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Phase transitions in two-dimensional uniformly frustrated XY spin systems
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%'e investigate the nature of phase transitions in a generalized uniformly frustrated square-lattice
model with XY spins. The frustration is made to vary by changing the negative bond strength g.
From ground-state {GS)analysis we find that, below the critical value q= —,, the GS is ferromagnet-

ic, while for q & —,, it is doubly degenerate with canted spin configurations. This suggests the ex-

istence of an Ising-like transition. This is confirmed by our extensive Monte Carlo simulations. In
addition, there is a Kosterlitz-Thouless-like transition at higher temperature for goal. In the fully

frustrated case (g=1), these two transitions are merged into a single one of dominant Ising charac-
ter. These conclusions follow from a finite-size-scaling analysis and a visualization of the ordering.

I. INTRODUCTION

The concept of frustration was initially introduced in
connection with spin glasses. Since then, frustration ef-
fects have been widely investigated not only in spin
glasses but also in uniformly frustrated systems without
disorder. The latter systems are periodically defined, so
they are potentially amenable to exact treatment and can
serve as testing grounds for various statistical theories and
approximations. ExperinMntally, some real systems such
as planar arrays of Josephson junctions in transverse mag-
netic fields and fcc alloys can already be modeled by uni-

formly frustrated systems. Other examples can be found
in topics such as incommensurate surface reconstructions
and He-A films (see, e.g., papers cited in Ref. 2).

Uniformly frustrated three-dimensional (3D) systems
studied so far present rich and often unexpected behavior.
For example, in the fully frustrated simple-cubic lattice
with Ising spins, a second-order transition has been found
and a partial disorder occurs in the ordered phase. 3 The
same features have also been observed in a stacked antifer-
romagnetic triangular lattice with Ising spins. ' The an-
tiferromagnetic fcc lattice with Ising spins, on the other
hand, possesses a first-order transition. ' In a partially
frustrated 3D Ising system, evidence of linear-chain-like
excitations has been found. In addition, interesting and
unexpected ground-state (GS) properties of the fully frus-
trated simple-cubic lattice with vector spins have been
discovered very recently. '

In 2D systems, Villain's fully frustrated model" (see
Fig. 1) and the antiferromagnetic triangular lattice, '

while presenting no finite-temperature transition for Ising
spins in agreement with Monte Carlo (MC) simula-

tions, ' ' ' show a phase transition at finite temperature
for XF spina as obtained by MC simulations (see Ref. 14
for Villain's model and Refs. 1S and 16 for the triangular
lattice). However, the nature of the phase transition in
these two systems with XI' spins is not well understood,
though it has been suggested' ' that the phase transi-
tion has a somewhat mixed character, of both Kosterlitz-
Thouless'9 (KT) type and Ising type. This suggestion is
based on the fact that the GS degeneracy in both square"
and triangular'5' systems is twofold in addition to the
degeneracy due to global rotation of the spin system. The
first kind of degeneracy yields an Ising-like transition

FIG. 1. Uniformly frustrated square lattice: single lines are
positive bonds (J&0) and double lines represent bonds which
are equal to —gJ. The Villain model corresponds to q=1. The
spins on a plaquette are numbered for ground-state analysis.
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where the disorder arises from random mixing of two de-

generate states, while the second kind gives rise to the
KT-type transition initially predicted for 20 ferromagnet-
ic XY systems. ' These transitions thus correspond to two
different kinds of symmetry breaking. The question of
how they actually occur, i.e., at the same temperature or
one just after the other, has not been clarified so far, ei-
ther in MC simulations, ' ' or in I.andau-Ginzburg-
Wilson analysis. ' ' This is the motivation behind the
present work.

