PHYSICAL REVIEW B

VOLUME 34, NUMBER 5§

1 SEPTEMBER 1986

Strongly disordered superfluids: Quantum fluctuations and critical behavior

M. Ma
Department of Physics, University of Cincinnati, Cincinnati, Ohio 45221*
and Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139

B. 1. Halperin
Department of Physics, Harvard University, Cambridge, Massachusetts 02138

P. A. Lee
Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
(Received 31 March 1986)

Superfluidity may be destroyed by an increasing amount of disorder. The physical systems that
may be candidates for this behavior are the superfluid transition of *“He in Vycor and the destruction
of superconductivity in “dirty” electronic systems. We introduce a model for this phenomenon
which may be mapped onto a quantum spin—-.l— model with a random field in the z direction. We

study the breakdown of mean-field theory and used a scaling argument to establish the existence of
a zero-temperature transition between the superfluid and normal state. We then study the critical
behavior of this transition by a mapping onto a (d + 1)-dimensional field theory with correlated dis-
order. The critical behavior of the transition temperature and the superfluid density near the transi-
tion point are discussed and scaling relations derived.

I. INTRODUCTION

The effects of strong disorder on superfluidity have re-
cently been investigated on two experimental fronts. The
first concerns the superconductivity transition in “dirty”
electronic systems'** and the second superfluid transition
of *He in Vycor.’ Although the motivations for studying
these two systems may differ, an important aspect that is
common to them is the existence of localized single-
particle states when the disorder is sufficiently strong.

In the case of disordered electronic systems, the local-
ized states manifest themselves in the form of a metal-to-
insulator transition. Experimentally, it is found that in
several materials,'* superconductivity persists right up to
the vicinity of the metal-insulator transition itself. For
the disordered boson problem, the evidence for localized
states is not as direct. However, a common view seems to
be that the localized states first become occupied, but
Bose condensation is not possible until the chemical po-
tential coincides with the first extended state.> This view
was further elaborated upon by Hertz, Fleishman, and
Anderson,” who included the effect of repulsion between
the Bose particles in a Hartree-Fock scheme.

Recently, several groups have investigated the mean-
field theory for the superconductivity problem in strong
disorder.> !0 In particular, Ma and Lee concluded that
within this theory, superconductivity with a spatially uni-
form order parameter can persist into the localized side of
the metal-insulator transition, if the localization length §
is sufficiently long. The criterion for this behavior is
given by £9NyA > 1, where N is the single-particle densi-
ty of states, d is the spatial dimensionality, and A, is the
zero-temperature superconducting energy gap for pure
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systems. One may say that the “Anderson theorem”,!!

which assumes BCS pairing between time-reversed
single-particle states and obtains a uniform order parame-
ter comparable to the value in the perfect crystal, remains
valid in this weakly localized regime.

When the localization length is reduced further, the or-
der parameter presumably begins to fluctuate strongly in
space. However, the mean-field theory also begins to
break down. Indeed, it was pointed out® that mean-field
theory gave the rather unphysical answer that long-range
order (LRO) persists for arbitrarily short localization
length, even though the order parameter can become arbi-
trarily small as the localization length decreases.

One expects that if one goes beyond mean field, and in
particular, if quantum fluctuations are included, the LRO
will be destroyed. According to the analysis of the
present paper, this is indeed the case and there is a critical
localization length below which superconductivity cannot
exist. On the other hand, there is no indication that the
superconductivity boundary coincides with the mobility
edge, so that our results do not support the view that Bose
condensation takes place at the first extended state, in
these systems.

In both the electron and boson system, two types of
theoretical questions arise. First, one may ask a quantita-
tive question, such as how much disorder is necessary to
destroy the superfluid property at zero temperature, and
one may attempt to compare this with the amount of dis-
order necessary for localization of the one-particle wave
functions in the electronic case. Clearly, the precise
answer to such questions will depend on the detailed form
of the interaction among the particles, as well as the na-
ture of the disorder in the system. A second set of ques-
tions involves quantities that are expected to be ‘“univer-
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sal,” i.e., independent of most details of the model. Ex-
amples are critical exponents and dimensionless ratios of
critical amplitudes, in the vicinity of the point at which
the superfluidity disappears.

In the present paper, we shall discuss primarily the
universal critical properties of the transition, although we
shall also discuss somewhat the location of the supercon-
ducting transition in a simple model. The emphasis in
our discussion will be the combined effects of randomness
and of quantum fluctuations in the phase of the supercon-
ducting order parameter. These elements do not appear to
have been combined in previous discussions, and the re-
sults of our analysis are therefore different, in several
respects, from the earlier results.

