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Renormalized perturbation theory with generalized minimal subtraction is used as an appropriate
renormalization-group procedure for the study of crossover behavior in the continuum version of the
p-state Potts model with quadratic and trilinear symmetry breaking, within the representation of
Priest and Lubensky, by means of a two-loop-order calculation in d =6—e dimensions. The boun-

dary between first- and second-order phase transitions is studied for longitudinal and transverse or-
dering as a function of p. A fixed-point runaway for longitudinal ordering is consistent with a
mean-field interpretation of a first-order transition for p p p, where p &2 but not with a second-
order transition for p &p . Finite and stable fixed points are obtained for transverse ordering, one

that follows by crossover from the symmetric fixed point for 2 &p & —", , in consistency with the usu-

al mean-field interpretation of a second-order transition for 2 &p & 3.

I. INTRODUCTION

Crossover phenomena involving first- and second-order
phase transitions in the continuum version of the p-state
Potts model have been considered in recent works. '

Physical realizations of particular importance are the per-
colation problem, described by the limit p=l, and
structural phase transitions represented by the three-state
model. ' It has been shown that quadratic symmetry
breaking (QSB) describes the crossover from the continu-
ous percolation threshold to the critical line in random
ferromagnets, ' in support of earlier scaling arguments,
and that linear and QSB perturbations either change the
first-order phase transition in the three-state Potts model
into a second-order transition at a tricritical point or ter-
minate the first-order transition at a critical point.

Recent renormalization-group (RG) works show that
QSB leads to a break in trilinear symmetry. ' To see the
relevance of this break, it has been recently pointed out
that the mean-field effects of trilinear symmetry breaking
(TSB) on the (three-state) Potts-model transition of uniax-
ially stressed SrTiO& are large enough to mask fluctuation
corrections to the shift of the tricritical stress parameter
in d =4—e dimensions. This suggests that one may
have to consider the RG in d =6—e dimensions to study
fluctuation corrections induced by QSB in the continuum
Potts model.

The aim of this paper is to obtain fluctuation correc-
tions to mean-field theory in crossover behavior due to
spin anisotropy in the p-state Potts model, which amounts
to QSB in the continuum version. Rather than studying
the detailed crossover for a particular state p, we are in-
terested in the dependence of the boundary between first-
and second-order transitions both on general p and for
different forms of spin anisotropy. It is also our aim to
obtain the effect of fluctuation corrections to two-loop or-
der in renormalized perturbation theory (RPT), and in the

course of doing this, there appear a number of interesting
aspects of the theory which are worth discussing and such
discussion is also presented here.

Indeed, to calculate crossover behavior due to spin an-
isotropy by means of RPT, ' '" one has to obtain a finite
theory for a/I values of a dimensionless noncritical mass
which acts as an effective QSB paraineter. Amit and
Goldschmidt' showed how to absorb logarithmic mass
divergences by means of dimensional regularization and
generalized minimal subtraction (GMS), in an n vector-
4 -field theory to one-loop order, in extension of the usual
minimal subtraction of dimensional poles. ' ' Despite
logarithmic momentum-dependent terms that arise in cal-
culating the massless diagrams for the symmetric theory
in ordinary critical phenomena, ', an exact cancellation of
such terms takes place order-to-order in perturbation
theory in the course of renormalization with dimensional
regularization and minimal subtraction of poles, in accor-
dance with what one would expect from an appropriate
RG procedure. " %'e show that new momentum-
dependent terms appear in RPT for Potts P -field theory
with quadratic and trilinear symmetry breaking in a two-
loop-order calculation in d =6—e dimensions. It must be
shown that such terms can be correctly disposed of in
RPT.

Despite the presence of instanton solutions that dom-
inate the high-order behavior of P -fleld theory for
p ~ 1, ' we argue that a number of conclusions may still
be drawn from a low-order RG calculation on such a
theory, particularly in the case of transverse ordering,
where a finite and stable fixed point can be associated
with a second-order transition predicted by mean-field
theory.

The outline of the paper is the following. In Sec. II the
continuum-field model is introduced. In Sec. III we dis-
cuss the renormalization; first, for the massive symmetric
theory in order to point out particular features of mass re-
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normalization in P -field theory which also appear in our
calculations and, second, we show there the new logarith-
mic momentum-dependent terms in the diagrams to two-
loop order. An exact cancellation takes place when GMS
is used to calculate the renormalization functions that ap-
pear in this work. The complete list of the two-loop-order
diagrams and other calculational details can be found else-
where. ' However, a check on the RG procedure that
yields singularity-free beta functions, for longitudinal and
transverse ordering is presented in Secs. IV and V, respec-
tively, which also contain the main results of our work.
In the case of longitudinal ordering, there is a fixed-point
runaway, in addition to the unstable Gaussian fixed point,
for all values of p. Although for large p this may be in-
terpreted as a first-order transition [consistent with a
mean-field analysis on the free energy carried out in Sec.
IV, which shows that a first-order transition should be ex-
pected when p &2—5(g), with a small 5(g) )0, for small
QSB parameter g &0], the runaway for small p is incon-
sistent with a mean-field prediction of a second-order
transition for p &2+5(g), indicating that a P -field tenn
may be needed to restore a stable and accessible fixed
point. The RG calculations for transverse ordering in
Sec. V reveal the presence of three finite and nontrivial
fixed points in the asymptotic crossover limit, one of
which can be reached through crossover from the sym-
metric fixed point for 2 &p &

—", with a fixed-point runa-

way for other p, in an extension of a mean-field calcula-
tion also shown in Sec. V that predicts a second-order
transition 2 &p & 3. A further discussion appears in Sec.
VI.