The purpose of this paper is to study in detail the na-
ture of the phase transition in the 2D uniformly frustrated
lattice shown in Fig, 1, with classical XY spins. To this
end, we make a ground-state analysis and perform exten-
sive MC simulations. Since it is difficult to analyze MC
data in the critical region to see if there is a single transi-
tion with a double character or two separate transitions
(in this case, the question is which one occurs first), we
vary the strength of negative bonds (Fig. 1). In doing so,
we modify the frustration, expecting that it will split off
the transitions far enough from each other, so that one
can study the nature of each transition more easily. As it
turns out, we have succeeded in making one transition
move downwards and t'he other upwards on the tempera-
ture scale. From our data analysis, the low-temperature
transition corresponds to an Ising-type transition and the
high-temperature one to a KT-type one. Therefore, in the
fully frustrated (equal bond strengths) model, our results
suggest that if there were two separate transitions, then
the low-temperature one would be of Ising type and the
high-temperature one of KT type. This at least rules out
the possibility" that the KT transition occurs first. How-
ever, our results strongly favor the existence of a single
transition with a double character in this case.

In Sec. II, the GS spin configurations are derived
analytically in the general case. We show that there exists
a critical strength of negative bonds below which the GS
spin configuration becomes ferromagnetic: in this case,
the Ising-type transition would disappear since there is no
longer twofold degeneracy. This prediction is indeed con-
firmed by our MC results shown in Sec. III, where finite-
size-scaling analysis is also presented. Concluding re-
marks are given in Sec. IV.

convenience, the spins are numbered as in Fig. 1. The
Hamiltonian for the plaquette H~ is written as

Hp ——gS).S2—S2 S3—S3.84 —S4 S) . (2)

The variational equation reads

5 Hp ——,
' g A,;(S;) =0. (4)

Equation (4) amounts to requiring that each spin be
aligned along its local field. Now, by symmetry, sites 1

and 2 are equivalent; so are sites 3 and 4. Thus, the
Lagrange multipliers A, i and A,2 are equal; so are A, 3 and A.4.
Note that the local fields are nothing but absolute values
of the multipliers A, =Xi ——A,2 and p=k, 3

——A,4. Equation
(4) leads to the following set of equations:

A, Si —3)S2+S4——0,
—rlS i+ A S3+S3——0,
S3+PS3+S4——0,
Si+S3+PS4——0 .

In fact, from (5) one obtains two decoupled homogene-
ous sets of equations:

(A, —rl )(S)+82)+(S3+S4)=0,
(Si+S2)+(P+1)(S3+S4)=0

(6a)

(A, +31}(Si—S2)+(S4—S3)=0,
( Si —Sz}+(P—1)(S4—$3)=0 .

Equations (6) yield
' 1/2

(6b)

Here, and in what follows, J is taken as a unit of energy.
The GS spin configurations are obtained by minimizing

H& with respect to S;, taking into account the conditions

(S;) =1, i =1, . . . , 4.

II. GROUND STATE A, =rip = —[g(1+3))]'~ (7b)

We consider the model system described by the follow-
ing Hamiltonian:

where the nearest-neighbor interaction J,J is equal to J for
positive bonds which are represented by single lines in
Fig. 1, and to —rlJ for bonds which are represented by
double lines. The value of g is made to vary from —1 to
infinity: q=l corresponds to the fully frustrated case
while g= —1 corresponds to the ferromagnetic case. The
spins S; are planar spins of unit length.

For GS configuration analysis, it suffices to consider
just a single plaquette; this will be justified later. Further-
rnore, we consider as a single solution all configurations
obtained from each other by any global spin rotation. For

In the same way, one sees that the cosines of the angles
8,J of the spins S; and Sz link& by positive bonds are all
equal and given by

1/2
1 q+1cos8=cos8$3 —cos834 —cos84i =
2 vl

Moreover,

(Sa)

To obtain the angle between two spins, e.g., Si and S4,
one rewrites the first equation of (5) as

(A,Si+S4) = ( —rl S3)

This gives
' 1/2

Si S4= (g —A, —1)=—1 q+1
2A, 2 Yl
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Now, since the cosines in (8a) never exceed one, we are
led to a lower critical value of g, namely,

g 3

below which there is only one GS spin configuration, the
ferromagnetic one. For rl & —,', the spin configuration is

canted. As seen from (8a), the angle between adjacent
spins on positive bonds varies continuously from zero for
rl & —,

