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Cluster distribution in paraelectric KH2As04.
I. Dispersion of the proton spin-lattice relaxation time
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The anomalous frequency dependence of the proton spin-lattice relaxation time in paraelectric

KH2AsO4 is the result of proton- As level crossing in partially polarized regions where the As nu-

clear quadrupole resonance frequency matches the proton Larmor frequency. The experiment al-

lows the determination of the short-range-order polarization distribution function even for strongly

polarized regions which, in view of their small abundance, are hard to detect otherwise.

I. INTRODUCTION

The soft-mode dynamics in KH2As04 (KDA) and oth-
er H-bonded ferroelectrics is connected with the fast
(10 "—10 "s) motion of protons between the two sites
in the 0—H 0 hydrogen bonds. ' 'i The proton motion
is basically determined by the short-range Slater-Takagi
rules, ' which can be, to a certain extent, represented by
an Ising-type Hamiltonian. ' '5

The appearance of anomalous As lines in KDA be-
tween T, =96 K and T, +60 K which display the sym-
metry of the ferroelectric phase well above T, demon-
strates the presence of quasistatically polarized clusters in
the paraelectric phase. The detailed nature of these clus-
ters is not yet clear. They are—in contrast to those giving
rise to the central peak in light scattering ' —insensitive
to crystal anneahng.

In order to throw some additional light on this prob-
lem, we decided to study the frequency dependence of the
proton spin-lattice relaxation time in paraelectric
KH2AsOq. We specifically hoped to be able to answer the
question whether (i) the crystal indeed consists of unpolar-

ized regions giving rise to the "paraelectric" As lines on
one side and well-defined quasistatically polarized regions
giving rise to symmetry-breaking "anomalous" As lines
on the other side, or (ii) are we rather dealing with a con-
tinuous distribution of slowly fluctuating short-range-
order polarizations with a zero mean value?

II. EXPERIMENTAL PROCEDURE

The frequency dependence of the proton spin-lattice re-
laxation time Ti was studied by a field-cycling technique
between vL

—15 and 45 MHz. The Ti values between 6
and 15 MHz were measured directly by a saturation tech-
nique using a frequency and field variable spectrometer.
A single crystal was used where anomalous sAs lines
were detected by As nuclear magnetic resonance. The
temperature dependence of the proton spin-lattice relaxa-
tion time was studied at vL ——18.3 MHz. The field cy-
cling method could not be used below 15 MHz because
the proton Ti values were too short.

III. RESULTS
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FIG. 1. Dispersion of the proton Tl at T = 130 K and cj.HO,

alHo in KH2As04. The sharp dips are due to multiple quan-
tum transitions.
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FIG. 2. Dispersion of the proton Tl at T = 104.5 K.
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or dipolar (T,D) frames. " The form of the T, -vs-T
curve is analogous to that observed' in KHzPO4 (KDP)
but there are two important differences.

(i) In KDA, T~ is 1—2 orders of magnitude shorter
than in KDP.

(ii) In KDA there is a maximum in T, just above T„
whereas T] decreases with decreasing temperature as
T T,+.

The dispersion of the proton T& at T =130 K and
ciHO, alHO is extremely strong and is presented in Fig. 1.
T, is of the order of 0.5 s at 6 MHz and increases to more
than 70 s at 40—45 MHz. The dispersion of the proton
T, is similarly anomalous also at T = 104.5 K (Fig. 2).

IV. DISCUSSION

Let us now discuss three possible mechanisms for pro-
ton spin relaxation in paraelectric KDA:

(A) Fluctuations in the proton dipole-dipole coupling.
(B) Fluctuations in the proton-As dipolar coupling.
(C) Proton-As relaxation via level crossing due to the

presence of long-living (on the NMR time scale) clusters.

A. Fluctuations in the proton dipole-dipole coupling

For rs =10 ' s and r~ & 10 s, this yields for T && T,
with ~=10 s

(p')
T1HH ~

5 +
10 s 10 s

(7)

so that the proton Tt due to the fluctuations in the
proton-proton dipolar coupling should be of the order of
10 —10 s—as indeed observed in KDP—and not of the
order of 1—102 s as observed in KDA. Thus, this contri-
bution cannot explain the experimental data.