II. THE MODEI. AND THE CONTINUUM THEORY

The discrete p-state Potts model on a lattice, with a fer-
romagnetic nearest-neighbor spin-anisotropy exchange in-
teraction that breaks the permutation-group symmetry

I

S„+i,for p =n +1, may be described by the Hamiltonian

p —10= —g g J (
~

r—r'
~
)S„(r)S„(r'),

&r, r'} v=1
(2.1)

for classical v-component (v= l, . . . ,p —1) "spins" S(r)
which can be in p states given by the Potts vectors a;,
i =1,2, . . . ,p in (p —1)-dimensional space, satisfying the
relations, '

(2.2)

a;a; =5 p.i
a P

aa; = p —0,'

p —a+1

' 1/2 0 ifi &a,
&( 1 if i=a,

—1/(p —a) if i pa.
(2.3)

A different way of breaking the symmetry can be imple-
mented through the representation of Wallace and
Young, discussed in Ref. 21. The latter is useful for
crossover in random ferromagnets, ' for which a two-
loop-order calculation will be reported in separate work.

The effcetive Hamiltonian of the continuum theory in
momentum space follows in the standard way as

For physical reasons, it is convenient to break the
equivalence between the Potts-state vectors with a J that
favors either one or the remaining (n —1)-spin com-
ponents. By means of a rotation of the Ia;], ai can be
made to coincide with the single spin component as in the
representation of Priest and Lubensky, ' in which

+no A1 A1 — + +mo 2 Aq k Aq-

+
)

K u iDiii f A 1(k)A i(k')2 i( —k —k')+ Ku2Diqq f—3 i(k)Qq(k')&„( —k —k')

+
,

K' u3Dq~ —fAq(k)A, (k')A, ( —k —k')+0(A ), (2.4)

in the representation of Priest and Lubensky, assuming a single longitudinal and (p —1) transverse field components,
A, (k) and (Az(k), respectively, with summation over repeated transverse components q, r, and s, and with integrations
over all momenta in d =6—e dimensions. With an arbitrary momentum scale parameter K, the bare dimensionless cou-
pling constants are denoted by u;. The tensorial coefficients, which depend explicitly on the representation, are given by

aPyDapy= ~~ai ai ai =
—1 if a &P=y

l
X p —a —1 if a=P=y

[(p —a)(p —a+1)]'
1 otherwise

(2.5)

with only three nonzero terms: D111,D1qq, Dqqq. The
squared, mo(1) and mo(2) bare longitudinal and trans-
verse masses are proportional to the reduced mean-field
critical temperatures for longitudinal and transverse or-
dering, t =(T—To)/T and t'=(T To)/T, respectively. —

The bare, one-particle irreducible, dimensionless two-
and three-point vertex functions, I' ' and I ' ', and the

I a/0) ~ l ~ e~ n
I'lmn ~ 1~ 2 ~ 3 ~

l, m, n

(2.6)

two-point vertex function with a P insertion, " I ' '", ex-
panded to two-loop order may be written as



RENORMAI. IZATION AND PHASE TRANSITIONS IN POTTS. . . 3167

with the summation over I +m +n = 1,3,5, and

I' "{k,q; Iu~j, mo(i)}=1+ g' C(' „'u iu z u z,
l, m, n

(2.8)

with 1+m +n =2,4. Moreover, k and mo(i) denote di-
mensionless momenta and masses, scaled with the param-
eter ~. Without giving the full details for the diagrams
and the singular parts of the expansion coefficients in
Eqs. (2.6)—(2.8), which can be found elsewhere, ' we will

discuss in the following section some of the mass-
renormalized expressions.

The singular parts of the vertex functions, which are di-

mensional poles in e, logarithmic mass divergences, and
combinations of both, are taken care of by renormaliza-
tion functions and coupling-constant renormalization
given b 10' 1 1

with s =1 for a= 1 and s =2 for a=q (» 1), the summa-

tion being over 1+m +n =2,4;

I'~pr{k, ; I uj j,mo(i)} =D~pr g' A(~„'u iu z u z,
l, m, n

for nL longitudinal and nr transverse points, and

(1) (2, 1)

I (2, 1)
Z 2I~*

(2)Z y2 F~~

(2.14a)

(2.14b)

III. RENORMALIZATION

The relevant points about mass renormalization that
appear in our work can already be discussed in the mas-
sive symmetric theory. We do this first and then discuss
the case of quadratic and TSB.

A. Massive symmetric theory

The renormalized theory has to be finite for an asymp-
totically large dimensionless noncritical mass' and since
there are features of mass renormalization in P -field
theory in this limit which deserve attention, we consider
these next.