' to either n /3 or —n /3 for infinite rl: there is a bi-

furcation of the ferromagnetic solution toward the two
canted solutions at q= —,'. The degeneracy in this case is

easily seen: given the orientation of, say, S2, there are

only two possible orientations for Si, according to (8a).
Once the orientation of S3 is chosen, the orientations of
the remaining spins are determined. Furthermore, the
remaining spina of the adjacent plaquettes are also deter-

mined; in this way, the GS spin configuration of the
whole system is determined. Thus, the GS in the case

is doubly degenerate. This generalizes the well-

known result for the fully frustrated case (rt = 1)."
As long as the double degeneracy exists (i.e., rl & —,

'
),

one should expect one transition of Ising type. This is
indeed confirmed by the results of MC simulations given
in the following section.

In the GS, the energy of each plaquette is minimized,
therefore, the GS energy of the system is given by one-
half of the sum of the plaquette energies. This justifies
the use of a single plaquette to look for GS spin configu-

rations. The GS energy per spin is easily found to be

A. Energy and specific heat

In Fig. 2, internal energy per spin U is plotted as a
function of temperature T for different values of g. For
the fully frustrated system (g= 1), one observes a sharp
change of curvature of U. In the inset, the size effect on
U in the critical region is shown: one cannot exclude the
possibility of a weak first-order transition. For q dif-
ferent from 1 but larger than —,', there are two downward

curvatures of U in contrast with the case rl =1. This sug-

gests the existence of two transitions.
The specific heat per spin C obtained by differentiating

.U with respect to T is shown as a function of T in Fig. 3

for different values of g. For rl far enough from 1 but
larger than —,', one clearly observes two distinct peaks.
The low-temperature peak is sharp and the high-
temperature one is rounded even for sizes as large as 100~.

As can be seen from Fig. 3, when rl approaches 1 from
below and above, the two peaks are merged into a single
peak.

In order to investigate the nature of the transitions as-
sociated with the peaks of C, we have made a careful
finite-size-scaling analysis of the peak heights of specific
heat C,„and inspected snapshots of the spin system in

different temperature regions. Other quantities have also
been examined.

In the case where two peaks exist in C, we show,
respectively, in Figs. 4(a) and 4(b), the low- and high-
temperature peak heights C,„as functions of lnL. The
low-temperature peak height increases linearly with lnL.
This indicates a critical exponent +=0 which is charac-
teristic of the Ising transition. The logarithmic depen-
dence of C on the temperature has been checked on both

Up=— (10a)

for rt& —,
' . (10b)

We note that both Uo and dUO/drI are continuous for
rl = —,'. In addition, Uo presents a flat maximum at q = —,

' .
The GS magnetization modulus per spin is given by

rn = —,
' cos8[2(1+cos8)]' (11)

III. MONTE CARLO SIMULATIONS
AND INTERPRETATION OF RESULTS

The MC procedure we use here has been described in
detail elsewhere. We have used the sample sizes of
L =20, 30, 40, 50, 70, and 100 spins for various
values of g. The large sizes have been used only for
finite-size-scaling analysis in the critical regions. Periodic
boundary conditions have been used. In addition, one of
the GS spin configurations has been taken as an initial
spin configuration since initial random spin configura-
tions often lead to wall defects at low temperatures. In
each run, we have discarded about 20000 Mc steps per
spin before averaging physical quantities over the next
50000 MC steps per spin. %e note that in each run the
number of MC steps per spin given here is the total num-
ber of flippings per spin.

-1.5

0.4 0.5

0.4 0.8

FIG. 2. Internal energy per spin U as a function of tempera-
ture T, for various values of q, with L =30 . The finite-size
effect in the critical region in the g=1 case is shown in the in-
set.
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FIG. 3. Specific heat per spin C, obtained by differentiating
U with respect to temperature T, is shown as a function of T,
for various values of g (L'=30'). Results obtained by energy
fluctuations (solid circles) are shown for q = l.

