
PHYSICAL REVIE%' 8 VOLUME 34, NUMBER 5

Antiferromagnetic planar-rotator model under h„ fields
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The antiferromagnetic planar-rotator model in a uniform magnetic field is considered. In addi-

tion to the usual Hamiltonian, a crystal field is added. The analysis is set up in mean-field theory
for the general case. The specific case of the triangular lattice is solved in the small crystal-field
limit.

I. INTRODUCTION

Although the planar-rotator model (also known as the
classical XI" model) with ferromagnetic interactions has
been well understood' for some years now, it has only
recently been observed that there are significant new ef-
fects in the antiferromagnetic planar-rotator (APR)
models. In particular, the APR on a triangular lattice
has attracted much attention because of the existence of
long-range order associated with a helicity symmetry
breaking. This is supported by a variety of calculations
including exact ground-state analysis, Monte Carlo, '

and mean-field theory (M1 1').
Besides these interesting phase-transition properties,

models such as this have been suggested to describe such
diverse systems as two-dimensional arrays of coupled
Josephson junctions and graphite intercalation com-
pounds'o'" (GIC's). These comparisons will not be ela-
borated on here.

The previously mentioned calculations start out with
a reduced Hamiltonian of the form

H, =K g s,"s,—hps, ,
(i j) i

where K=I/(kttT) pO and h=H/(kaT). The sum is
over a lattice of N spins with coordination number z, and
(i,j ) denotes nearest neighbors. The s; is a two-
component unit vector making an angle 8; relative to the
direction of the field h. Only the component of the field
h in the plane of the two-component spins has any effect,
and thus h will be assumed to be totally in this plane.

In this paper the Ms 1' analysis of Ref. 7 is extended to
the case where an additional term

—h„g cos(n8; no)—
is included (n is an integer). This term may be produced
by the crystal structure in which the spina lie. The angle

o is allowed because the field might not be aligned with
the crystal axes.

The significance of such terms is due to the fact that
most of the APR models possess a phase or phases in
which a continuum of solutions exist which have no free-
energy barrier between them. The presence of a modula-
tion as described above breaks the continuous symmetry,
but may still leave a degeneracy associated with the
periodicity of the lattice. This will be expounded in detail
for the most interesting case, the triangular (or more gen-
erally the tripartite) lattice. In the ferromagnetic planar
rotator model with h=O such terms produce a degeneracy
associated with rotations by 2srln, which is distinct from
the structural ordering found here.

In Sec. II, I will set up the most general form of the
Ml I' equations. In Sec. III, I will describe the solution of
the theory in several limiting cases. In Sec. IV, I draw
general conclusions.

4'[p) =Tr(pH+p lnp)

under the constraints

p= Q p;, Tre, p; = 1 for all i,

(2.2)

(2.3)

where Tr and Tre represent the traces over all states of
the system and over all states of site i, respectively. Here
p; is the density matrix of site i Define.

II. FORMALISM

Consider the reduced Hamiltonian:

H=K g cos(8; —8J)—h gcos8; —h„icos(n8; —no) .
&ij& i i

(2.1)

Mt t is performed by minimizing a free-energy function-
al'2 of the form

C;=Tr(p;cos8;), S; =—Tr(p;sin8;), M~ =a+is;, C„;=Tr[p;cos(n8; ntr)] fo—r all i . (2.4)

Mt is the (complex) magnetization of the site i. Representing the spins 8; by the real and imaginary parts of the complex
i8,

number e ' is done to reduce the number of equations and simplify the notation. Then

e[p]=K g (C,C, +S,S, )—h gC, —h„+C„,+ QTr(p, i~, ),
t'ai,j)

(2 5)
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which gives the variational equations

—I|.'g'(Cjcos8;+Sjsin8;)+h cos8;+h„cos(n8; —no)+A; —, l=lnp;(8;) for all i .
J

(2.6)

In Eq. (2.6) A,; is the Lagrange multiplier introduced to preserve the normalization of p;. Here, and throughout the pa-
per, the prime on the sum represents a restriction of the index to only the nearest neighbors of i T.hus

p;(8;)=A; 'exp[a;cos(8; —{{);)+h„cos(n8; n—cr)] for all i,
where A; is a normalization constant,

ip;a e '=—h —K$'Mi,
J

and a; (&0) and P; are both real. The normalization of p; requires

A; =Tre exp[a;cos(8; —{{'i;)+h„cos(n8; —na )]=Trs expI a;cos(8; )+h„cos[n (8;+P;—a)] ] .

