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Using transfer matrices, we calculate the connected and disconnected correlation functions of the

random-field Ising model on long strips of width N & 8. The results, where extrapolated to the ther-

modynamic limit, are in good qualitative agreement with neutron scattering experiments of Bir-
geneau et al. [Phys. Rev. B 28, 1438 (1983)]on the two-dimensional dilute Ising-hke antiferromag-

net Rb2Co07Mgo 3F&. For a particular probability distribution of the random field we propose that
this model describes an adsorbed monolayer with a doubly degenerate ground state in the presence
of frozen impurities and predict some features that could be detected with low-energy electron dif-

fraction experiments on such systems. A modified mean-field theory gives a good qualitative ac-

count of the high-temperature behavior of the correlations of this model.

I. INTRODUCTION

Systems with quenched random impurities have been
studied widely in the recent literature. This is partly due
to the fact that real materials always contain a residual
amount of defects that tends to disorder the crystalline
structure in which they exist. One is therefore interested
in describing the effect of impurities on the physical prop-
erties of such materials, in particular properties that are
directly related to their ordered state.

On the other hand, the effect of randomness per se has
also attracted a lot of attention; specifically in the context
of phase transitions in systems with quenched disorder.
While weak disorder in the interactions does not signifi-
cantly alter the nature of the transition (at least in systems
with a specific heat exponent a &0), ' random fields that
couple directly to the order parameter imply in general a
drastically different critical behavior.

Both of the above-mentioned motivations have led us to
investigate some properties of a specific model, namely
the random-field Ising model (RFIM) in two dimensions
(2D) defined by the Hamiltonian

Here s; =+1 are Ising spins, J is the nearest-neighbor in-
teraction strength, which will in the following be fixed at
J=1, and h; is a random field satisfying [h;],„=0,
[h;hi),„=5,J., where [ ],„denotes average with respect to
the field distribution that will be specified later.

Although all current theoretical and experimental evi-
dence states that, even for arbitrarily weak fields, the 2D
RFIM will not undergo a phase transition, it nevertheless
is of interest since the following two classes of systems are
believed to be well described by this model.

(i) It has been pointed out by Fishman and Aharony
that a dilute Ising-like antiferromagnet in a uniform mag-
netic field is a realization of the RFIM. A neutron
scattering study has subsequently been performed by Bir-
geneau et aI. on the two-dimensional site-random Ising

antiferromagnet Rb2Cop 7Mgp &F4 in varying uniform
magnetic fields. We will qualitatively compare their
structure-factor measurements to our calculations in Sec.
IIIA, where we investigate Hamiltonian (1) with single-
site probability distribution

p (h) = —,
'

[5(h +hp)+5(h —hp)] (2a)

in the Ising transcription of the corresponding lattice-gas
Hamiltonian. The distribution for the random field
would then typically be

p(h) = [5(h +hp)+5(h —hp))+(1 —p)5(h), (2b)

where the density of defects p «1 and the field strength
hp &&1. Precisely such a distribution has also been pro-
posed by Villain. In the limit hp~ao this model can be
easily solved exactly in one dimension. As ho is expected
to be large, this limit should not affect the qualitative
features of the system and we will report results on the
hp = ao model in Sec. III B. Since low-energy electron dif-
fraction (LEED) measurements are widely used in order
to study such chemisorbed systems, it is of interest to
have a qualitative picture of the structure factor for this
particular distribution.