(i) l m n
l = ~ lmn~ 1W2 03, l =1)2, 3 „

l, m, n

( Iu(I )=1+ y blmliu lu2 u3~
l, m, n

(2.9)

(2.10)

The bare effective Hamiltonian with a single mass rno

and coupling constant u0 leads to a bare, dimensionless,
two-point vertex function to two-loop order,

I'"(k;uo, mo) =k'+mo —B,I(k,m, )u,'
[8"'I'"(—k, m )

Z~ (z( uI()=1+ g' c(~„uIuz u3, s =1,2
l, m, n

(2.11) +Bz 'I
z '(k, mo)]uo, (3.1)

1 (2)
(2) Z&I aa~ 0('= 1

(2) (2)
Zp I ~~, a) 1,

(2.12a)

(2.12b)

with the summations over 1+m +n =1,3,5 in the first
one, and over I+m +n =2,4 in the other two. Because
of the presence of a noncritical mass, which also becomes
renormalized, and due to particular features of (() -field
theory, we postpone a discussion concerning this point un-
til the following section.

Renormalized two- and three-point vertex functions are
then obtained, as usual, according to

in which 8, = —,
' a, , 8'z" ———,a(, and 8'z ' ———,

'
a(P, contain

the now standard tensorial coefficients ai and P, of the
one-loop and the two topologically different two-loop dia-
grams that can be found in the literature for the massless
symmetric theory. ' ' In contrast to the latter, ' which is
made finite by means of minimal subtraction of dimen-
sional poles, it is now necessary to reduce first the degree
of (quadratic) divergence of Eq. (3.1), without resorting to
"partial p,

"' in order to be able to apply the GMS pro-
cedure which takes care of only logarithmic mass diver-

gences. Reduction of the degree of divergence is achieved,
as usual, by means of an intermediate mass renormaliza-
tion in which

~(3) (Z('j) )( i/z)nl
(

(zi )(1/2)nr+(3)
RaPy a.py ~ (2.13)

I

m(=I' '(k =0;uo, mo) .

Equation (3.1) then becomes

(3.2)

I' '(ki o, u()m= +m k(1—8(I(k, m i )uo —Bz"Iz"(k, m i )+Bz 'Iz '(k, m()+B(I(O, m () z I(k, m i ) uo

(3.3)

where the expressions for the singular parts, in the small-e
and large- rn1 limit,

I(k,m, ) =k '[I(k,mi ) —I(O, mi )]

Iz"(k, m ))+—,I(O, m i) z I(k, m ) )
Pl 1

(1——
(2 e—eM, +—

(z e M, + —,e M i ), (3.5)
is@

1
(1—TeM(),

3E
(3.4)

Iz (k~m 1 ) = —
z

(1—
6 6—EM(+ 6 6 Mi + T6 MI ) ~

(2) 2 l 2

3E

(3.6)
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in which

I2'(k, mi)=—k [I2'(k, mi) I—2"(O,mi)], i =1,2
the renormalized two-point vertex function,

I"a '(k;u, m) =Z~(u)I' '(k;uo(u), m &(u, m)), (3.12)

contain only logarithmic mass divergences through

M, =—In(1+m', ) .

(3.7)

(3.8)

requires that the coefficients that absorb the singular parts
in GMS be given by

bi ——Bi [I(k,m)]„„s, (3.13)
r

uo=u(1+Qiu +Qiu ),

Z~(u) =1+b,u'+b, u',

m =(I+b&u +biu )m, ,

(3.10)

(3.11)

In distinction to the massless theory, one must now
keep terms with mt&0, even when k =0. Indeed, these
terms become singular in the limit m i ~ oo (also with the
final mass renormalization below); for instance,
I(O, m) cc(m )' '~ which will be needed later. Note also
that mass renormalization yields the mass-derivative term
in Eq. (3.3) which is nor canceled by a mass insertion dia-
gram, as in the case of P -field theory. "

With coupling constant, field, and final mass renormal-
ization introduced by means of

b2 —— b
&
+Za i )B,I (k, m)

+8'p"I2" (k,m)+82 'Iq '(k, m)

+ Bi[BiI(O,m) —b&m ] I(k,m), (3.14)
Bm

with a new mass-derivative term that also behaves as the
right-hand side of Eq. (3.8}, in the large-mass limit. In
taking the singular parts, the coefficients in Z& become
momentum independent, as they should. The fact that
the mass-derivative term does not vanish shows that mass
renormalization in the two-point vertex function is not
fully accounted for by subtraction at zero momentum, to
two-loop order. This should still be true to all-loop order.

Consider next the dim ensionless three-point vertex
function, to two loop, given by

3

I p (rtki); umo)=D p„uo 1+GiL(Ik. j,mo)uo+ g G"'L "([k ), ) (3.15)

ill which Gi ——pi, G2
' ——3pi, G2 ' ———,a]pi, and L,L2"

are the one- and two-loop diagrams that appear in the
literature for the massless symmetric theory, here taken
with a finite mass.