B. Fluctuations in the proton-As dipolar coupling

Let us now investigate the proton relaxation rate T~~A,
induced by fast As spin fluctuations. For this process one
finds

+ cc

T,„'„,= —,
' M2(H-As) e' '(S,~,(0)Sz~,(t) )dt . (8)

Here, the H-As dipolar second moment amounts to
Mz(H-As)=0. 27 G =1.93X10 s . The autocorrelation
function for the As spin fluctuations can be approximated
by

The proton spin-lattice relaxation rate due to fluctua-
tions in the proton-proton dipolar coupling is in the spin-
temperature approximation ([M2(H-H)]' »T&zH) ob-

tained as

( S,(0)S,(t) ) =[S(S+1)/3)exp( t/TiA, )—
so that

T)H~, ———,Mp(H-As)T, „,/[1+(toT, ~, ) ] . (10)

Tl/H 3yH+I(I + 1)[JHH()+~HH(2~)]

where

g(k) y I (F (0)[Fk(t)]e )eikratgt

IsJ

stands for the local spectral density of the spatial part of
the proton-proton dipolar coupling. Introducing the local
order parameter p;(t) which fluctuates between + 1 and
—1 and which describes the position of the proton in the
two equilibrium sites of the ith O H 0 bond, F~(t)
can be expressed as

Direct measurements of the As spin-lattice relaxation
have shown that T,A, -200—300 ps. Since co=10 s
and co T&A, pg 1, one obtains

T1HAS ——4M2(H-As)/~ T~~, —1.5X10 s

The contribution of the fast fluctuations of the As spins
to the proton T& is thus negligible as well and cannot ac-
count for the experimental data.

C. Relaxation via 8-As level crossing

The proton-As cross relaxation rate WHA, is of the or-
der of

FJ (t) =const+ ~Jp;(t)+ ~&pj (t), (3) W'HA, -[M2(H-As)]'i —10 s

where

p;(t)=p(t)+hp;(t) . (4)

(5b)

we find

T)~H-(1.2X10 s )~g~

+(10 s )(p )e/~z(1/co ) .

In expression (4), bp; (t) describes the fast, "soft-mode"
type of proton motion, whereas p(t) describes the slow,
quasistatic fluctuations of the polarization of the clusters.

Assuming that ~~~ &~1 and ~~~ ~~1, as well as that

(p )~ &&1 in the paraelectric phase well above T„and
taking into account that "

~

~'"~'=0.24X10 'A (5a)

~

aF"'
~

'=0.76X10-"A-',

when the proton and As transition frequencies coincide
due to level crossing in partially polarized crystal regions.
Since the proton-proton cross relaxation rate
Wz~-[M2(H-H)]' =3X 10 s ' is still faster and
T&z, -0.4& 10"s ', we have

—1

~HH & ~HA. TiAs (13)

v~s(p) «vH vH+»H» (14)

i.e., the As Zeeman perturbed quadrupole resonance fre-
quency lies within the dipolar width of the proton Zeeman
line»H=[Mz(H-H)]' +[M&(H-As)]' . Let us now as-
sume that the crystal consists of several clusters with dif-

so that a common spin temperature will be established in
the proton —resonant-As Zeeman reservoir. The H-As
cross-relaxation is effective only in those regions where
the local polarization p is such that
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ferent p values or that the crystal contains clusters where
the polarization continuously varies from 1 to 0. In this
case, regions with different p values have different As res-
onance frequencies vA, . Let us further denote, with
EN( v)/N, the fraction of As nuclei satisfying condition
(14) at a given value of the proton resonance frequency
vH. Since we have a common spin temperature in ihe
proton —resonant-As Zeeman reservoir, one finds

T = T(p1~p2~pi ~p4) ~ (19)

(T)= g 5,T'", (20)

In the paraelectric phase far above T, each H2As04 group
rapidly fluctuates between six Slater H2As04 configura-
tions' with As EFG tensors' T' ' where / =1—6. Re-
placing the time average by an ensemble average one finds

where

1
(P—Pt )t (15a) where'

5, ,=5,exp(s/kT)/4(1 —p) (21)

with

1 CAs, res 1 +
Ti (v) CAs, res +CH T1AS CAs, res +CH T1H

CAs, res 1 1+
CH T1As T1H

1sdF (v)
CAs, res = CAs «CH

(15b)

(16)

and

1+p
5o=52, 4, s, 6= 1+7~exp

P2
(22)

( T) =5 (T"'+T"') T & T . (23)

with e=kTeln2 and (p; ) = (pj ) =p =0 for T & T, in the
absence of local polarization. Since gt 2T'"=0 we see

that for T & T, the NQR frequency is determined by

f(v)bv=lLN(v)/N,

one can rewrite expression (15b) as

(17)

(18)

where b,vH is the dipolar width of the proton line.
A measurement of the frequency dependence of the

proton Zeeman relaxation rates Ti ' ——T1H(v) thus en-
ables one to map out the frequency distribution of the As
resonance frequencies f(v) in the partially polarized clus-
ters since T1A, and h, vH=4. 5X10 s ' are known.

Let us now try to find the relation between the As fre-
quency distribution f(v) and the local polarization distri-
bution. We must first remember that f(v) essentially cor-
responds to a distribution of pure nuclear quadrupole res-
onance (NQR) frequencies of the As nuclei. In magnetic
fields where the proton Zeeman frequency lies between 6
and 40 MHz, the As Larmor frequency is between 1 and 6
MHz and is thus much smaller than the frequency mea-
sured by the H-As level-crossing experiment.