Due to the complexity of these systems theoretical re-
sults have been rather limited and were mostly concerned
with bulk properties. Imry and Ma have put forward an
argument based on the energy cost of flipping a domain of
aligned spins immersed in a sea of spins with opposite
sign that led them to conclude that the lower critical di-
mension d, of the RFIM is equal to two. This argument

for the random field.
(ii) Systems of atoms chemisorbed on crystalline sur-

faces are usually modeled by lattice gases. Introducing
random frozen impurities in order to model the fact that
the substrate can have isolated defects that either strongly
favor or prohibit adsorption, one is naturally led to a term

g h;s;
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has later been improved by Chalker and Fisher et al. to
include the entropy. It was also used as a starting point
by Imbrie ta prove the existence of long-range order in
the 30 RFIM at T =0. The general consensus at present
is therefore that the lower critical dimension of the RFIM
is equal to two. This result is in confhct with the fact
that the most divergent treelike Feynman graphs, generat-
ed in a perturbation expansion of the + term in the
Ginzburg-Landau version of the RFIM, are to all orders
in A, equal to the ones of the ordinary Ising model with no
random field in two dimensions less. '

Morgenstern er al. " have numerically computed ther-
modynamic quantities of the 2D RFIM with distribution
(2a) on squares of sizes up to 12X12 with use of the
transfer matrix. They also estimate the behavior of the
spin-spin correlation function

[&sosz &]

at low temperatures T and small fields ho by employing
an approximate formula for the domain-wall density. In
(3) the angular brackets denote the thermal average. Their
result indicates that this correlation function decays ex-
ponentially with distance I of the spins from each other
and a correlation length

e (T«1) . (4)
0 ho-+0

This result is nicely consistent with predictions of other
theories' based on the assumption that 1,=2. No
theoretical (or numerical) attempt has so far been made to
estimate the leading corrections to the exponential decay
rate of (3) in the 2D RFIM. However, it is important to
have such estimates in order to be able to compare them
to the neutron scattering results of Birgeneau et al. and
thereby test the validity of Hamiltonian (1) to describe
these experiments. Mean-field theory based on the
Ginzburg-Landau version of the RFIM predicts that the
structure factor S(q) [i.e., the Fourier transform of (3)] is
glveIl bf

ho
S(q)= ~ +2+/ —2

( 2+$—2)2

i.e., the sum of a Lorentzian (L) and a Lorentzian
squared (L2}, resulting from the fact that [&ss) &s ~)],„
is nonvanishing in the presence of a random field. This
implies that the two-point correlation function (3) is equal
to

A
e

—(l/g')
0 I ]av =

&d i)/2 ((f 3)/2I

In fact, the L +L form has been extensively used by Bir-
geneau et al. to fit their neutron scattering data. The
temperature and field strength dependence of the ampli-
tudes in the mean field approximation can of course not
be expected to give a reasonable approximation for the
RFIM. Note however that the L+L form for S(q) is
also obtained from the exact solution of the 1D RFIM
with field distribution given by Eq. (2b) for ho —Do as
well as fram the exact solution of the random-field spheri-
cal model in all dimensions. '3

In this paper, we report results of structure factor cal-
culations of the RFIM on very long strips of width N (8.
For this purpose we use a slightly refined version of the
modified transfer-matrix technique first employed by
Morgenstern et al. " for this system and combine it with
the method described by Droz and Malaspinas' for
static-structure-factor calculations. We will shortly give
the details of the calculations in the next section. We
have preferred to use the transfer matrix method rather
than the Monte Carlo method to avoid problems of equili-
bration.

In Sit. IHA we report our results for the "weak" field
distribution mentioned above and compare them to the
neutron scattering experiment on R12co07Mg03F4 in a
uniform field. Section GIB is devoted to the results ob-
tained using the single field distribution (2b). Finally, we
give our conclusions in Sec. IV. A detailed mean-field-
theory calculation of S(q} is presented in the Appendix
starting with the Hubbard-transformed continuous-field
version of the RFIM, '5 and yielding more reasonable
values than Eq. (5) for the amplitudes of L and L2 at
high temperatures.