Empirically, an onset of superfluidity was observed in
*He adsorbed in porous Vycor glass as the coverage of “He
on the glass surface was increased. The value of super-
fluid density at zero temperature p;(0) was found to vary
roughly linearly with n —n, where n is the coverage and
n. the coverage at onset. This is just the result one would
obtain if one said that atoms up to the critical coverage n,
are trapped in localized states, while the excess portion
(n —n,) contributes to the superfluidity as if no disorder
were present. For n close to n., the superfluid transition
temperature 7, was observed to vary with coverage in
such a way that

T.(n)<[ps(0)]*, (1.1)

with the exponent value x =+. This result also coincides
with the theoretical behavior of a dilute Bose gas in three
dimensions, in the absence of disorder. Sufficiently close
to the superfluid transition temperature T,(n), for any
fixed coverage n, the superfluid density p,(T) has been ob-
served to vanish as [(T,—T)/T.]%, with the exponent
£~0.63 which is close to the value {~0.67 observed for
bulk “He in the vicinity of the A point. The region of va-
lidity of this asymptotic behavior was found to shrink to
zero, however, as T,—0, and outside this critical region,
one found empirically the behavior of a noninteracting
Bose gas:
ps(T)

ps(0)

3/2
T

T,

(1.2)

(This leads to an effective exponent {=1 close to T, but
outside the asymptotic critical region.) Rasolt et al.!?
have shown that the superfluid density of a dilute in-
teracting Bose gas exhibits a similar type of crossover
from the ideal-gas behavior to the asymptotic critical
behavior of a conventional superfluid, and that the experi-
mental curves are very well fitted to a renormalization-
group calculation for the dilute Bose gas without disorder.

In contrast to these previous analyses, the results of the
present paper do not coincide precisely with the properties
of a simple dilute Bose gas. We find, rather, that the crit-
ical behavior must be evaluated from a more complicated
model, where disorder plays an important role. One pos-
sibility is that the experimental agreement with the dilute
Bose gas model is fortuitous. Alternatively, it is possible
that there exists an intermediate regime where dilute Bose
gas behavior is obtained, but that extremely close to n,,
crossover to our disorder-dominated behavior should
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occur.

The effect of quantum fluctuations on the supercon-
ducting transition was considered, some years ago, by
Doniach.!’> In his paper, he had in mind a system of
small superconducting grains, connected to each other by
Josephson junctions. Doniach found that quantum fluc-
tuations in the superconducting phase become large
enough to destroy superconductivity if the energy to add
or subtract one Cooper pair from a grain is larger, by a
certain factor, than the Josephson coupling energy be-
tween grains. In Doniach’s analysis, the random aspects
of the problem were ignored. The model he considered
could then be described loosely as a regular lattice of
quantum spins, in d-space dimensions, with interactions
that are invariant under uniform rotations about the z
axis in spin space. The critical behavior of this model, at
T =0, could be mapped, in turn, onto the behavior of a
classical two-component ¢* field theory in d +1 dimen-
sions, with the extra dimension introduced to account for
fluctuations along the imaginary-time axis of the
quantum-mechanical problem.

In the present paper, we again map the quantum-
mechanical problem onto a classical ¢* field theory in
d +1 dimensions. The quenched randomness of the origi-
nal system, however, gives rise to a random spatial varia-
tion in the coefficient of the ¢* term in the weight func-
tion, which is equivalent to a “random T,” in the prob-
lem. It is important to emphasize that the random coeffi-
cients do not depend on the time coordinate, so we are
dealing with randomness that is completely correlated in
one of the d +1 dimensions. Although such models have
been studied previously by renormalization-group
methods based on dimensional expansions,!*~16 direct ex-
trapolation of the published results to the dimensionalities
of physical interest does not give useful answers. By com-
bining these results with scaling laws, however, we have
been able to draw some conclusions that may be meaning-

ful. Our best theoretical estimate for the exponent x, in
Eq. (1), is then,

x~3~062, (1.3)

which is close to, but not identical with the value x ~+
for the free Bose gas.

We may note that if the effects of disorder are neglect-
ed, our model can be reduced to the case considered by
Doniach, in which case our analysis gives a value x =%,
in Eq. (1), with additional corrections involving a power
of In[p,(0)]. Also, in that case, one finds that
ps(0) < (n —n,), again with corrections involving powers
of In(n —n,).