Full mass renormalization is now needed only to next-
to-leading order in the form

contribution similar to the one in Eq. (3.18). In the three
vertex functions discussed so far, it is easy to check that
the known results for the coefficients of the massless sym-
metric theory are obtained in the limit m =0, as one
would expect from GMS. '

m 0 m [b,m —B——iI(O,—m)]u (3.16)
B. Quadratic and trilinear symmetry breaking

—a i
——Gi [L ( [kj I,m )]„„s,

—a2 = —,bi+ —,b2+ 2 bi [ai+GiL (Ikj I,m)]

3

+3., G,L(Ik, I,m)+ g G,"I.,'"(Ik, ],m)

(3.17)

+ Gi[BiI(O,m) —b)m ] L(Ikj I,m}
sing

(3.18}

again, with a contribution coming from the last term, and
momentum-independent coefficients are obtained in tak-
ing the singular parts. The details, given by a lengthy ex-
pression for ai, need not be presented here. Similarly, the
coefficients in the renormalization function, Z&q, for the
two-point vertex with a P insertion, are given by explicit
momentum-independent expressions that we omit here.
The two-loop order coefficient has also a mass-derivative

Renormalization of the three-point vertex function by
means of GMS then yields

In order to obtain results applicable to crossover
behavior when either the longitudinal or the transverse
components of the fields become critical, we consider the
renormalization with either a noncritical transverse or
longitudinal mass, respectively.

When the singular parts of the diagrams for the theory
with quadratic and TSB introduced in Sec. II are calculat-
ed following the mass-renormalization scheme discussed
above, we find new interesting features that are worth
pointing out.

%ith quadratic and TSB, there are a number of dia-
grams which are either momentum independent or have
the momentum dependence of the symmetric theory. All
these diagrams, of which there are plenty, contribute to
the calculation of the renormalization functions and will
not be presented here for the sake of brevity. There are
other diagrams, ho~ever, which have net rnomentum-
dependent terms and we exhibit these in Tables I and II.
These are diagrams for the coefficients in Eqs. (2.6)—(2.8),
with mass renormalization which are now written as
AI' „,BI'~„, where i =L, and T for longitudinal and trans-
verse ordering and Ci „only for the latter. Dotted and
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TABLE I. Mass-renormalizcd coefficients of the two-point vertex functions that contain new

momentum-dependent terms. The diagrams are described in the text. The superscripts L and T denote
longitudinal and transverse ordering. %hen a given coefficient is shown for both, the first line corre-
sponds to longitudinal ordering; ci=[p(p —1)] ' and M=ln(1+In ). The coefficients of the follow-

ing diagrams when combined with the integrals for the three-point vertex functions shown in Table II,
with the appropriate symmetry factors, yield Cl „for the two-point vertex with a P insertion.

L
&220 = L c (p —2) I22 (M)

2

&i)o =
I' '(M)

Iii' ——e M22 24

+ =—c4(p —2)[I"'(M)+ ' I' '(M—)+, e M]

IT& O22= =—c p{p —3)+[2I2i'(M)+ i I24'(M) ——,s e+ 36 e M]

I22'(M)= —,s (1+—,z e—@ink —
~ e M —

4 e M'+ —,e M ink )

Iqq'(M) = —
&
(1+ 6 e—i elnk2 —

2 eM + &
e M2+

4 e M ink )

Ii4'{M)= —
3 (1+ 2 e —dnk i —

,'z e M ——4eM~+ i c M ink )

solid lines indicate longitudinal and transverse propaga-
tors, respectively, each of which may be massless or carry
a noncritical mass, depending on the kind of ordering.
For transverse ordering, for instance, the longitudinal
propagators are massive and the transverse propagators
are massless.

When the RG procedure outlined above for the sym-
metric theory is extended to allow for quadratic and TSB,
we found an exact cancellation between all the

momentum-dependent terms that come from the dia-
grams: those that are already present in the symmetric
theory and the new diagrams discussed here.

In addition to the cancellation of momentum-dependent
terms, there are two further checks on the RG procedure
that were carried out in this work. First, summation of
all the coefficients in Eqs. (2.9)—(2.11) to a given order in
a specific renormalization function for either longitudinal
or transverse ordering yields, as it must, the known results

TABLE II. Some of the mass-renormalized coefficients of the three-point vertex functions that con-
tain new momentum-dependent terms. There are other coefficients, not shown here, that do not involve
new diagrams.

C (P —2) 1.22'(M)

c(p —2)[L22'(M)+—T'e M]

= ——c"[I,,",'{M)+I.,",'(M)+ —,",e'M]

L 'q2'(M) =
z (1—

~ e 2' —
4

e'M ——
4 e M i+ e ML )

L~~'(M)= —6(1—
,2 e 2' —+ze M———4e M'+e ML)

2 2L—:L(k~, kq) = dx dy ln[x (1—x)k 1 +y (1—y)k2+2xyk|k2]
0 0
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for the massless symmetric theory in the limit m —+0. '

Second, the calculated Wilson P functions turn out to be
free of singularities, as they should. This is shown in the
following section for longitudinal ordering and in Sec. V
for transverse ordering.