A Fourier transformation gives

(2.7)

(2.8)

(2.9)

e " ' ' = g cos(k8;)cos(kg; kyar) —g Sk „I~(h„)+[sin8;]~~

I (h„)cos[mn (P; —a )]cos(mn 8; ) + [sin8; ]~d, (2.10)

where [ ]~d represents terms odd in sin8;, so that

A;= g 2mI (h„)I „(a;)cos[mn(P; —o')), (2.11)

where I„(x) is the modified Bessel function of the first kind' of order v. Similarly,

M; =A; Tre exp[a;cos(8; P;)+h„c—os(n8; no)+—i8;]

=A, 'Tre exp j a;cos(8; )+h„cos[n(8;+P; o)]+—i(8;+{{t;)I, (2.12)

I „cos{n(e,+y, ~).}+i(e,+y,}.
COS i ~ m n T k —& —mn+e k+1—mn +asm i 30dd

QO

=e '
—,
' g I (h„)Icos[(mn + l)8;]e ' +cos[(mn —l)8;]e ' )+[sin8;)~d

OO

=e ' g I (h„)cos[(mn+ 1)8;)e ' +[sin8;]~d, (2.13)

so that

OO

MJ=AJ 'e ' g 2mI (h„)I „+i(ai)e ' for all j . (2.14)

Inserting Eqs. (2.14) in Eqs. (2.8) gives the self-consistent MI I' equations (SCMFE):

OO

a;e '=h —Kg'AJ 'e ' g 2rrI~(h„}I~„+i(aj)e ' for all i . (2.15)

The SCMFE describe the state of the entire lattice, which requires solving for 2N variables. As is illustrated in the ap-
pendix, for the triangular lattice it is possible to reduce the number of independent spin variables to finitely many. This
type of argument easily generalizes to a p-partite lattice. (A lattice is p-partite if there are p equivalent sublattices for
which spins on the same sublattice do not interact. ) Thus, throughout the remainder of the paper I will deal exclusively
with the case of a p-partite lattice for which the SCMFE reduce to

za.—E

OO

I (h„)I „+i(a; )e

I (h„)I „(a;)cos[mn(P; —o)]
=h — M for i = I, . . . ,p,Ezp

p —1
(2.16}
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where the magnetization per site of the system is

M~p ' f((('(. (2.17)

Summing Eq. (2.8) over the sites give the simple relation
~

~

if'(aje j—h)= Ezp—M . (2.18)

The free energy can now be obtained by inserting these expressions into Eq. (2.5):

%[p]=—glnA; Eg—(C;Cj+S;S~), (2.19a)

p%[p]/N= g —(nial, — g (CC(+SS, (
Ez

j=] (p ) i(~j]=]
(2.19b)

P Ez—lnAJ—
2(p —1)

2

$M, -$ (M, (* (2.19c)

—lnAj — p /M
/

2(p —1)j j
Kz Ezpae ' —h+j (2.19d)

T

—lnA&+ ~aje ' —h
~

+(aje ' —h) M'+(aje ' —h) M2' jj j p —1 i' j'zp, —iy, Ezp
J ~ ] J (2.19e)

P —I & iyj 2 2 ip—lnA)+ aje ' — — ae
j 1

2' J 1 ~ l J 1

2'

(2.19f)

It will be useful to define the function
R„(x)=I„(x)/Io(x). It should be pointed out as a check
that when h„=0 the results of Ref. 7 are obtained.

III. ANALYSIS

With the formalism described in the previous section it
is possible to numerically determine any part of the full
(E,h, h„,n,o,p) phase diagram by solving the SCMFE and
comparing the free energies of the roots. However, in this
paper I will look at the simplest cases only, which I be-
lieve indicate the behavior in at least a large portion of the
phase diagram.

A. The unperturbed case (h„=O): review

As explained in detail in Ref. 7 the unperturbed case
has both paramagnetic and ordered phases. In the
paramagnetic phase (t]; =0 and a; =ac, where
ao+KzR](ao)=h which has a unique solution. The or-

(0) (b)

(c)

IO—

amagnet ic (e)

0.5 I l.5
T(g xwa)

2.5

FIG. 1. The phase diagram [from Ref. 7] of the triangular
antiferromagnetic planar-rotator model with h„=O.