The organization of this paper is as follows. In Sec. II
we show that both the superconductivity and superfluid
problem can be described by the same quantum spin prob-
lem: a ferromagnetic x-y spin-5 model with a random
field in the =z direction. We then present a
renormalization-group argument which shows that in the
limit of strong disorder, mean-field theory is invalid, and
superfluid long-range order is destroyed. In Sec. III we
map the quantum spin problem into a (d+1)-
dimensional classical field theory and discuss its critical
behavior. Some conclusions are drawn in Sec. IV.
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II. THE MODEL AND THE QUESTION
OF LONG-RANGE ORDER

In this section we introduce a Hamiltonian which is
applicable to both the fermion localization superconduc-
tivity and the dirty Bose gas problem. We review how the
mean-field solution always possesses LRO. We then show
that this property is no longer maintained upon introduc-
tion of quantum fluctuations.

For the fermion localization-interaction problem, we as-
sume the BCS-Gorkov Hamiltonian,

H= 2a,~c,~t,c,v,,—l > f¢7,-‘(r)¢:}'(r)¢>k(r)¢>1(r)dr
io ij k1

,
xehelierierr s 2.1)

where the Latin subscripts denote eigenstate labels of the
single-particle Hamiltonian, and g;’s their eigenenergies
measured from E;. The model assumes an effective local
attractive interaction between electrons, and so A > 0. The
single-particle eigenstates, @;’s, can be localized or extend-
ed, depending on whether ¢; is above or below the mobili-
ty edge. If we further restrict ourselves to only empty or
doubly occupied states, we arrive at the spin (3) Hamil-
tonian

H)=3hSy— 3 J;S:S; . (2.2)
i ij

In Eq. (2.2), h,' =4€,', S'z = %(n”—{—n“ —1 ), S,-+ "—"‘CiTtC“,
S,-‘:c,tc,-h and Jy;=A ‘¢>,?(r)¢12~(r)ddr. One can check
that S,, S*, and S~ indeed satisfy spin-3 commutation
relationships. As discussed in Ref. 8, the approximation
of ignoring singly occupied states gets better as the locali-
zation length decreases. The fact that the second term in
(2.2) has the Heisenberg form, proportional to §;-S;, is an
artifact of our model, which results from the point-
contact interaction and the complete neglect of singly oc-
cupied states. More generally, there will be two different
coupling constants for the terms S;,S;, and S,-+Sj_. Since
the Heisenberg symmetry is in any case broken by the
first term in (2.2), this distinction is not important for us.

When the @;’s are strongly localized, each spin is asso-
ciated with a site position and the overlap between local-
ized states are small. We then model the system on a per-
fect lattice with J;;=J if spins /,j are nearest neighbors,
and J;;=0. Otherwise, since the phonon-induced attrac-
tion operates only for frequency less than the Debye fre-
quency wp, we restrict our attention to states with on-site
energy within wp of the Fermi level. Thus we assume
that the h;’s are distributed according to a probability dis-
tribution P(h;) which is more or less flat between +hq
and we set Ay to be approximately wp. A realistic esti-
mate of J is very difficult, but we expect J <<h, when the
states are localized.

H, can also be used to model a system of bosons in a
disordered potential. Approximating the interactions be-
tween bosons by the hard-sphere condition, the Hamil-
tonian is

H=3 (W,—pb/b;+t 3 blb; (2.3)
i €,j)

where the b,-T,b,-’s are now bosonic creation and annihila-
tion operators at site i. The hopping matrix element from
site to site is denoted by the term ¢. The disorder is
modeled by a random site energy W;, and the lattice is
taken to be regular. The hard-sphere condition restricts
the eigenvalues of b,'Tb,~ to be 0 or 1. It is simple then to
see that (2.3) is identical to the following Hamiltonian:

i ij

where h;=2(W;—pu) and J=t. Equation (2.4) differs
from (2.2) by the absence of the term JS;,S;,, which main-
ly serves to renormalize the distribution of h; and is not
essential to the physics. We shall focus our attention on
(2.4) from now on. The chemical potential u is varied in
the experiment, and so P(h;) is not symmetric about 0. It
will be seen that this is not important. What is important,
rather, is that the spread in W, be large, and that
P(0)50.

The order parameter for superconductivity or super-
fluidity corresponds to an ordering of the spin in the x-y
plane. We can see from Eq. (2.4) that this ordering is
favored by J but opposed by the random field which tends
to align spins in the z direction. Thus we expect an onset
of superfluidity at some critical J/h,. However, this is
not the case if (2.4) is treated by mean-field theory, which
is equivalent to treating the spins classically.® The diffi-
culty is that there are sites with small h; and it costs little
energy to tilt the spins on these sites towards the x-y
plane. The large x component can polarize the neighbor-
ing spins to gain an energy of order J2/h,, assuming that
the random field on a typical neighbor is of order h,.
Thus sites with h; <J?/h, become nucleation centers for
ferromagnetic ordering in the x-y plane. While the order-
ing decreases exponentially between these sites, the system
nevertheless has long-range order. This feature of the
mean-field theory makes it impossible to pursue the usual
strategy of treating quantum fluctuation by expanding
about the mean-field critical point. To proceed we must
first establish the fact that the quantum Hamiltonian (2.4)
indeed has a critical point.