IV. FIXED POINTS AND RUNA%'AY
FOR LONGITUDINAL ORDERING

The effective crossover to asymptotic critical behavior,
if any, may be obtained by studying the dependence on the

Pg x, s =1,2, 3
BK ji,;}

(4.1)

with fixed bare dimensional couplings A,;, i =1,2, 3. The
results for the singularity-free P functions, to two-loop or-
der, are given for longitudinal ordering by

scaled mass mlp, p being the vanishingly small flow pa-
rameter, of the roots of the Wilson P functions, defined
as 10, 11

2 3
E 3 1 Q1uz 2 2 uz 125 4 4Pi ————ui+ (p —2) c ui — (p —2}c,——c + (p —2)c ui2 26 2f 1+m & 1+m 2 725

+ (p —2) c 13
6g 4 3(1+m )

5 M
2 1+m

L

r

+ (p —2)c 61

6(1+m )

4M i 3 161»u~+ (p —2)c
1+m 1+m

13 4 Q]uzu3
2 2

p(p —2)(p —3)c~
726 1+m 2

4 Qz
C

1+m 2

3 2

p (p —3)c
23 4 Q2Q3

12m j+m 2 (4.2)

3 2
1 2 2 2 2 uz uzu3~a= — 'up — (p —2) c u iud+ c [2——(p 2)] + p (p —3)c6e 3E 1+m 2 3E 1+m 2

13
(p 2) c u iu2 — (p —2) c (1—6M) u iu2

444 1 3 4 1

216m 9e 1+m 2

2
Q1Q2——(p —2)c

1+m 2

+ (p —2) c ——+ + +(p 2)
1 24 7 82 1 M 1 1 1 M+-

9@ 3 1+m 1+m 8 3(1+m ) 4 1+m
Q Q

1 4 1 1 25 1 1 M
(p —2)c 5

z +(p —2)
3E 1+m 4 12 1+m' 2 1+m'

4
Q1uz

83
p(p —2)(p —3)c

z u, uzuq + c [67+—,(p —2)]4 1 2 2 1 4 g3 u

36m 1+m 27E 1+m

+ p(p —3)c'[239—
6 (p —2}l,+ p'(p —3)c'[g(p —4)+ i~ (p —3)l

36m 1+m 9& 1+m
(4.3)

2 3e 5 2 uzu3 2 z Q3
P, = ——u, +—c,——pc [—,(p —3)—(p —4)]

1+m 1+m
324 1 5 M 2 2 13 4Q1uzu3+ (p —2) c ——+ z +— uiuzuq — (p —2)c

24(1+m ) 4 1+m 1+m
2 3

+ c [389——, (p —2)) + pc (55p —217}4 31 Q2Q3 5 4 Q2Q 3

36m 1+m 2~ 1+m
5

+ c p (125p —1044p +2259)
726 1+m (4.4)
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in which c—:[p(p —I)] ' and rn is the transverse renor-
malized mass and

U

M=ln(1+m ) . (4,S)

The terms to one-loop order are those of previous
work, ' ' while the new two-loop-order terms are either
mass independent or have a nonsingular mass dependence,
both in the limits m =0 and m ~00. With u, =O(e' )

for s =1,2, 3, the low-order p functions are regular both
in p and in m2 as one would expect 11 The cancellation
of singularities that appear in intermediate steps discussed
in the preceding section thus provides a strong test of re-

normalization with GMS, to two-loop order, and to our
knowledge, this is the first time that a result concerning
this point is obtained. Other finite Wilson functions,
which will not be discussed here, may also be derived in
the same way.

A further result of the two-loop-order calculation re-

ported here is that the explicit m2 dependence of the
terms in Eqs. (4.2)—(4.4) is of the form:
const+f(M)/(I+m2), in which f(M) is either a con-
stant or a constant plus a linear term in M, a feature al-

ready present to one-loop order. From the way in which
this result is derived, we expect a similar mass dependence
in higher-loop-order terms, except for positive powers of
M in f(M). This is relevant for the asymptotic behavior
of the fixed-point structure discussed next.

The symmetric fixed point

(u,') = e 1+~ 2 125@ —794@+ 1340
10—3p 18(10—3p)

s =1,2, 3, (4.6)

is recovered in the limit m =0 from the solutions to the
equations p, =O, s =1,2, 3, together with the trivial one
u 1

——u2 ——u5 ——0. For any large, but finite m2, there are
three sets of roots for the p functions: (i) u»0, u2 &0,
and u 5 +0; (ii) u 1 &0, u 2 &0, and u 5

——0; (iii)
u 1

——u2 ——0 with u5 +0. These appear already to one-

loop order, 'b' but the appropriate crossover behavior with
asymptotically large in has not been discussed before.
Indeed, there is a fixed-point runaway in this limit, in ad-
dition to the trivial fixed point. This can be st either
directly, by studying the flow of the coupling constants
which follows by solving numerically the equations

&u, (p)
p =Pd( I u;(p) ],m /p}, s = 1,2, 3 (4.7)

8p
in which the flow parameter p starts with p= 1 and be-

cornes vanishingly small in the asymptotic critical region.
The solution of Eqs. (4.7) and the flxed-point runaway for
p =3 is shown in Fig. 1.