FIG. 4. Finite-size scaling of peak height C,„of specific
heat: (a) for the low-temperature transition with g =0.6; (b) for
the high-temperature transition with q=0.6; (c) for the single
transition with g=l. The results of Ref. 14 for small lattice
sizes are reproduced here (crosses).

sides of the transition. The Ising character will be further
confirmed by a visualization method presented below. On
the other hand, the high-temperature C is independent
of L for large enough L [see Fig. 4(b)]; this is a charac-
teristic feature of the KT transition as also numerically
observed in ferromagnetic X1'model. 2O'2'

We note that I.ee et al. ' have obtained two transitions
for an antiferromagnetic XF model on a triangular lattice
in the presence of a magnetic field. The low and high
transitions correspond, respectively, to Ising-like and
KT-like transitions. They have interpreted the latter as a
result of the screening of the vortex interaction by solitons
(domain walls).

In the fully frustrated case (g =1), the peak in C is very
sharp (see Fig. 3). The peak height C,„ increases linear-
ly with lnL as shown in Fig. 4(c), where data of Teitel and
Jayaprakash' for smaller lattice sizes are also presented.
As can be seen, their data exhibit approximately the same
slope as ours. Again, we have found a logarithmic tem-
perature dependence of C on both sides of the transition.
These results strongly indicate the Ising character of the
transition. How&ever, as seen above, this single peak re-
sults, in fact, from the superposition of two peaks, the Is-
ing and KT ones. Therefore, the KT character of the
transition should also persist at q =1, although it is hid-
den by the Ising behavior of C.

If the mechanism proposed by I.ee et al. ' is correct,
solitons may not screen the vortex interaction enough that
the two transitions occur at the same temperature for
q= l.

8. Visualization of ordering

We now examine the spin configuration obtained at the
end of the MC run in different temperature regions. Since
the spin configuration is canted, it is difficult to visualize
the nature of spin ordering. Therefore, we use a projec-
tion procedure. We consider a sublattice of plaquettes
vrith periodicity tv&ice the lattice constant. %e associate
to this sublattice four spin configurations: two GS con-
figurations determined in the preceding section and two
obtained from these by a rotation of n j2. Next, we pro-
ject the spin configuration of each plaquette (of the same
sublattice of plaquettes) obtained by MG simulation on
the above four states. Thus we obtain, respectively, four
components qi„, q2„, qi~, and q2„which define two vec-
tors qi and q2. If the spin configuration on a plaquette
belongs to the first GS, then

~ qi (
=1 and

~ qz ~

=0, in-

dependently of the global spin rotation. If it belongs to
the second GS, then

( qi (
=0 and

~ q2 ~

= 1. For an excit-
ed plaquette, one has a mixed state (

I q i I
+0

~ q2 ~
&0). Furthermore, a global spin rotation on the pla-
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quette corresponds to a rotation of qi and qz with the

same angle. So, the breaking of continuous symmetry

which results in an orientational order can be seen by
looking at relative orientations of qj and q2 over the en-

tire system.
In Figs. 5(a) and 5(b), we show a map of q, and qz, tak-

en from a portion of the spin system, with i) =0.5, below
and above the low-temperature transition, respectively. In
Fig. 5(a), there is only one kind of GS (

~ q, ~

=I and

~ qz ~

=0) while in Fig. 5(b), there is a random mixing of
clusters of dominant qi or qz kind. This further confirms
the Ising nature of the transition. Note, however, that
orientational order still remains after this transition. We
do not show here a map of qi and qz above the high-
temperature transition, since orientational disorder occurs
rather gradually through the transition region. This is not

surprising since the specific heat presents a broad max-
imum.

For the fully frustrated case (g = I ), a map of qi and qz
below and above the transition is shown in Figs. 6(a) and
6(b), respectively. Again, below the transition, only one
kind of GS is observed. Above the transition, not only Is-
ing disorder is present but orientational (KT) disorder is
observed as well. This is what one should expect, given
the sharp nature of the transition.