II. METHOD FOR CALCULATING
THE STRUCTURE FACTOR

We consider the RFIM on strips of width N in the y
and length I. in the x direction. I.et the integer coordi-
nates of the square lattice be labeled by (1,n), 1&1&L,
1 (n(¹We found it useful to divide the calculatian far
the structure factor into two parts. We only consider the
wave-number dependence parallel to the x direction. %e
first calculated the susceptibility

where q =2mm /M and M is an integer factor of L and 0 & m &M —1.
The disconnected" part

n, l
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was then calculated separately and hence the structure factor

1 iq(l l
—I~ )

(q) = y ' '
[& ... I...&].,=X (q)+D, (q),

l),nI, E),n2

which is measured in neutron scattering and LEED exper-
iments. Following Ref. 14, we apply a q-dependent (non-
random} magnetic field and therefore consider the total
Hamiltonian:

L

Hp = g hl, l+1+gp. l i
1=1

hl, I+1= g $I «Sl+I «
n=1

where

&t' =
I I Ul+ I I I ~l IUI I I

and Ul+I
——TIUI Exp. anding Tl and ul in powers of p,

TI=TI +pTI +p Tl +Q(p ),

(14)

gI, I= —g $I «[$I «+I+hi „+pcos(ql)] .

Periodic boundary conditions are imposed in the y direc-
tion. Define the transfer matrix by

T e +p ( l i I+1
t (10)

which acts on the 2 -dimensional space V of spin config-
urations in row I; note that the second factor in (10) is ac-
tually independent of I. A theorem due to Furstenberg'
guarantees then that starting with any vector U in V, the
random-field average free energy per site F,„(p) to the
Hamiltonian (9a} is given by

F,„(p)= lim ( —PLN) 'ln
L-+ ao

rr TI
E=1

gzFN, L( )
X~,L(q) =

p
(12)

is a self-averaging quantity, where F ' (p) is given by the
right-hand side of (11)before taking the limit.

In order to avoid taking the derivative in (12) numeri-
cally and thereby losing accuracy we have adopted the fol-
lowing procedure which seems to have been first used by
Yeomans and Derrida. ' Since we are dealing with finite
systems, F ' (p) is an analytic function of p and can be
written in the form

F ' (p)= —g lngI",
L

where
/ / / /

denotes any vector norm in V. In other words,
one need only consider one realization of the random-field
distribution on a very long strip in order to perform field
averages. Not much is known, unfortunately, about the
rate of convergence in L but it appears to be well
described by a power law for the temperatures we have
considered.

We therefore find that

H~L ——g h„ I (16)

approaches a Gaussian with variance proportional to
(NL)' . Therefore, for a given realization, the spins will
be subjected to a net field of order (NL) '~ per site and
it is reasonable to assume that also the total magnetization
M = gl „(Sl„} will be of order (LN)' . Hence,
D~ L (q) is not a self-averaging quantity and averages over
several random field realizations have to be performed in
order to obtain it. The error bars for DIv L(q) are then
roughly estimated as

~DE,L(q) -x-'",
D3V, L (q)

where E denotes the number of random-field configura-
tions averaged over. For q&0 the error (17) is reduced by
an additional factor proportional to q

' . We obtained
D&L(q) by applying, instead of the q-modulated external
field pcos(ql), a magnetic field p5I I separately on each

row 10. We found that in order to obtain the local mag-
netization

X—g (&I,.&=
n=1

gFItI, L( g )

we only had to iterate the transfer matrix ten rows beyond
Io to obtain a 1% accuracy at the temperatures con-
sider eel.

and simultaneously iterating the three vectors U~", one can
express the coefficient in the expansion of Qt' in powers
of p in terms of the Ul", Ul"+& and therefore obtain XIv L (q)
without having to take any derivatives numerically. Us-
ing the technique of sparse matrices, the number of ele-
mentary arithmetic operations to be performed in order to
obtain XIvL(q) is then proportional to LN2 .