The breakdown of the mean-field theory can best be un-
derstood by first focusing on two sites, site 4 with
|hy | <J?/ho and site B with | hg | ~h,. For concrete-
ness, let us assume that h, >0 and hp <0. If we set
J =0, the eigenstates are shown in Fig. 1(a). For J+£0,
the quantum-mechanical solution of the two-site problem
is shown schematically in Fig. 1(b). The ground state |0)
consists mostly of the product of the down-spin state on
site A and up-spin state on site B, denoted by | 4*,B"),
with an admixture which can be treated by perturbation
theory,

|0)§|A‘,B')+hL|A’,B‘). (2.5)
B

The next level | 1) is simply given by |1)=|A",B").
The energy splitting between these two states is given by
h4+2J%/|hg| which is of order J2/h, the same order
of magnitude as the original splitting 4, on site 4 in Fig.
1(a). These two doublets are split from another pair of
doublets by a large energy hp. If we had chosen both & 4
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FIG. 1. (a) Level splittings between the spin-up and spin-
down states on sites 4 and B for J =0, h,>0, hz <0. (b) En-
ergy levels for J <<h,. Notice how the four states are split into
two nearly degenerate pairs of doublets.

and hp to be positive, the splitting of the doublet would
have been h, —J?/|hg|. While this may even be nega-
tive, its magnitude would still be of order J2/h, and the
basic doublet structure shown in Fig. 1(b) would remain
unchanged.

From perturbation theory we see that the energy gained
upon coupling the two sites is of order J2/ | hg |, which is
the same as that for classical spins. However, we see that
the ground state |0) is very different from the classical
solution. In the classical solution, spin A lies practically
in the x-y plane, which is the classical limit of a linear su-
perposition of | A") and | 4'), whereas we see from Eq.
(2.5) that the ground state is mostly | 4') with a small
admixture of | A"). At the same time, we have another
state | 1) which is nearly degenerate with it. Thus we see
that mean-field theory does not reproduce the wave func-
tion of the quantum-mechanical ground state.

We can extend the above treatment of the two-site
problem to the lattice by making the following
renormalization-group argument. We first concentrate on
spins with | h; | <J?/hq. Let us pick one such spin and
treat the coupling with its neighboring spins by perturba-
tion theory. It is clear that the result is very similar to the
two-site problem in that the low-lying states form a doub-
let split by J2/h,. The doublet is separated from the next
excited states by a gap of order hy. It is a good approxi-
mation to keep only the doublet and consider them to be
renormalized spin-7 states.

Now consider the coupling between two such renormal-
ized spins, at, say, sites / and j. The coupling involves go-
ing to at least nth-order perturbation in the J term, with
n being the smallest number of spins between i/ and j.
Thus we can write the renormalized Hamiltonian as

H'=3 hS;— 3 J'(SuSjx +SySp) (2.6)
i (i,j)
where
ho~J*/hg 2.7
and
J' ~J(J /ho)" . (2.8)

Actually, an §,S, term is also generated, even if it is ab-
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sent initially, but will be ignored as being irrelevant to the
LRO. If the dimension d > 1, then n will basically be the
average spacing between the original sites, i.e.,

n~(J*/hy?)~14 . (2.9)

The procedure can now be repeated to “integrate” out
spins with field h; whose magnitude is greater than
(J')2/hg. From (2.8) and (2.9) we see that J /A rapidly in-
tegrates to O for initial J/h << 1. As we perform the re-
normalization group (RG) we are probing the coupling be-
tween spins further away. The fact that this falls off so
rapidly with the distance between them (number of itera-
tions) indicates the lack of LRO. This is to be contrasted
to the classical system, where the coupling is always “reju-
venated” by the presence of sites with small 4; in between.

Thus we conclude that the LRO found in mean-field
theory in the J/h <<1 limit is an artifact of the mean-
field approximation. Alternatively, we can also remark
that a classical description will be closer to being correct
if the distribution P(h;) has a gap around h;=0. This
will assure that the classical mean-field solution will not
show the artificial LRO. An interpretation of our result
is that if J <<hg, an effective gap is generated in the dis-
tribution P(h;) around h; =0 upon renormalization. This
observation will be important when we discuss a function-
al integral formulation of the problem in the following
section.