C. Phase diagram

Now, we display in Fig. 7, the locus of the peak tem-
perature of C as a function of the frustration parameter rl.
In the (T,rl) plane, the low-temperature branch (dashed
curve) represents the Ising-type transition line. Further-

FIG. 5. Map of q& and q2 (see text), represented by thick
and thin vectors, respectively, taken from a portion of the sys-
tem with q=0. 5; (a) at T=0. 1 (below the low-temperature
transition); (b) at T =0.2 (between two transitions).

FIG. 6. Map of q~ and q2 (thick and thin vectors, respective-

ly) for a portion of the system with q=1: (a) at T=0.4 (below

the transition); (b) at T =0.5 (above the transition). See text for
comments.
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FIG. 7. Phase diagram in the plane ( T,q) determined from
the locus of the peak temperatures of C. Solid and dashed
curves represent the Ising-like and KT-like transition lines

respectively. ]

0.5

more, the high-temperature branch (solid curve) represents
provisionally the KT-type transition line, since it is
known, at least in the XF ferromagnetic case, ' ' that the
locus of specific-heat maxima does not coincide with the
KT transition points. So, in what follows, when we men-
tion the KT-type transition line, we mean only the locus
of specific-heat maxima. Note, however, that this locus
coincides with that of magnetic-susceptibility maxima for
r) ( 1 (see Sec. IIIE). Note that in the vicinity of r) =1, it
was not possible to resolve the peaks of C, so the phase di-
agram in this region should be read qualitatively. It is in-
teresting to note that for rl ~ 1, the Ising-type transition
temperature is almost independent of r). This indicates
that the energy barrier between the two degenerate states
is insensitive to varying rl. This may be understood from
the following argument: the energy barrier is a function
of 8 which is itself a slowly varying function of rl for
large rl [Eq. (8a)]. On the other hand, the KT-type transi-
tion temperature is almost a linear function of rl for large
positive or negative il as one should expect since the
orientational ordering is then controlled by the r) bonds.

D. Sublattice magnetizations and correlation functions

We show in Figs. 8(a) and 8(b), sublattice magnetization
moduli per spin as functions of temperature for r) =1 and
0.6, respectively. The magnetization modulus per spin
m~ of sublattice a is defined by

(12)

where the angular brackets indicate the thermal average.
By this definition, one gets rid of the global spin rotation
in the long-time average. For q = l, all sublattice magnet-
ization moduli are equal; one observes a sharp fall of m
at the transition temperature. For q=0.6, there are two

FIG. 8. Sublattice magnetization modulus per spin m as a
function of temperature for 1.~=30 (open circles). Results for
Li=70 (crosses) and 100 (solid circles) in the critical regions
are shorn to appreciate finite-size effect: (a) g=1; (b) g=0.6.
Solid lines are for sublattices 1 and 2; dashed lines are for sub-
lattices 3 and 4.

distinct sublattice magnetizations which result from the
two different local fields [see Eq. (7b)]: the weak local
field here is felt by the spins of the sublattices linked by rl
bonds; the magnetization of these sublattices undergoes a
fall at the Ising transition temperature. Both sublattice
magnetizations tend to zero at the KT transition tempera-
ture. In both cases (r) = 1 and 0.6), the sublattice magneti-
zations decrease slowly with increasing lattice size even at
temperatures below the transitions. We have also ob-
served the same behavior in the ferromagnetic XF spin
systems. This may be a characteristic feature of 2D XF
spin systems.

The spatial spin correlation functions 6 at given dis-
tance 8 and temperature T have been calculated by first
averaging over the sample and then over the time, after
equilibrating the system. 6 has the same features as the
sublattice magnetizations: at a given distance, G de-
creases, though very slowly, with increasing lattice sizes
[sm Fig. 9(a)]. The distance dependence of 6 is shown in
Fig. 9(b) for the fully frustrated case at various tempera-
tures. For comparison, we have included here the curve
6(R) for the 2D ferromagnetic XF model at a tempera-
ture very close to the transition point. This curve is to be
compared with that of the fully frustrated case at
T =0.45. One observes a stronger decrease of 6(R) in
the former case. This behavior is also seen in the ordered
phase. However, in the disordered phase, the reverse is
observed.
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FIG. 10. Magnetic susceptibility P calculated by magnetiza-
tion Auctuations is shown as a function of T for typical values
of g: 0.6 (solid circles), 1 (crosses), and 2 (open circles). Solid
lines are guides to the eye (L i=30 ).