For the calculation of D~L we first realize that, since
the field distribution is uncorrelated between different
sites, the probability distribution for the total field
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III. RESULTS FOR THE 20 RFIM

A. Binary single field distribution with IIO & 1

Consider the Hamiltonian (1) with the single-site distri-
bution (2a). With the susceptibility X, we performed a
simple test of the accuracy of our method using the re-
suIt"

X(q) = 22 + 222 (20)
(1+q ( ) (1+q g )

with A, 8, and g as fitting parameters. In the insert, we
plot the resulting X of fits to the form (20) keeping the
ratio of 8/A fixed and fitting the remaining two parame-
ters. Clearly, there is a sharp minimum at 8/A =0 and
it is seen in Fig. I that a pure I.orentzian accounts very
well for the functional form of the q-dependent suscepti-
bility. This result is somewhat unexpected in view of the
expansion of the physical quantities in terms of ~owers of
the random field used by Shapir and Aharony' in order
to obtain (19), which yields

X(q) =X'(q) —&[X'(q)]'+0(&') . (21)

It seems therefore that the higher order terms in b cancel
the Lorentzian squared term obtained in first order.

The disconnected correlation function D~ L, (q), defined
in Eq. (7) is plotted in Fig. 2 for T =2.35, h =0.5, N =5,
and L =2000, averaged over 50 realizations together
with fits to a pure Lorentzian and Eq. (20). It is apparent
that a fit to (20) with a predominantly Lorentzian-squared
component accounts much better for the shape of DN L (q)
than a pure Lorentzian. Note also the noise in the data

BX~L, (q =0) = —(X~,L, )
"db a o

where b, =P ho and X is the pure (zero-field) susceptibili-
ty. Equation (19) holds for all temperatures in a finite
system. In Table I we compare the two quantities in (19)
for T, =2/ln(~2+1), the transition temperature of the
pure 2D Ising model. The derivative with respect to 5
was taken numerically. The error of X/b. seems to be less
than 1% for L =2&(10 at this temperature.

In Fig. 1, Xzi(q) is plotted against q for T=2.5,
ho =0.5, X=5, and I.=4)& 10". Also shown in Fig. 1 is
the result of a fit of Xz L (q) to the form

O. I 0.2 0.5
q/vr

OA

FIG. 1. Susceptibility g vs q/m for T=2.5, Ap=0. 5 %=5,
and L =4X 10 . The circles denote the numerical values. Solid
line is best Lorentzian fit to g. The inset shows least squared
sum Si vs 8/A of fits to Eq. (20) with constant 8/A.

50

D 20

for small q due to the limited number of realizations aver-
aged over. A simple mean field calculation (see Appen-
dix) expected to be a reasonable approximation at high
temperatures, yields

8 [gP tanh(Pho)]
D(q) = (22)

(1+/ qi)t

=2d(1 —2dPg), g =1—tanhi(Pho), (23)

while X(q) is given by

X(q) =g+ gAP
(24)

1 +$2q2

The constant g in (24) arises naturally in our mean Geld
calculation and it comes from the fact that for Ising spins

I dqX(q)=[(S ) —(S;)'],„=1—[(S,)'],„~1. (25)
p-+p

TABLE I. Pure (ho ——0) system susceptibility g and deriva-
tive ( —BX/Bb

~ q 0)
' of the susceptibihty X with respect to

6=(Pho) at 6=0 aud P=tn(@2+1)/2 for 2&n &8 and
L =2~104.

IO

8.472
18.217
31.015
46.462
64.375
84.648

107.199

8.419
18.103
31.026
46.368
64.513
85.021

106.893

I

0.2

FIG. 2. Disconnected correlation function D vs q/m at
T=2.35, ho ——0.5, X=S, and L =2X10 averaged over 50
random-field realizations. Solid line denotes best fit to Eq. (21),
which is a pure Lorentzian squared. Dashed line denotes best
Lorentzian fit.
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TABLE II. Correlation length s gr, obtained by fitting g to a Lorentzian, and gn, obtained by fitting

