.6751
0.6553
0.6276
0.5907
0.5424
0.5935
0.6011
0.6196
0.6334
0.6327

Monte Carlo

0.710%0.001
0.705+0.003
0.690+0.003
0.662+0.003
0.623 +0.003
0.563+0.003
0.679+0.002
0.670+0.003
0.654+0.003
0.629+0.003
0.592+0.003
0.544+0.003
0.483+0.003

0.5795+0.0005
0.587~0.002
0.602 +0.002
0.610+0.002
0.600+0.002

becomes less pronounced for other values of V, we also
examine the case of V= —,'. [See entries (8 thru 12), la-

beled with an e in the first column. ] Again, the qualita-
tive behavior of the theoretical results accurately mirrors
those given by the Monte Carlo. Furthermore, we notice
that while f"(o-—,

' )/f"( o= 1) is -0.90 when V= —,', for
the V= —,

' case even when o- —,', , f"(o-—,', ) is only

about -0.93 of f"(cr= 1). Thus for a given value of o,
the dip is noticeably deeper for the V- —,

' case.
An interesting check on the theory is provided when the

concentration C on the favored sublattice is kept fixed
and o is varied (i.e., decreased) by a gradual decrease in
the particle concentration, C", on the unfavored sublat-
tice In thi.s case, the theory predicts an initial increase inf"followed by a decrease (see Table I).

As a perusal of the last five entries in Table I (where a f
appears in the first column) demonstrates, the Monte Car-
lo data reproduces the general behavior of f" as a func-
tion of C" for fixed C .

Let us examine next the NaC1-like case which is
analyzed in Table II. Here the coordination number Z=6
and the correlations are stronger than for the CsC1 lattice.
Nevertheless, the qualitative feature of the results —both
theoretical and Monte Carlo —are similar.

For instance, for the half-filled case with V=0.5 [see
the first seven entries in the first column of Table II and
Fig. 1(b)], both the theory and the Monte Carlo results in-
dicate the development of a dip in the value off"as o be-
comes small compared to unity. The only difference be-
tween the NaC1-like and the CsC1-like cases is the increase
in the discrepancy between the theoretical and the Monte
Carlo estimates.

Looking at the first entry in Table II, it is observed that
even for the uniform lattice case with o =1, the Monte
Carlo estimate for f", i.e., 0.846+Q.001, lies significantly
below that of the theory f"=0.8494. Moreover, for

cr = —,, both the relative size of the depression in f", indi-
cated by the ratio,

f'"(o = —,
' )If"(o=1)-0,733/0. 846-0.866

as well as the relative discrepancy between the theory and
the Monte Carlo, namely

(0.7569—0.733)/0. 733-3%

are larger than for the CsC1 case.
Next in Table II we examine the behavior of f" for a

fixed value of C =Q.75 as a function of o (or equivalent-

ly, of C"). Again, the characteristic initial increase in f",
which reaches a maximum before falling off, as a function
of decreasing cr is accurately mirrored by both the theory
and the Monte Carlo. Once again, however, the increase
in the relative size of the discrepancy between the theory
and the Monte Carlo, over the case of the CsCl-like sys-
tem, is observed.

Finally, Table II displays similar results for an even

larger fixed value of Cs (see the last five entries). Once
again, the qualitative correctness of the results, coupled
with a somewhat larger quantitative discrepancy (which
for o- —,', reaches the order of 4%) is observed.

%e have also analyzed the quadratic lattice. For the
V = —,

' case, Table III and Fig. 1(c) reveal a large increase
in the quantitative discrepancy between the theoretical re-
sults for f" and the corresponding estimates. Neverthe-
less, even here the qualitative behavior of the two sets of
results, as a function of o, is correctly represented by the
theory.

In addition to the V=0.5 case, the case of V= —, (see

entries 7 thru 13, labeled with a I) in Table III) has also
been studied. This offered itself as an interesting choice
since the theory of paper I indicates a deeper dip in the
curve for f" as a function of V (for fixed small o) when
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V = —,
'

as compared to its value for V=0.5. Despite their
closeness in the V space, the f" results for these cases are
predicted to be substantially different, it is therefore
worth checking this point against an accurate Monte Car-
lo analysis.

As shown in Table III, entries 7 thru 13, marked with a
$, the Monte Carlo estimates accurately track those sup-
plied by the theory. Accordingly, while for tr=0 111.,
f"=0.563+0.003 for the case of V= —,', for V= —,', f"
has fallen as low as 0.544+0.003 even when ct is still
somewhat larger, i.e., et=0 113., than was the case for
V= —,'. The corresponding theoretical results for these
two cases are 0.6130 and 0.5907, respectively.

Finally, in Table III we display the results for fixed C
(=0.75) as a function of o (or equivalently, that of C").
Once again, both the theory and the Monte Carlo lead to
an identical qualitative picture.

IV. CONCLUSION

The theory of I is tested against precision Monte Carlo
simulations involving large, megasamples, whose dynam-
ics is observed power over extended periods of time. This
tests the theory at its weakest point: Namely, its predic-
tions regarding the diffusive behavior of the labeled tracer
atoms.

Qualitative features of the theoretical results are accu-

rately verified [see Figs. 1(a)—1(c); also compare Ref. 19].
Quantitatively, the theory is less satisfactory (see Tables
I—III). Nevertheless, it is found to do reasonably well for
the large coordination number systems, i.e., (Z —2) »1.
For the quadratic lattice, where (Z —2) is not a large
number compared to unity, the range of validity, i.e.,
(Z —2}&cr&1/(Z —2), is rather narrow. And, at the
edge of this range, i.e., o -1/(Z —2}, theoretical results
appear to incorporate errors of the order &3% or so.
From Tables I—III, the size of these errors is seen to be a
strong function of Z.

To improve the theory for application to the strongly
correlated systems, where either cr lies well outside the
range ( Z —2) & tr & 1/(Z —2) or where ( J/Jo)
~ 1/(Z —2), or both, the TKE decoupling used in I will
have to be re-examined along the lines suggested by
Tahir-Kheliz and more recently by Holdsworth and El-
liott. 23
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