Since the RG equations are obtained assuming
J/ho << 1, they cannot give us the critical value of J/h,
for LRO to occur. However, starting from the weak-
disorder end, J > hg, it can be shown that mean-field
theory is valid and a superconducting state with a spatial-
ly uniform order parameter can be produced. According
to Ref. 8, this occurs on the localized side of the mobility
edge. This is because Anderson theorem!! which states
that one should pair time-reversed states, is valid if the lo-
calization length is sufficiently long. As J/hg is reduced,
we must go over to the quantum spin regime. Thus we
expect superconductivity to disappear at some critical
J /hq, which we expect to be of order unity.

III. CRITICAL PHENOMENA
AND UNIVERSALITY CLASS

In Sec. II we saw how the mechanism of destruction of
superconductivity and superfluidity within our model is
not localization itself but enhanced quantum-mechanical
fluctuations due to localization. We next discuss the criti-
cal behavior of the onset of superfluidity.

Instead of working with H, we will consider a modi-
fied model:

2

— 3 Jcos(6,—6;), (3.1)

H=-a3,
i (i,j)

d .
dei -—lAi

where 4; is a random variable to be specified later. The
variables 6; are defined on the interval 0 <6 <2, and we
assume periodic boundary conditions for the kinetic-
energy operators in (3.1). If 4;=0, Eq. (3.1) reduces to
the model of a network of Josephson junctions studied by
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Doniach.”® In that case, J represents the Josephson cou-
pling energy and a(d /d6;)* describes the charging energy
due to charge fluctuations. When a >>J, the charging en-
ergy dominates and long-range phase coherence is des-
troyed. As we shall see, the introduction of A4; introduces
some complications in the analysis.

In order to introduce the quantities A4;, we first set
J =0, in which case the Hamiltonian decouples into a
sum of independent terms on each site i,

2
4 _ia |, (3.2)

Hi=—a\Gs,

which has eigenfunctions (277)~!/%¢™®, and correspond-

ing eigenvalues a(m —A4;)®. For 0< A; <1, the ground
state is
1
|0)E—‘/'_5—; fOI‘A,‘<';- s
|1>E‘/157-7-_ew for 4;> L, (3.3)

|0), | 1) degenerate for 4;,=+ .

Now consider the case with J£0. If we ignore all
states other than m =0,1, and also the problem of com-
pleteness, then (3.1) is equivalent to (2.4), with the identi-
fication

ald;—5)=h; . (3.4)

Thus we wish to consider A4; as being random and given
by a more or less flat distribution between O and 1, and
a~hg. We recall that for an isolated site with hA;=0,
doubly occupied and unoccupied states are degenerate in
energy. In the preceding section, we saw how these sites
generate an order parameter leading to LRO in the mean-
field theory and that quantum fluctuations are required to
destroy the LRO. In the quantum spin model a similar
problem arises for sites with 4; =+, where the states |0)
and | 1) are degenerate. To get around this difficulty, we
extend the model to include a probability distribution
P(A;) which consists of a gap around A4; = 7, so that sites
with | 4;—+ | <G/2 are not allowed. The original
model corresponds to G =0. We will proceed with the
analysis for G540 and then argue that the problems with
G+0 and G =0 belong to the same universality class,
with the same critical exponents.

We now proceed to replace the quantum-mechanical
Hamiltonian (3.1) by an effective classical field theory in
d +1 dimensions. For the case 4;=0, this was done by
Doniach.'® In that problem, the classical mean-field solu-
tion corresponds to an extremum of the action in the
(d +1)-dimensional field theory. In this model, a phase
transition occurs even in the mean-field theory, and quan-
tum effects can be treated by fluctuations about the ex-
tremum. For our present problem, 4,40, and if G =0,
we cannot proceed in this way because there is no phase
transition in the mean-field theory. We shall see that this
difficulty shows up as divergences which we shall cut off
by the introduction of a finite gap G in the probability
distribution of A4;.

We consider the partition function

Z =Tre PH s (3.5)

where B=1/kT and the trace is over the 6; degrees of
freedom. We are interested in the T =0 transition with
changing J/a, and so B— . Equation (3.5) can be
rewritten as

, (3.6)

— B
Z=Tr[e BHOT,exp -—deTHl(T)

Ho=SH;, H(r)=e "H """,

H1= 2 JCOS(Q,"*Q") ’
i,J)
and T, is the “time-ordering” operator. Introducing a
two-component classical vector field ¢;(7), we can per-
form a Hubbard-Stratonovich transformation!”!® to ob-
tain
Z,,

B
Z= fDq;i(r)exp —fo dfizj(J‘l),-j¢,-(T)-¢j(T)

(3.7

where (J'); is the matrix inverse of the coupling con-

stants Jj;,

— B
Z,=Tr|e BHOT,exp —fo dr Y @i(1)-8;(1) (3.8

and S; =(cos6;,sinb; ).