FIG. 2. The structure of the different phases. At any point
in the phase diagram three unit vectors (or equivalently three
complex phases) with the directions ());, i= 1,2,3 relative to the
field h must add up to h/ao (or equivalently the real number
x=—h/ao). (a} L phase: Two spins are equal and point to the
right (helicity=O}. (b) R phase: Two spins are equal and point
to the left (helicity=O). {c) 8~ and 82 phases: No spins are
equal (helicity=O). (d) The helicity transition (x =1). (e) Heli-
cal phase: Helicity= +1.
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8. II =0

In the paramagnetic phase the solution can rotate
(without cost to the pair interactions} to optimize the h„
term, i.e., P; =o, and a; is independent of i with

Ihhh(hn )I}hh}h+ i(ai )

a;+Xz
I„(h„)I „(a;)

(3.1)

Such a free rotation is also possible in the ordered
phase, though it may be true here that for appropriate p, n

it is impossible to fully satisfy all the h„ terms and, thus,
a transition might still take place by varying h„. Howev-
er, for the triangular lattice the relative angles of 2m /3 be-
tween the sublattices does fully satisfy the h„ terms, and
hence no additional transition should take place. This ar-
gument can be generalized somewhat more. The unper-

dered phase or phases satisfy pM =h /ao with

Ezao= &]«o) .
p —j.

For p & 3 there is a (p—2)-dimensional continuum of solu-
tions with the same free energy .For p =3, there is either
one such continuum (in the nonhehcal phase} or two such
continua (in the helical phase) with opposite helicity. For
p =2 there are only two solutions (except when h =0}.

The p =3 phase diagram (from Ref. 7) is shown in Fig.
1. In Fig. 2, (e) is in the helical phase, (d) is at the hehcity
transition, and (a), (b), and (c) are in the nonhelical (or-
dered) phase.

turbed solution satisfies g» [ e ' =0 which certainly hasi/i

(among others) the solutions pj. =mj 2m/p +il, where m is
an integer (0 & m &p) and g is anything. If n is an integer
multiple of p then the h„ terms will be satisfied by il =o.
This holds for the simplest cases but is not obviously gen-
eral. In fact the coordination number of a p-partite lattice
is proportional to p —1 but not necessarily proportional to
p. It does hold for the triangular and square lattices.
Such solutions will in fact be seen in the next section
where the small h„ limit is treated.

The paramagnetic phase was already discretized to a
unique solution in the unperturbed case, and thus is not
going to be qualitatively changed by a small h„. The only
effect will be a slight rotation of the magnetization to-
wards the angle o.

However, the small h„ limit is probably the most in-
teresting limit because it shows how the continua in the
ordered phases become discretized. In this limit I assume
that variation of the a s and (I} s out of the continuum is
much more costly in free energy than is a variation along
the continuum, and thus that the solution still satisfies the
conditions uj =ao, where

jz
ao ——R](a[])

p —1

ao e ~=h.ip

With this constraint then Eq. (2.19f) becomes

Psh[P]/Ã= —f(» —- [(oo) —il ]p (p —1) ~ 2

2Ez
(3.2a)

ln 2m 1~ h„ 1~„&0cos ~& i —0' + j ind (3.2b)

~R~ 00 COS 1l i 0 + J IQd+0 ~Pg (3.2c)

= —h„p„(no) $ ons[n (h; —n)]+[4/l s+O(h ) (3.2d)

g .],„represents terms independent of the p. 's. Therefore, for h„&0 one should maximize
cos[n (y, a }] It should be pointed out here that although this looks like the additional energy, the prefactor

R„(ao) contained the temperature dependence of the free energy.
Aftei including I agrange multlpliers for the constraints on the real and imaginary parts of the magnetization and then

algebraically eliminating them, I obtain the minimization conditions

h fsinh sin[n((}r —lr)] —sin(}}sin[n (P; —lr)] f =oosln((};—hr} $ s(n[n(hs — )]+o(h„}or, (3.3}

which constitutes p —2 independent constraints.
The case of prime interest, of course, is the triangular

lattice for which p =3 and n =6. This case is obtained
by first setting (I)2 ——()t+ and Pi ——

()I (or vice versa) where

e —=(x —e ) —,(1+ia),i/+ ipj

ix —e '
i

(1+a )/4=1,

(3.4)

(3.5)
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2.5

cep
~~Wl

L
O~

~a ~lgy

'I

~ eHi

0.5(i I&

0
O m/30

I

m/15 2m/15

FIG. 3. The ordered region of the phase diagram for the tri-

angular lattice; x =h/uo. The helicity transition is at x =1.
Solid lines are critical. Dashed lines are first order. cep indi-

cates critical endpoint, tcp indicates tricritical point. Ii and Iq
are upper and lower Ising critical points, respectively. 8 is the
helical phase, Bi, 8~, L, and R are (nonhe1ical) ordered phases
described in the text.