D to a Lorentzian squared„ for various temperatures and 3 &X & 7. Error bars were obtained from vari-

ance of 20 independent runs for N =3 and are expected to be the same for all ¹

1.8
T

2.5 3.5

4.3%0.2
5.4
6.7
8.5
9.3

4.0JO.3
5.0
5.6
6.0
6.1

2.1520.1

2.6
2.8
3.0
3.0

2.4+0.2
2.6
3.1

3.1

3.0

1.24+0.05
1.35
1.32

1.3+0.1

1.20
1.35

Figure 1 shows that g is small for T =2.5, but it clearly
becomes appreciable for higher temperatures. In Table II,
we list the correlation lengths f& and gD for hc ——0.5 ob-
tained from the fits of X and D to the form (24) and (22),
respectively. At temperatures above the pure system's
transition temperature, gz and gD agree within the errors,
while at lower temperatures gD is systematically smaller
than gz. It is also apparent that at lower temperatures the
Lorentzian squared form is no longer appropriate to
describe D (q) (Fig. 3).

%e are now ready to compare our results to the mea-
surements of Birgeneau et al. performed on the two-
dimensional dilute Ising antiferromagnet R12Coc 7Mgo $F4
in a uniform field. Such a comparison is necessarily qual-
itative, but we see no reason for the temperature depen-
dence of the quantities measured to be significantly affect-
ed by the details of the probability distribution of the ran-
dom field. A more severe limitation is the small width N
of the strips, which allows a safe extrapolation to %~ ac

only in cases where the bulk correlation length g is of the
order of or less than the size of the largest strip. This
forces us to exclude the low temperature, small random-
field region where g becomes large. One could neverthe-
less perform a finite-size scaling analysis of the depen-
dence of the correlation length on the random-field
strength in this region in order to test the prediction in
Eq. (4).

In the following, we identify the Neel temperature
TN ——42.5 K of the experiment with the critical tempera-

ture T, of the IM in the absence of a random field, i.e.,
T, =2.269. We first consider the correlation length g cal-
culated from fitting X(q) to a Lorentzian. In Fig. 4 we
plotted the extrapolated inverse bulk correlation length
versus temperature for hc ——0.5 and 0.75. It is tempting
to quantitatively compare this plot to Fig. 8 of Ref. 3,
which would yield the conclusion that hc ——0.5 corre-
sponds to a field strength h -(35+3) ko for the uniform
field applied in the experiment. Furthermore,

kexii=(5 5+0 7CRFiM ~

where g,„~, is the correlation length measured in lattice
units (l.u. ) by Birgeneau et al. and (RFIM our estimate for
the bulk correlation length (in l.u) obtained with the
transfer matrix method. Our results for gRFiM are not af-
fected by a finite-size effect in the considered region, as
Monte Carlo simulations on square lattices of size 36X 36
are in excellent agreement with our values. ' For
h p =0.75, extrapolations to the thermodynamic limit
turned out to be possible even at low temperatures, where
the correlation length becoines independent of tempera-
ture, as observed experimentally.

Next we compare the peak intensities, given in Fig. 2 of
Ref. 3 to our estimates in Table III. Unfortunately, no ac-
curate %~00 extrapolation is possible at low tempera-
tures, but the agreement is nevertheless satisfactory if we
use the field strength correspondence obtained from com-

0,9—

0.6—

D 40

I

l.5 2.5 5.5

I

O. l

q/vr

+~~~PV~ ~m s zsssa-

FIG. 3. Same as in Fig. 2 for T =1.3, ho ——0.5, N =4, and
I.=2X 10 averaged over 200 random-field realizations.

FIG. 4. Inverse correlation length g
' (in l.u. ) versus tem-

perature for Igloo
——0.5 {solid line} and ho ——0.75 {dashed line).