FIG. 9. Spatial spin correlation function 6: (a) as a function
of temperature at 12 lattice spacings for q =0.6, L =30 (solid
circles) and 702 (crosses); (b) as a function of lattice spacing at
various temperatures for g=1 and L'= Mo . Dashed line is for
ferromagnetic XYmodel (q =1) at a temperature close to transi-
tion point ( T =1).

E. Magnetic susceptibility

We have computed the magnetic susceptibility X by cal-
culating thermal fluctuations of the total magnetization
defined in the same way as (12) but with the sum taken
over the whole lattice. The results are shown in Fig. 10 as
a function of temperature for typical values of r). For g
rather far below 1, one observes a peak of X at the KT-
like transition but no peak at the Ising-hke transition. In
contrast, for il larger than 1, one observes only a sharp
peak at the Ising-like transition. At present, we have no
clear interpretation for the absence of the peak in X at one
of the transitions for q&l. In the fully frustrated case
(i)=1), a sharp peak is observed at the transition as ex-
pected. The peak at the Ising-like transition in the case
g=2 (Fig. 10) is very well fitted by a power law
X~

~
T T,

~

r where T',—is the peak temperature. We
find that y=1.2+0.1, which is very small compared to
that of the real 2D Ising lattice (y =—„' ). This may be due
to the fact that the XF character (global rotation) cannot
be completely excluded at the Ising-type transition in the
model studied here. For q = 1, we have fitted the peak of

with both power law and XF exponential law
X~exp(C/~ T —T,

~

'~ ) where C is a constant. As it
turns out, the power law fits much better than the ex-
ponential law, with the same value of y as for g=2. This
indicates once more the dominant Ising character of the
transition in the fully frustrated case.

IV. SUMMARY AND CONCLUDING REMARKS

By introducing the frustration parameter g, we have
been able to show how the single transition in Villain's
fully frustrated lattice with XF spins results from the
merging of two transitions, one of Ising type and the oth-
er of Kosterlitz-Thouless type. This sheds light on the
nature of phase transitions in 2D uniformly frustrated XF
spin systems which has not been clarified in previous
work. ' 's We have shown that the ground state is dou-
bly degenerate for r) & —,'. It is this double degeneracy that
is responsible for the Ising-type transition observed at low
temperature when ii+1, in addition to a Kosterlitz-
Thouless-type transition at higher temperature due to the
continuous symmetry breaking. The nature of these tran-
sitions has been confirmed by finite-size-scaling analysis
and visualization of ordering as well as by other MC data.

We note that there exists another uniformly frustrated
model (see, e.g., Refs. 2, 17, and 18): varying the frustra-
tion results in changing the periodicity of canted ground-
state spin configurations without changing the bond
strength, in contrast to our model. Both models allow us
to change the XF spin system for the ferromagnetic state
to the fully frustrated one, but by two different pathways.
However, the results from our model are more convincing
as far as the high-temperature transition is concerned: the
other model yields only a shoulder in the specific heat
while our model gives a more pronounced peak for this
transition. Besides, Garel and Doniach have also found
for 20 XY helimagnet two transitions of Ising- and KT-
type occurring at low and high temperatures, respectively,
just as in our model. Finally, we suggest that our model
might have an experimental realization such as a planar
array of alternate rows of Josephson junctions of different
coupling strengths, in transverse magnetic field.

Note added. After having submitted this work, we
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learned that Granato and Kosterlitz " have obtained by a
Landau-Gtnzburg-Wtlson analysts a phase diagram stmt-

lar to ours (Fig. 7), using a coupled XFmodel which, they
showed, is equivalent to the fully frustrated XF model in
the vicinity of rl=l. Also, Choi and Stroudzs have
found a single transition for q= 1, in agreement with our
results.
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