The standard procedure is to evaluate Z, in a cumulant
expansion to produce an effective free-energy functional
in powers of ¢;. For our purpose, it is sufficient to carry
this explicitly to second order in ¢ so that

Z,~exp( 38%), (3.9)
i
where S5 =53, +S§y and

. _BH. B
S5, =Tr [e BH’TT fo d7 @y (7)cos[6;(7)]

2
] . (.10
The trace can be evaluated by keeping only the ground
state in the limit 8— oo. For example, if 4; < %,
Su= [dr [PdrT,(0]cos[6,(r)] | 1)
x= J,d7 J d7'T,; cos[6;(7)] |
X {1]cos[6;(7)] | 0) @i (T)@i (T')

= [ar fare ™ T T g (P . BN

We have ignored | —1) as a possible excited state. If
A; > =, then the role of | 1) and |0) would be switched,
but (3.11) would still hold true.
Combining (3.7), (3.8), (3.9), and (3.11), we obtain
Z= [Dg;(r)e™5, (3.12)
where the free-energy function S is given by

S= deZ(J_l)ij¢i(T)‘¢j(T)
L]
-5 fd‘r fd*r'e‘a“—u"! ‘T_T’gq);(r)'tp,-(r')

+0((@-9)) . (3.13)



Writing @;(7) in terms of its Fourier components,

pilr)= ;/% %e"“"m , (3.14)
this becomes
S= 3 V7 'Pio®Pj—ot+ T 2bi(0)Pi0Pi -0
i,o,j o
+ 1|0 EI;;fPZ +0(¢Y |, (3.15)
where
biw)=—m;(m?+a?)! (3.16)

and

m'=a|1-24;] . (3.17)

Now we can see that the sites with 4;=+ produces a
divergent coefficient b; in the w=0 limit. This simply
expresses the fact that such sites have a strong tendency to
nucleate long-range order in the mean-field approxima-
tion. Formally, this difficulty is avoided for the model
with a gap in the distribution P, i.e., G50, in which case
m;”'£0 and we may expand

bi(w)=~ —m; +miw? . (3.18)

Since A4; is a random variable, so is m;. Equations
(3.12), (3.15), and (3.18) can be interpreted as a classical
field theory in d +1 dimensions. The random nature of
m; implies a “random mass” or “random T.” x-y model.
But it is important to note that the randomness is corre-
lated in the 7 direction (m; only depends on i).

The problem of a D-dimensional random 7, model
with randomness correlated in €; dimensions has received
considerable interest in recent years.!*!¢ Although most
studies deal with a nonrandom coefficient of the »? term,
this condition is not maintained under renormalization
and we believe the presence of random coefficients in Eq.
(3.18) do not introduce essential differences. To make the
connection more transparent, let us rewrite (3.15) in a con-
tinuum form as

S= [drdr[r(x)$}(x,7)+4,(V,4)
+4,(V$)+0(¢M],

where x denotes the spatial coordinates and 7 the
imaginary-time coordinates. The recent advances in the
understanding of the critical phenomena of this model are
based on the realization that one should make a double ex-
pression in e=4—D and g;.'*'® In the present case,
D =4 (three spatial dimensions and one temperature di-
mension) and g;=1.

Although the e-expansion results for the critical ex-
ponents are poorly convergent when setting e5=1,'* one
can nevertheless extract useful information by using scal-
ing relations to relate different exponents to each other.
The central modification from the usual scaling laws is
that the anisotropy is relevant with the result that the 7
correlation length £, and the spatial correlation length £,
diverge with different exponents v, and v,.'*!6

(3.19)
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A quantity that is of interest in both the boson and
electron systems is the superfluid density p;. This is par-
ticularly so for the boson case where the order parameter
is not a directly measurable quantity. In what follows we
will relate the p; exponent to other exponents.