Alternatively, from inspecting the p functions, it fol-
lows that terms involving (u,') /(1+m ), or with two
different u,', vanish in the limit of large m if u,

'
remains finite (or zero} or does not grow as fast as
(1+m )' . If this is the case, the trivial fixed point u,',
s =1,2, 3 is the only solution of the equations p, =O.
Otherwise, for ( u,*) /(1+m ) to remain finite there must
be a fixed-point runaway in u,'(m ) which is also a solu-
tion of p, =0. It is this solution which is the outcome of

the coupling-constant flow.
The fixed-point runaway appears for all p. Although

normally this would mean a first-order phase transition,
one should be cautious with a pure P -field-theory calcula-
tion like that of the present work. Indeed, a mean-field
analysis indicates that one may expect a second-order
transition for a range of p &2—5(g), where 5(g) &0 for

g & 0, as will be shown next.
Mean field ana-lysis The .analysis based on the mean-

field (MF) Hamiltonian' follows from Eq. (2.4) keep-

ing only uniform, momentum-independent fields A, and
we include now explicit quartic terms: (i) the rotationally
invariant (Q, A, ) and (ii) h, a d, (atda„(rin wrhaich

Espy/ aI a; a;ya;, both with summation over repeated
indices "" that correspond to the cubic terms in the di-
agonal traceless tensors Q;; of Priest and Lubensky. We
denote now with u;, i =1,2, 3, the dimensional couplings
of the trilinear terms, factors of I/3! being absorbed, and
i =4,S for the quartic terms. In order to obtain relation-
ships which also serve for transverse ordering, as well as
for longitudinal, assuming both to be uniaxial, we write

~1=Qi+~» ~2 =Q2+ ~2
Aq=Wq, g &2,

(4.8)

in which Qi =(Ai) and Q2=(A2) are the longitudinal
and transverse order parameters, respectively, and W are
the fluctuating parts. In what follows, q & 2:
~MF HMF1 +~MF2 +~MF12 5

{4.9)

l 3 4
~MFi = ——

4&L Q 1 + u i»11Q1 —(u4+ &11»u S)Q(

2 3 4
~MF2 TQ2+ uiD222Q2 ( 4++2222u 5)Q2

~MF12 3u2D122Q1Q2 2(u4+ 3+1122u 5 )Q1Q2

(4.10a)

(4.10b)

(4.10c)

j

—2
Lnp

FIG. 1. Coupling-constant flow of u —= u l for longitudinal or-
dering when p =3, showing a runaway at asymptotic crossover
for p~0, with m =10, a =1, and a=1 (curve 1) and @=0.5
{curve 2).
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in which ri =—mo(1)=r —g and rT= —mo(2)=r+g, where
r =mo of the symmetric theory and g is the QSB parame-
ter. The order parameters Q, and Q2 follow then as
minima of 4 M„given by

BA MF BA MF

aQ]
'

aQ,
(4.11}

together with the positive coefficients of the quadratic
terms in the fiuctuating parts,

12u ]D ]] 1 Q] +24(u4+E]1] ] u 5 )Q ]

+8( u4+3E]]eius)Qz

rT rT 12u2D]22Q] 12u3D22$Q2

+8( u4+3E]]2zu5)Q]

+24( u4+E2222u5)Q2

(4.12)

(4.13)

r T rT —1——2u2D, »»Q, —12u3D2 Q2

+8( u4+3E]]~u5)Q]

+8(u4+3E22», u~)Q2 (4.14)

where ri, corresponding to W], rT to W2, and r T to W»
are inverse susceptibilities that serve to establish the sta-
bility of the small and large order-parameter solutions
that follow from Eqs. (4.11).

For longitudinal ordering, the case we are interested in
this section, rq ~rT and the ordered region is reached
when r„&0. In the representation of Priest and I.uben-

sky, longitudinal ordering means Q«0 and Q2
—0. Al-

though one may also have a nonzero Q] when Q2&0, this
should be recogmzed as transverse ordering since there is
no stable solution with Qz&0 and Q] ——0.

To explore the possibility of a second-order transition,
we look for the small order-parameter solution and find,
in standard way,

(p —2} c u] rL
fI = , Q. =u4+E]]]]u5 2u](p —2)c

(4.16)

with E]]]]——(p —3p+3)c, where Q, is the discontinuity
of the order parameter Q „and

2g +(p —2)c [(p —2)u ]+6u iud] p0
~4+E1111~5

(4.17)

is sufficient for rT & 0. This can be satisfied for
p & 2—5(g), 5(g) &0 for g & 0 which limits the range of p
values for a second-order transition, referred to above.
One may thus conclude that for p & 2—5(g), the RG cal-
culation on the pure P -field theory is in agreement with
the mean-field expectation.

Since rL &0, the first one yields r] & 0 for all p, while the
second equation with u] & u2 for small g, yields a positive
rT only for p &2+5](g},with a small 5, &0 depending on

g ( &0). As will be seen below, however, the actual range
of values of p for which a second or-der phase transition is
to be expected is p &2 —5(g), 5& 0, because of a compet-
ing first-order transition. Thus, with neglect of fluctua-
tion corrections, one may expect a second-order transition
with longitudinal ordering for small p. If the RG calcula-
tion described above could be trusted (a point that re-
quires further investigation, including a P field), one
would then conclude that the effect of fiuctuations is to
change the nature of the phase transition for low values of
p. However, at present, we cannot reach a definite con-
clusion with regard to this point.