The crosses denote experimental values, adjusted as mentioned
in the text, for h =35 kG obtained by extrapolating between the
29.5-kG and the 40-kG curves in Fig. 8 of Ref. 3. Arrow indi-

cates Ising model critical temperature T, .
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TABLE III. Peak intensities S(0)RFIM, determined numeri-

cally and extrapolated to X~~, and S(0),„~„measured experi-
mentally, for various temperatures. S{0) pt was obtained by in-

terpolating between the h =29.5 kG and h =40 kG curves of
Fig. 2 of Ref. 3 and adjusted such that it agrees with S(0)RFiM
at T=2.2.

1.8
2.0
2.2
2.35
2.5

S{0)RFrM

220+40
150220
81+10
57+7
31+3

S (0)expt

2&4

162
81
49
24

paring the correlation lengths. A more significant com-
parison can be made by plotting the fractional contribu-
tion of the Lorentzian squared to the total intensity of the
structure factor, because its temperature dependence was
found experimentally to be almost independent of the
field strength. We plotted an extrapolated estimate of this
quantity in Fig. 5. For T &2.0 we had to ftt directly to
the structure factor because, as mentioned above, separate
fits to X(q) and D(q) do not yield the same correlation
length below this temperature. The ratio was easily extra-
polated to the thermodynamic limit in the temperature
range shown because the N dependence was rather weak.
Agreement with experiment is good for this quantity

B. Results for the strong-field case

In this section we consider Hamiltonian (1) with the
single field distribution (2b) in the limit ho~ Oo. In other
words, spins are frozen in their up or down state with
probability (p/2) «1. Such a model is expected to
describe adsorbed systems with doubly degenerate ground
states in the presence of frozen impurities. More precise-

ly, imagine the square lattice being divided into rectangu-
lar cells, each containing two neighboring sites. Each cell
is required to contain one adsorbed atom, whose position
within the cell i is described by an Ising spin s; =+1. The
mutual repulsion between the adsorbed atoms can be

described by an interaction equal to the one proposed in
the Hamiltonian (1). Suppose that the impurities are ran-
domly distributed over the lattice with a density p/2. For
a given cell i, there is then a probability p/2 for an im-
purity to be located at each of the two sites described by
the s;=+1 states for the Ising spin. Since it is energeti-
cally very unfavorable for an adsorbed atom to be located
at the site of an impurity, the latter act like a random
external field with distribution (2b) and ho»1. It is
somewhat artificial of course to require the adatoms to be
distributed such that there is exactly one in each cell. If
one did not require [h;],„=0 for each site but rather
[h;],„=(—1)'+"h, where I and n denote the coordinate of
site i in the lattice, this artificial restriction would be re-
moved and the model would describe a lattice gas with
nearest-neighbor repulsions in the presence of frozen im-
purities. The imposed restriction should be irrelevant for
the qualitative behavior of the correlations described here.
It should therefore be possible to observe the effects of
such impurities on the structure factor by performing
LEED experiments.

The exact solution of this model in one dimension (i.e.,
for N =1) reveals that the structure factor is again given
by the sum of a Lorentzian and a Lorentzian squared. s In
Fig. 6 we have plotted the fractional contribution I.i/S of
the Lorentzian squared to the structure factor versus tem-
perature for p =0.05. Interestingly, this ratio has a max-
imum L /S =0.4 at T= 1 and drops sharply toward zero
for low temperatures. This behavior is in contrast to the
experiment, where S(q) was found to be predominantly
Lorentzian squared even down to very low T. Unfor-
tunately we cannot access the low-temperature region
with our transfer matrix method, because the convergence
becomes extremely slow there and extrapolations are im-
possible. It is therefore an open question whether Fig. 6
qualitatively describes the equilibrium behavior of the
RFIM even in two dimensions and for more general single
field distributions. We believe that this behavior could be
due to the peculiar single field distribution in this case. In
fact, for any p &0, the 1D chain is broken into finite
noninteracting pieces and it seems therefore natural to ex-

x l

X

03—

L/S Q2—

5.0
T/J

Ol—

FIG. 5. Extrapolated estimate of' the fractional contribution
L /S of the Lorentzian squared term to the structure factor
versus temperature for the RF distribution Eq. (2a) (solid line)
and Eq. {2b) {dashed line). The crosses denote corresponding ex-
perimental values taken from Fig. 10 of Ref. 3. Arrow indicates
TO