We first identify p; with respect to (3.19). p; is defined,
in the long-wavelength limit, as the coefficient of the
[V,.6(r)]? term in the energy change under the transfor-
mation ¢(r,t)—¢(r,1)e’®”. [To be precise, the phase
change should be performed on the order parameter in the
ground state of (3.1), but {¢(r,?)) is related to {(S(r)) by
a local linear transformation and the distinction vanishes
in the long-wavelength limit.] Following the standard ar-
gument for the isotropic case,'” we equate the fluctuation
energy near T, in a correlated volume (), given by

f dPrp,[V,6(r)]% to the thermal energy kT, (it must be
remembered that the physical temperature is zero, and all
“thermal” effects refer to the fictitious random T, prob-
lem). Since £, sets the scale for transverse fluctuations,
we estimate that ((A6)?) ~£; 2. Considering the number

D—¢ .
of spins in a correlated volume ~&e;&, ©, and using
the fact that D =d +¢,4, we have

pEETI KT, . (3.20)
Thus p; scales like
—€ _ (d—=2)v, +e4v,
ps~& ‘& ~t e, (3.21)

where t ~(T —T,)/T, in the fictitious thermal problem.

For the zero temperature quantum problem, we expect
that ¢ is linearly related to (u—p. ), the difference between
the chemical potential 1 and the critical value u. for on-
set of superfluidity. We shall argue, below, that u—pu. is
in turn related linearly to the difference n —n, between
the concentration n of He in the vycor and the onset con-
centration n.. (In the superconductivity problem we may
assume that ¢ is linearly related to the alloy concentration
or the degree of disorder.)

The exponents v, and v, have been calculated in a dou-
ble expansion in e=4—D and g;. For an m-component
order parameter in D =4 we have

— € 5 4
vil=p 22MA2 (3.22)
8 m-—1
-1 € 3m +6
=2 —===7T2
Vi 4 m—1 " (3.23)
so that the ratio z defined as v, /v, is given by
€& m—8
=14+— .
z +16m——1 (3.24)

In Egs. (3.22) and (3.23), we have corrected some serious
typographic errors in Ref. 15. Setting m =2, we have

Vx_1=2—%8d »
vil=2-3g,, (3.25)
Z=1+%Ed .

As we can seg, it is not meaningful to set e; =1 for v, and
v,. The expansion for z appears to be somewhat better
behaved. In terms of z, we can rewrite Eq. (3.21) as
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(d—2+edz)v
B— e !

He

ps= (3.26)

As in the isotropic system, p; can also be related to ex-
ponents other than v.!7 For example, equating p,(V,6)?
to the singular part of the thermodynamic potential,
pséx 2 ~12~2 which implies
2—a—2v,

H—H

p~
: He

[Incidentally, this gives an alternative derivation of the
modified scaling law a=2—(D —g4)v, —gqv;.'*] Unfor-
tunately, unlike the normal Josephson’s relation, '’ it is not
possible to write v, in terms of the specific-heat exponent
a alone. Also, since ¢ is really (u—p.)/i,, a is not the
exponent of the physical specific heat 0E /3T.

The concentration n of helium in the vycor is given by
the derivative of the thermodynamic potential with
respect to the chemical potential p. By definition, the
singular part of this derivative is proportional to
(u—p)'™®  According to the €; expansion

~ —(7/4)e;, which is negative, consistent with expecta-
tions based on the Harris criterion. Therefore, the leading
term in (n —n,.) should be the non-singular term, propor-
tional to (u —pu. ), as stated earlier.

We can also deduce how the physical transition tem-
perature T, goes to O as n—n,. Since finite temperature
corresponds to a finite size B=1/T in the 7 direction, we
argue that the effect of finite temperature is felt when the
correlation length equals the “sample size,” i.e.,

B_‘.=1/(kTS)=§, ’

and therefore

Ty~ —pe)" (327

This argument can be made more formally using the
hypothesis of finite-size scaling, according to which®

p(,B) =t T g e )

where f3 plays the role of the finite size in the imaginary-
time direction. Zero temperature corresponds to
B/& = =, and in order to reproduce Eq. (3.21) f( o) is a
constant. At T =T,, p, vanishes which implies that
f(x0)=0. Thus, we conclude that (T,&,)~'=x, and Eq.
(3.27) follows.

The above relationships are helpful in interpreting ex-
perimental data and suggesting meaningful measurements.
First, v, and v, are, in principle, measurable in supercon-
ductors. The correlation function ( A(r,t)A*(#',t')) in the
normal state can be extracted by measuring the tunneling
current in a junction formed with a regular superconduc-
tor.2! For t =t’, we expect

(3.28)

—|r—r'| /&,

(A(r,D)A*(r',1)) ~e (3.29)

The behavior for t5t’ will be more complicated, but there
should be a characteristic time scale given by &,. Thus the
exponents v, and v, can in principle be determined and
compared with the behavior of p; and T; given by Eq.
(3.21) and (3.27).
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In the case of dirty bosons, the order parameter or its
correlation functions are not directly measurable. But it
is still possible to use the T; exponent and use ¢gg4-
expansion value of z to calculate p; exponent. Indeed,
from Eq. (3.21) and (3.27) we see that

Inp, /InTy=(d —2)/z +¢,4 . (3.30

For three-dimensional space and setting €, =1, we find

Inp, /InT,=1+1/z . (3.31)

If we substitute the £; expansion result for z and set
gg=1, we obtain Inp, /InT, = 3 ~1.62.