On the other hand, analysis of the large order-
parameter solution that determines a first-order transition
making use of A MF(Q] ——0)=P M„(Q]&0)—the condi-
tion for the two free-energy minima being of equal
depth —yields

I'I = —P'I

fg Q2
rI——2g+ p —2+2

p —2 Q)

(4.15a)

(4.15b)

V. FIXED POINTS AND CROSSOVER
FOR TRANSVERSE ORDERING

The singularity-free Wilson P functions for transverse
ordering are given by

3 5
3 22 ~i 1 2 2 3 125 4 4P]= — u]+ (p —2) c (p —2)c u]u2 — c u2+ (p —2) c

2 2E' 1+m 726' 1+m

(p —2) c
2

7 5M
Q )Qp

9(1+m ) 3(1+m )

(p —2) c 15—
4p

35 M
Q &Qp3(1+m ) 1+m

1 59
(p —2)c

36' 6
93 M 4 13 4 2 2—8

2 u ] u 2
— p (p —2)(p —3 )c u ] u pu 34(I+m ) 1+m 72E

+ (p —2}c u2 1—1 4 5 2 2'
36' (m +1) (m +1) p(p —3)c u2u3

3 2 (5.1)
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1 2 2P2= ——u2 — (p —2) c
2 6e

(p —2)'c'

2
Q lQ2

2+1+m 3e 1+pyg
2

Q lQ2

1+m
1 3 4 ulu2

(p —2) c
9e 1+Ptf

(p —2) i 5 2 2 2 2
u lu2

u2+ p(p —3)c uqui ——(p —2)c
2 3E 1+m

+ (p —2) c 157+(p —2)2 4

54m 2(1+m ) 2 1+m

4 7
(p —2)c 5 —(p —2)

36' 4 12(1+m i)

1 4 53 5M z
p(p —2)(p —3)c 5+ z6e 6(1+m ) 1+m2

4
Q lQ2

Q Q

1 51 59 27m+ — c 67+(p —2)
27& 4(1+m } 1+m2

5
Qz

1 p(p —3) &» 2 3~ 1778 660M
Q2Q 3

s 216 1+m 1+m

+ —p'(p —3)c [8(p —4)+ —,
'

(p —3)]urdu i (5.2)

2 2 2
5 2 Q2Q3 3 31 4 2

Q lQzu3
Pq

————ui+ —c i — pc (13—3p)ui — c (p —2)
2 E' 1+m 26 726' 1+m

3
13 4

Q lQ2Q3
(p —2)c'

1+m

+ c" 389+ (p —2) 2 —
2 + 15

1 4 35 M
36m 2(1+m ) 1+m

4
Q 2Q3

1, 1 67 5M——pc (p —4)
6(1+m') I+m'

34 181 65M+ p —3 2+18 72(1+m ) 12(1+m }
Q Q

+ c p (125p —1044p +2259 }ui4 2

726
(5.3)

uz =+

(p+9) 2p(p —1)(p+9)
(p —1)(p —2) (p —2)(13—3p)

' 1/2
2p (p —1)(p +9)
(p —2)(13—3p)

(5.4a)

(5.4b)

These P functions have not been calculated before to even
one-loop order. It can be seen that they are nonsingular,
both in s' and in m, in the limits m =0 and m~ao.
Here again, the cancellation of singularities that appear in
intermediate steps of the calculation is a check on renor-
malization with GMS, to two-loop order. Also, for the
m dependence of the higher-loop order terms, we expect
the same behavior as that for the longitudinal ordering
pointed out above.

In addition to the symmetric fixed point (FP) for
m =0 and to the Gaussian fixed point, there are now
three further nontrivial stable fixed points in the limit
m ~ao. Indeed, solving Eqs. (5.1)—(5.3) to one-loop or-
der, it turns out that in this limit,

T

e + 2(p —1)— 13-3p '
' 1/2

(5.4c)

~ s
A, =

B(7 Fp

given by

tX= Q l ~uz~u3 (5.5)

A,
&

——2(p —1)ei(13—3p),

A,2
——(p +9)ei3(13—3p),

k3=E .

(5.6)

For the second fixed point, ul ——O=uz while u3 is given

by Eq. (5.4c), and this is stable for 1 & p & —, . The third

fixed point with u i ——0, has

for one of the fixed points, with a runaway only when p is
outside the range 2&p & —", .2 The stability of the solu-
tion given by Eq. (5.4) follows from the positivity of the
eigenvalues A,; of the matrix with elements
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6

(p —2)
6p (p —1)

(p —2)
1/2

(5.7a)

6p (p —1)

(p —2)
(5.7b)

ri -=—6c(p —2)ui Qi —6cu2 (5.g)

which is positive if Q, &0 and p &2. Similarly, Eq.
(4.13) yields

Only the first fixed point can be reached through cross-
over from the symmetric one and the solutions of Eqs.
(4.7) for the coupling-constant flow are shown in Figs.
2—4 for the case p =3.

We resort next to the mean-field analysis which yields
support to the results of the RG calculation for transverse
ordering done here with a pure P'-field theory.

In the case of transverse ordering with Q2&0, there is
also a Q«0 and now rT &0 in the ordered phase. For
the second-order transition with small order parameter, it
turns out that replacement of Eq. (4.11) into (4.12) yields I

-5
jnp

FIG. 3. Flow of u~ for the p =3 state model with transverse
ordering when m =10,10 ', 1 (curves 1,2,3, respectively),
~=1 and a=0.5,

ri ———rT —6u2cQi, (5.9)

also positive when Q i & 0, while Eq. (4.14) leads to

p —1r T= (rT+12cu2Qi),
p —3

(5.10)

and this is positive only if 1&p &3. Thus, the small
order-parameter solution in mean-field theory that corre-
sponds to a second-order transition is stable when
2&p &3. Note that the quartic terms in Eqs. (4.9) and
(4.10) do not enter into this analysis and that the lower
limit for p is the same as that obtained above with the RG
calculation.