FIG. 4. Q(gi) for x =0, 0.1, 0.2, . . . , 2.9 and
cr=o, m/60, 2m/60, . . . , n/6.
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x—:/i /ao, and then minimizing with respect to P, .
The phase diagram is shown in Fig. 3. To illustrate

this, Fig. 4 shows a plot of Q as a function of P, for many
values of x and n. Most of the results shown in Fig. 3 are
the result of automated numerical searches. It should be
pointed out that (for n =6, p =3) Eq. (3.3) can be reduced
to a polynomial of degree 20 in co+i with coefficients de-
pending only on x and rr Th. is polynomial allows suffi-
ciently few roots {many of which are grouped together by
the permutation symmetry) that Q stays well behaved.
Furthermore, it appears from Fig. 4 that the phase is easi-

ly determined in most of the phase diagram.
As described in Sec. III 8, at x =0 there is no competi-

tion of the /i field with the /I, term, and thus

$2) —I/3 —Pi) =2rr/3, Pi o+——rrirr/3 for integer m,
which is 12 states.

At x = 1, Ir+0 the solution is p, =0,
r/r3 n =o + iri rr/3 (or permutations of the indices).

It is thus essentially a six-state clock model whose angles

P2 and Pi completely satisfy the h„ term. This is 18
states, and is a first-order line. The sharp spike near

$1——0 in the figures near x =1 is produced by the rota-
tional symmetry of the unperturbed model at x =1:
$1——0, P2

——Pi+ir=anything (i.e., totally degenerate), or
permutations of the indices.

For u=O and x g1.49827685. . . the solutions have
the form Pi ——0, Pz ———Pq, with x =1+2co+2. At o =0,
x =1.49827685. . . (x=0.513 67508. . .) there is an

upper (lower) Ising critical point terminating a line of
first-order transitions. The upper Ising critical point must
be present because x (3 has three peaks and x = 1 has six
peaks, requiring a splitting of the peaks for some value of
x. However, as o becomes nonzero one peak from each
split pair becomes greater and the phase 8 (described
below) is obtained.

In the nonhelical phase there are four phases, denoted
L, R, 81, and 82 (see Figs. 2 and 3). The L and R phases
both have Pz P&, {i.e.,——a =0},

x —32

CO+1 =

or a permutation of the indices 1,2,3. This feature can be
identified in Fig. 4 by the fact that the extremum of Q
occurs at the left end (for L}or at the right end (for R) of
the curve. The necessary degeneracy at these points fol-
lows from the permutation symmetry of the indices which
would otherwise require the number of roots to be divisi-
ble by 3. When x is near 3 the angles are constrained near
0 and cannot relax to the vicinity of cr. The two angles
which become equal are thus pulled as far towards o as
possible producing the L phase. At the larger values of cr

as x is reduced these extrema move relative to cr and it be-
comes better to bring the third spin close to sigma rather
than the two degenerate spins. This produces a first-order
phase transition at x =2.1867313.. .. Similarly there is
first-order transition at x =v 3 [(Pi,Pz, Pi)=(n/2,—m/3, —~/3) or (—rr/2, n/3, rr/3)] which reverses the
process. Because the J and 8 phases are known exactly,
the value of Q can be compared and these are known to be
the only transitions between L and R.

The phases Bi and Bi are broken-symmetry phases. In
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these regions the system can relax enough to partially
satisfy both cr and x with a nonextreme value of Pi. Since
a&0 there are now six states.

Since the phases which coexist at x =1, cr&0 are
known to be neither I. nor 8, then this broken symmetry
phase (82) must cover the entire range of cr for x directly
above x =1. However the angles turn very quickly in this

region, so that the I. phase is obtained very near x =1 as
x is increased. The numerical calculations suggest that
this is always critical. Criticality requires that

(d0/dpi) =0 at Ix =0+, i.e., when the end of the 0 curve
becomes horizontal. This is in fact the case at x=1,
0'=0, so that thc transition reaches this point.