Finally, we recall that the mapping onto a classical field
theory is permissible only in the model with a gap G in
the distribution of random site energies, whereas the phys-
ical model we wish to solve does not have such a gap. We
believe that the model with or without a gap belongs to
the same universality class, i.e., no new phase boundaries
appear as G is continuously varied. We cite in support of
this belief the discussion in Sec. II, which shows that if
J/hg << 1, a gap is spontaneously generated in P (k) upon
renormalization. It is clear that anomalies associated with
sites with h; near zero are artifacts of the mean-field ap-
proximation. Once this is understood, it seems reasonable
to assume that the model considered in this section ade-
quately describes the critical behavior of the original spin
problem.

IV. CONCLUSION AND DISCUSSION

In this paper we have considered the questions of super-
conductivity of electrons, or superfluidity of bosons in a
strongly disordered system. With the assumptions that
electron states are either doubly occupied or unoccupied
and that interactions between bosons are modeled by the
hard-sphere condition, we found that both systems can be
described by the same Hamiltonian. A feature common
to both of them is the existence of localized states. How-
ever, the localized states do not destroy superfluidity in
the sense that a uniform mean-field solution exists near
the mobility edge.

Inclusion of quantum-mechanical fluctuations will de-
stabilize the classical ground state and destroy LRO if the
localization length is short enough. We conclude that
within this model, the destruction of superconductivity
occurs below the mobility edge.

The applicability of our results to dirty superconductors
is subject to the following qualifications. It is well known
that the interplay between localization and electron-
electron interactions can be very complicated in nonsuper-
conducting metal-insulator transitions,?? and it is highly
possible that electron-electron interactions play a major
role in the destruction of superconductivity also.?*?* For

example, Fukuyama?* has suggested that electronic spin
fluctuations may play a crucial role in the suppression of
superconductivity near the localization transition of a
disordered electron system. The superconductivity model
of the present paper assumes an attractive interaction be-
tween electrons on the same lattice site, so that singly oc-
cupied electronic states, with the attendant spin degree of
freedom, do not occur. It seems likely to us, however,
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that as long as there is no ordering in the spin degrees of
freedom, critical exponents would be unaffected by spin
fluctuations, even if such fluctuations have an important
effect on the position of the onset of superconductivity.

In the Bose system, the one experimental system that
our model may apply to thus far is “He in Vycor.” Al-
though the Vycor certainly provides a disordered poten-
tial, the complicated geometry there casts in doubt the
model of on-site disorder with well-behaved distribution.
In addition, there may be complications associated with a
crossover from two to three dimensions.>25

Assuming that the model is adequate to describe the
phase transition, we have argued that the transition
should be in the same universality class as a (d +1)-
dimensional random-T7, x-y model with the impurities be-
ing correlated in the imaginary-time direction. This an-
isotropy leads the spatial correlations length and the
“temperature” correlation length to diverge with different
exponents v,, v,. By scaling arguments, the critical ex-
ponents of the zero temperature superfluid density p, and
the transition temperature T can be related to v, and v,
and, hence, also to each other. Experimental determina-
tion of these exponents will certainly be of interest.

In this paper we have addressed the critical phenomena
in n—n, at T=0. The usual critical behavior at
n —n.#0 and T =T, is, of course, also of interest. Far
away from n =n,, the critical behavior is that of the usu-
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al random-T, d-dimensional x-y model. For supercon-
ductivity, it has, in fact, been suggested that these ex-
ponents will be observable instead of the mean-field ex-
ponents because of the decrease in the coherence length.'°
In our picture, this critical behavior crosses over to a new
critical behavior of the quantum fluctuation problem. It
has been suggested that the critical fluctuations crosses
over to the Gaussian behavior characteristic of a weakly
interacting dilute Bose gas.>'> However, the effect of dis-
order was ignored in these discussions and it is not clear
to us why “He on Vycor glass can be described as a dilute
Bose gas. Nevertheless, we cannot rule out the possibility
of an intermediate Gaussian regime before ultimately
crossing over to our quantum fluctuation regime. So far,
the experimental measurement® of the relation between Ps
and T; is consistent with both the dilute Bose-gas model
and the present model. Further, experimental studies of
the zero-temperature quantum transition in both super-
fluid and superconductors will certainly be of great in-
terest.
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