FIG. 6. Fractional contribution L /S of Lorentzian squared
term to the structure factor versus temperature for the RF dis-
tribution Eq. (2b) for ho ——ac and N =1 (exact result from Ref.
5).
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pect that similar behavior in 2D would only be observed if
p is chosen to be larger than p„ the critical probability for
site percolation in two dimensions.

For higher temperatures, the behavior of L /S is in

qualitative agreement with the one found in the previous
Sec. IIIA. However, mean field theory (see Appendix)
predicts an enhancement of L jS for the distribution (2b)
compared to the one examined in Sec. IIIA. This
enhancement is actually found from the transfer matrix
results (see Fig. 5). X(q) again is fitted excellently by a
pure Lorentzian plus a constant while a Lorentzian
squared accounts very well for D(q}. Moreover, excellent
agreement is found between the correlation lengths ob-
tained separately from X and D only if one uses these
functional forms for them.

In an experiment one should therefore be able to detect
the following features related to the presence of frozen
impurities.

(i) The transition is destroyed and with a sufficient
resolution the correlation lengths should be seen to be-
come independent of temperature at low T.

(ii) For wave vectors k&2( ', the structure factor
should be significantly better described by Eq. (20) than
by a pure I.orentzian with a temperature dependence of
the factors A and 8 that can be qualitatively inferred
from Fig. 5.

IV. CONCLUSIONS

In this paper we have studied the RFIM on long strips
using the modified transfer matrix technique to calculate
static correlation functions. The statistical errors result-

ing from the finiteness of the strip length could be well

controlled and did not pose a serious problem while the
non-self-averaging property of the disconnected correla-
tion function made extensive calculations necessary.

Since the purpose of this work is to compare calculated
physical quantities to experiment we studied only the re-

gion in (T,ho) plane, for which an extrapolation to the
thermodynamic limit could be carried out safely; we
double-checked our extrapolations with Monte Carlo re-
sults'9 on large squares and found agreement in all cases.
We first studied the "weak random field" case in Sec.
III A using a binary distribution of strength ho &J= 1 for
the field on a single site. At high temperatures T) T, ,
the transition temperature of the two-dimensional Ising
model, the susceptibility X(q) and the disconnected corre-
lation function D (q) are found to be well described by our
modified mean field theory, while D(q) starts to deviate
from a pure Lz for T & T, , X(q) is well described by a
pure L for all temperatures considered. A detailed com-
parison to the neutron scattering experiments performed
on the 2D dilute Ising-like antiferromagnet (AFM)

Rb2Coo &Mgo 3' revealed that
(i) The temperature dependence of the correlation

length of the RFIM for ho ——O. S agrees quantitatively
with the experiment provided we set

h =(3S+3) kG,

kepi i =(5.5—+0 '74RFiM

where h is the strength of the uniform field (note that we
have put J=1) and g,„~, is the experimentally measured
correlation length (Ri iM our calculated correlation length,
in lattice units.

(ii) For ho ——0.75, we are able to extrapolate gRi;iM at
temperatures sufficiently low to see that it actually be-
comes flat, in agreement with experiment.

(iii} Excellent agreement is found for the temperature
dependence of the fractional ratio of the L to the total
intensity of the structure factor, which itself agrees
reasonably well with experiment, provided we take the
field strength found by comparing the correlation lengths.

While some of these results seem to agree fortuitously
well with experiment considering the fact that we are
comparing nonuniversal quantities, it seems safe to state
that Hamiltonian (1) provides a very good description of
the physics of the 2D dilute Ising AFM R12Cop 7Mgo $F4.
We believe therefore that we have provided significant
support to the Fishman-Aharony mapping of dilute
AFM's in a uniform field onto RFIM's.