In the BI phase the aforementioned competition be-

tween x and 0 is weak enough that an intermediate
(symmetry-broken) phase exists which largely satisfies
both interactions. The transition from 8I to R appears to
be critical. The transition from 8I to I. is critical for
large x and first order for smaller x with a tricritical
point at -2.3. In addition, there are thus two critical
endpoints terminating the 8 to BI transition.

The BI and 82 phases do not meet, but have a narrow
region of R phase separating them.

Since 0 =Ir/6+c is equivalent to
cr=n/6+c m/3= —(Ir/6 —e) th—e unshown portion of
the phase diagram is easily obtained. As one crosses
cr=rr/6 there is a first-order transition either from I. to
R or from R to 1., as is appropriate.

There appears to be only one phase, H, in the helical re-

gion. As in the nonhelical 8 phase, there is a first-order
transition at o =0 and at cr=lr/6. When these values of
0 are crossed, the state changes to a totally equivalent but
reflected (QI ~—p;) state.

The point x =1, cr=O is a very complicated point be-
cause 8i, 82, 8, H and the equivalent phases for negative
sigma all meet there with the above mentioned transitions.

IV. DISCUSSIONS

In this paper I have shown that the APR models can be
described in MW I' even in the presence of a crystal field of
the form h„cos[n (8—o}]. Although the equations can be
numerically handled in rather general circumstances, the
problem was analyzed mostly in the linlit of small h„.
The presence of h„ tcmis discretizes the solutions, but
leaves a symmetry break associated with permutations of
the sublattices in a periodic state. Furthermore the specif-
ic case of the triangular lattice (which is known to have
interesting properties even in the absence of such fields)

was elaborated on. In this case a variety of phase transi-
tions was observed, both first-order and critical. There
were also observed a tricritical paint, taro critical end-
points and two Ising critical points. There are first-order
transitions associated with a free energy crossing of the
two extrema of the continuum (from the h„=O case). Be-
cause these extrexna have a degeneracy in the angles, it
then followed that there is (sometimes) an Ising transition
breaking this symmetry as one moves to values of o and h

which are not so strongly in competition with each other.
It is appropriate to discuss the validity of these calcula-

tions. The MI I' approximation reduces to a ground-state
analysis at T=O. The equations set up in Sec. II are exact
(for the Ml I'}. The assumption in Sec. IIIC, that the
state stays in the continuum of the unperturbed model
should be correct for T=O (with fixed, small h„). Thus
at the very least me have done an exact ground-state
analysis. The fact that the previous MFI' (for the h„=O
case) is in reasonable agreement with the Monte Carlo
studies suggest that the calculations presented here should
refiect much of the phenomena present even at finite tem-
perature. To date no other analysis (Monte Carlo,
renormalization-group, etc.) has been done on this model
(with h„&0) with which to compare. Extensive studies
have been made on the ferromagnetic versions with h =0,
but the phenomena involved are distinct from most of
those seen here. Since such terms in the Hamiltonian are
quite likely based on crystal symmetry, it seems very
reasonable to look further at this question.

H—= g V(8;,8J)+ g U(8;), (Al)

where V(8I, 8J )= V(81,8;}. This can be rewritten as

H= g IV(8k, i 8k,28k, 3»
k

(A2)

where k runs over a v 3xv 3 sublattice, 8k I, 8k 2, and

8k 3 are the spins of three nearest neighbors, and
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APPENDIX

The arguments concerning the periodicity of the ground
state of this model on a triangular lattice can be easily
generalized to a much broader class of Hamiltonians of
the form

IV(8k i 8k 2 8k3)= V(8k i 8k—2)+V(8k2 8k3)+V(8k i, 8I, 3)+[U(8I,, I)+U(8k„)+U(8k, )j/3 . (A3)

must bc lncllldcd ill till'cc such trios alld
thus the variables for different k's arc not all indepen-
dent. ) Because of the structure of the triangular lattice it
thus follows that the ground state of the entire system is
precisely the set of states for which $V is minimized on
each trio of nearest-neighbor sites. As is typically the
case, assume that the set of minima for W is such that if
two of the spins are known then so is the third. (This as-

sumption is true for the case actually considered in this
paper. ) If this assumption is true, then knowing any two
nearest-neighbor spins in the triangular lattice allows the
state of the entire lattice to be determined, resulting in a
Y 3 X v 3 periodicity.

It should be pointed out that the Mt =I' free energy also
has this form and thus the arguments still apply at finite
temperature (in Ml l }.
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