A word of caution is in order here. Indeed, to follow
the mean-field prediction of a second-order transition for
2~ p g3, one has to show that there is no deeper, large
( Q i, Q z ) minimum of the free energy that could account
for a first-order phase transition within the same range of
p values. Actually, further calculations (not shown here)
indicate a deeper minimum that appears with large Q~ &0
and Q2 &0 for small values of g with a negative r T for
the remaining transverse components. Although this
means that the large (Qi, Q2) minimum is unstable, the
fact that it is the deeper minimum leaves us in a situation
similar to that encountered by Pytteis for the symmetric
theory in analyzing the second-order transition for p & 2.
Indeed, he also found a deeper though unstable minimum,
which suggests that one may have to keep higher-order
terms in the order-parameter expansion for the free ener-

gy. It is possible that the large (Qi, Q2) minimum disap-
pears in the free energy calculated to all orders in ( Q„Qi )

leaving just the second-order transition for 2&p &3.

1.0—

0.5—

I, np
FIG. 2. Flaw of u I for the p =3 state model with transverse

ordering when m~=10 2, 10 ', 1 (curves 1,2,3, respectively),
x= 1, and @=0.5.

0.0

lnp
FIG. 4. Flow of u3 for the p =3 state model with transverse

ordering when pyg =10,10 I, 1 (curves 1,2,3, respectively),
a.= 1 and e =0.5.
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Though we cannot reach a definite picture from mean-

field theory in this case, in the same way that Pytte could
not reach one for the symmetric theory with p & 2, we in-

terpret the results of our mean-field analysis of the region
2 & p & 3 as favoring a second-order transition. This is in
accordance with the observation that QSB which favors
transverse ordering yields a (p —1)-state symmetric Potts
model. In agreement with this, our calculations also indi-
cate the presence of a first-order transition for transverse
ordering when p ~ 3.

The RG result for the upper limit p =—', to the con-
tinuous transition presumably does not mean a fluctuation
correction to the mean-field result, but rather a continua-
tion to a spinodal line, similar to the RG result for the
upper limit of p =—', in the symmetric theory. i~

Finally, the critical exponents for the second-order
transition that occurs when 2 ~ p g3 can be directly ob-
tained from the shift p ~p —1 in the symmetric theory.

VE. CONCLUDING DISCUSSION

The work presented in this paper contains the first sys-
tematic study of renormalization, as far as we know, to
account for fluctuation corrections to mean-field theory in
critical phenomena with two-length scales, associated with
the masses of longitudinal and transverse components of
the fields, to two-loop order, taking into account
coupling-constant symmetry breaking (TSB, in the present
case) due to a break in quadratic symmetry. Previous
work on P -field theory only deals with some general
features on coupling-constant renormalization, in a single
coupling-constant theory.

Both the results of mean-field theory and the RG calcu-
lations that account for fluctuation corrections can be
used on systems of physical interest through the relation-
ship between symmetry breaking in the components of the
fields and in the original discrete model, discussed in
more detail in Ref. 21. In particular, it is seen that the
three-state model is a boundary case between first- and
second-order transition under QSB that favors transverse
ordering.

The present study is limited in various ways. One is the

absence of an external field and the other is the neglect of
stabilizing P -field terms in our RG calculation which is
thus restricted to the disordered phase. Indeed, extension
into the ordered phase is desirable for a proper analysis of
the Potts-model transition in uniaxially stressed SrTi03,
as pointed out in recent work. It would also be of in-
terest in itself, in order to obtain universal amplitude ra-
tios induced by QSB.

The neglect, for simplicity, of P -field terms should not
invalidate the main conclusions of this work: (a) there is a
first-order phase transition for pure uniaxial longitudinal
ordering induced by QSB, for all but low p; (b) there is a
continuous transition for transverse ordering with p in the
range 2 & p &

—"
, (and possible exclusion to account for a

spinodal point when 3 & p & —', ; (c) one may use RPT with
GMS as a proper RG scheme. The effect of stabilizing

P -field terms could be a second-order transition for longi-
tudinal ordering with low p and a proper first-order tran-
sition for transverse ordering with p ~ 3, or
p &3+0(e). Of course, P -field terms will also be
relevant for a proper description of the ordered phase.

In the work presented here we were only concerned
with crossover induced by QSB to whatever asymptotic
critical (or first-order transition) behavior there may be,
and we did not discuss the "soft" expansion'2 in P -field
theory mitIi TSB, a matter of separate interest, that could
yield generalized crossover exponents to account for QSB
perturbations. Previous works on crossover exponents in

P -field theory induced by QSB assume a single trilinear
coupling, whether in the percolation problem or in the
general p-state Potts model.

It should also be of interest to apply the present study
to crossover behavior in the percolation problem. As
pointed out before, ' this requires separate calculations in
the representation of Wallace and Young. We expect to
report on these extensions in future work.
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