In Sec. III 8 we reported results using the "strong field"
distribution (2b) for the field on a single site. We first no-
ticed the "dropoff" of the strength of L at low tempera-
tures obtained from the exact solution of this model in
one dimension for ho ——oo. Since we cannot extrapolate
our small strip results at these low temperatures, we can-
not determine whether this dropoff is characteristic for
the equilibrium behavior also in two dimensions at low
temperatures, for a possible explanation see Sec. IIIB.
The high-temperature behavior is qualitatively similar to
that found in the weak field case, the amplitude of the L
being somewhat enhanced however; this result is also
predicted by our modified mean field theory. If this
model is appropriate to describe frozen impurities in ad-
sorbed monolayers, it should be possible to detect the ef-
fects we described by performing LEED experiments on
these systems.
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APPENDIX: MEAN FIELD CALCULATION OF S(q)

%'e write the RFIM Hamiltonian as

8= ——$$;(5+2d)~JSJ.—$ [Pl;+pp cos(gl)]$;,
l,j

where b, denotes the lattice Laplacian. Invoking the Hubbard transformation,

(A 1)
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N

exp (p/2) gs;Ajsj ——(n detA) '~ f g d%; exp —(2[8'J) 'g q[;A~. 'VJ+ g ql;s;
l,j i=1

(A2)

where A,J denotes any nonsingular n X n matrix and A;~ its matrix inverse, the partition function for (Al), can be writ-
ten as

Z =C f ff d%'; exp —(2pJ} 'g%';(b+2d) J'[p + glnIcosh[ph;+[M cos(qi)+[p;]I
&~l

The trace over the Ising spins produces the second sum in the exponential, which can be expanded in terms of increas-
ing powers in the continuous field variables 4; and the modulated external field }u cos(qi).

lnIcosh[ph;+p cos(qi)+4';]) =lnI cosh[ph;+p cos(qi)] I +tanh(ph; pP;+[1—tanh (ph;)][[[icos(qi)%;+ [p;]/2+0(%; ) .

(A4)

Neglecting the O(%;) terms and performing the random-field average in the quadratic terms we arrive at the "mean-
field" approximation

ZMF ——C ff cosh[ph;+[u cos(qi)] f ff dq'; exp —(2pl) ' g ip;&; 'pj+ g [h;+(g[u/2) cos(qi)]q';
f i i,J l

where

g = f dhp(h}[1 —tanh~(Ph)],

h; =tanh(Ph;),

A~J (5+2d),J——' pJg—5;J .

(Asb)

(Asc)

Transforming the integral in (5) into momentum space and keeping only the two lowest order terms in the expansion of
A;J in terms of k, we obtain

+ 00 k +mZ „=Cia osh[ph;+p os(qi)] f itd%'Q p
00 8/id~

+k+hk+I g~&5k, « 'p-k (A6)

where

m 2=2d (1—2dPlg) . (A7)
[&s }&s «}],„"=(8PJd g)

[tanh Ph],„
(qi+m2)

(A9)

Note that the equation m =0 is equivalent to the equa-
tion for the mean field phase transition found by Schneid-
er and Pytte and more generally by Aharony. ' Per-
forming the Gaussian integral in (A6), the mean field ap-
proximation to the free energy is

and

8 d
[&s,s, ) —&s, ) &s, &]."."=g+

+PS
(A10}

XPFMF(p) = g—ln cosh[Ph( +[M cos(ql )]

—4pm'g (hk+pg~N5k )

Therefore the averaged correlation functions are

(AS)

Since the variance of the Gaussian integral (A6} is propor-
tional to P, the low-order expansion in the fields 0; per-
formed in (A3) should become a good approximation at
high temperatures. Furthermore, since in the quadratic
terms the random field coefficient is replaced by its aver-
age, the variance of the random variables tanh(Ph; )

should be small.
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