The electric-field-gradient (EFG) tensor at the As site is
of covalent nature and its instantaneous value depends on
the arrangement of the four hydrogens amund a given
As04 group:

standing for the heat capacity of the resonant part of the
As Zeeman and quadrupolar energy reservoir. CA, and
CH are the total heat capacities of As and H nuclei,
respectively. T1A', represents the relaxation rate of the As
nuclei in a cluster with the polarization p in the absence
of cross relaxation to protons. Here, Ti(v) represents the
magnetic-field-dependent relaxation time of the combined
proton —resonant-As Zeeman reservoir (which is most
conveniently measured via the abundant species, i.e., via
protons) and T1H the relaxation time of the proton reser-
voir in the absence of cross relaxation to the As nuclei. It
should be further noted that CH ——2CA, .

Introducing the frequency distribution of the As reso-
nance frequencies f(v) in the various clusters as

The EFG tensor is axially symmetric and the largest
principal axis is parallel to the crystal z~~c axis. In the
presence of a local polarization, the mean value of the As
EFG tensor can be expressed as

(T(t)) =T,+Ap+BP2+ (24)

To ——t01 0, 8=b01 0
0 0 —2 0 0 —2

(25a)

and

—1 0 0
A=a 0 1 0

0 0 0
(25b)

where a =66 MHz » t +b =3.4 MHz in frequency units.
For p+0, the cylindrical symmetry around the z(c)

axis will be destroyed. The 7 As NQR frequency is

'VQ
( I + 1 2)1 j2g~ A

Q (26)

For weakly polarized regions, p (0.05, the largest princi-
pal axis will still be parallel to the z~ ~c axis and

g ~2l~ 7/((1

so that v~ —3.4 MHz. For more polarized regions
(p &0.05) the largest principal axes will be in the x-y
plane and

q =t+ap +by,
3(t+bp ) ap-

P+saar

t+bp +ay

(28a)

since in the zero-field approximation, v& does not depend
on the sign of the local polarization. From now on, p
stands for the absolute value of the reduced local polariza-
tion.

In the As04 fixed x,y,z frame of KDA we get

1 0 0 1 0 0
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For v )2v@~,&, the linear approximation can be used:

vg = (t +ap},
e2Q

2h
(29}

so that the As frequency distribution f(v) is linearly relat-
ed to the local polarization distribution g (p)

f(v)dv=g(p)dp .

We thus obtain

(30)

g(p) =f(v) -=const)& f(v), (31)

where we have from expression (29), dv/dp =30 MHz.
In analyzing the experimental data we have to

remember that the sharp dips in the experimental T|(v)
below 10 MHz correspond to "multiple quantum transi-
tions" in weakly or nonpolarized clusters (i.e., mainly dou-
ble quantum transitions). Their width (0.1—0.3 MHz) in-
dicates the width of the As frequency distribution f(v) in
the vicinity of v~ ~„,1. In calculating g(p), these effects
should be excluded. Similarly, we should exclude the ef-
fect of paramagnetic impurities influencing the relaxation
behavior at higher frequencies. We thus evaluate g(p) in
the 6—40 MHz range from

025- ~
I

g(p)

0.20-
I
I
I
I
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I
I
t

I

t
0.10—

t
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FIG. 3. Local polarization distribution at T =130 K. The
contributions of the multiple quantum transitions have been
subtracted. Nevertheless, the obtained values of g(p) above

g (p) =O.OS are not too reliable.

T i (v) =T|H,„p,—T|H (v) 40 MHz),

using

2 T/A, (p)(t)v/t)p)
g(p) =

T)(v}hvH

(32)

(33)

fraction occupied by regions with p )0.1,

= J„g(p)dp»
p g0. 1

(34)

where we have taken into account the fact that

T&~', (p)=T&„',(p =0)(1—p )=(1—p )/(2SOX 10 ) s

at T=130K.
The results are presented in Fig. 3. They show that (i)

the short-range local polarization distribution is continu-
ous within the resolution of this experiment. The present
experiment does not distinguish between a continuous dis-
tribution of clusters with different polarizations or a con-
tinuous polarization distribution within a short-range-
ordered cluster which may be induced by defects. (ii) g (p)
is very small at large p values and increases sharply as p
approaches the value 0.1. The values of g(p) above 0.05
are not too reliable because of the necessity of making
corrections for multiple quantum transitions. The volume

amounts to 1% at T =130K. Thus, the large majority of
the crystal at T —T, =33 K is only weakly polarized.
There are, however, regions where the polarization is
nearly complete, p = 1.

It should be stressed that in the present cross-relaxation
experiment, only strongly polarized regions (p & 0.1)
where the pure As NQR frequency exceeds 6 MHz have
been detected. In view of their small volume fraction
(& 1%), these highly polarized regions are hard to study
by other, more direct techniques. An extension of the
cross-relaxation technique to lower frequencies —where
the proton T& becomes rather short —could, in principle,
map out the complete local polarization distribution func-
tion g (p) between —1 &p & 1. Other more direct methods
are, however, easier for low-p values.
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