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In this paper we study nonlinear excitations in the classical one-dimensional antiferromagnet with

two anisotropies and an external magnetic field with components parallel and perpendicular to the
chain. %e use the continuum approximation, at low temperatures, to obtain two coupled nonlinear

equations in the variables 8 and 4, and then we discuss some limit solutions to these equations. %'e

study the equivalence of this model, from the thermodynamical point of view, to an anisotropic fer-
romagnet whose statistical mechanics has been studied in the literature. %e then use this
equivalence to calculate the inverse correlation length, the neutron scattering intensity integrated
over energy, the soliton density, and the soliton energy. Our theory is found to be in good agreement
with experimental data for tetramethyl ammonium trichloride [TMMC, (CD1)4NMnClg].

I. INTRODUCTION

Recently there has been a great interest in the study of
nonlinear solutions to the equations of motion associated
with one-dimensional classical magnetic systems. Al-
though most of the work has been done for the sine-
Gordon chain, i some authors have studied the full equa-
tion of motion for the magnetic chain. Sasaki, Etrich
and Mikeska, and Fogedby et a/. have studied the sta-
tistical mechanics of a classical Heisenberg ferromagnet
with two anisotropies. Other authors have considered the
ferromagnet " and the antiferromagnet' ' with one
anisotropy in an external magnetic field. In this paper we
will present a theoretical investigation of nonlinear excita-
tions m a classical one-dimensional anisotropic antifer-
romagnet in an external field. Leung et a/. 's have studied
sine-Gordon solitons in this system and Mikeska' ' has
considered the equations of motion for the full Hamiltoni-
an in some particular cases.

As pointed out by Leung et a/. ' solitons in quasi-one-
dimensional antiferromagnets are of interest for several
reasons. First, in most one-dimensional magnetic salts,
the exchange coupling is antiferromagnetic. Also, the sol-
itons in the ferromagnet and the antiferromagnet have
very different properties. For instance, much larger mag-
netic fields are required to drive the antiferromagnet into
the regime where the soliton rest energy is large compared
to kg T and the solitons form a dilute gas of noninteract-

ing elementary excitations.
In fact, we will be interested in the antiferromagnet

tetramethyl ammonium trichloride (TMMC), which has
an anisotropy of dipolar origin 5S„'S„'+1 leading the sys-
tem to a crossover to the XFmodel at low temperatures, '

and a single-ion anisotropy in the easy plane. ' '
In Sec. II, we present the classical equations of motion

for our general model and discuss some particular solu-
tions. In Sec. III, we study the statistical mechanics of
the system. Section IV is devoted to comparison between
our theory and experimental data for TMMC.

II. EQUATIONS OF MOTION

Let us start with a general model described by the fol-
lowing Hamiltonian,

4 = 2JQ [S„.S„+1—M„'S„'+1+bi(S„)+bi(S~) ]

yH g S„" yH, —Q S„', —

where y =gpss. At low temperature and for small aniso-
tropies, (S„) has the same effect as —S„S„+1,and our
Hamiltonian (2.1) is completely general.

For small magnetic fields we expect that two neighbor-
ing spins are almost antiparallel to each other at low tem-
peratures. Following Mikeska' and Harada et a/. ,

' we
introduce angle variables as

S„=( —1)"S(sin[8„+( —1)"u„]sin[4„+( —I )"$„],cos[8„+( —1)"u„]„sin[8„+( —1)"u„]cos[4„+( —1)"P„]), (2.2)

+2(5cos 4+b&sin @)sin 8

and substitute them into (2.1). Since u and P as well as the spatial variation of 8 and 4& are expected to be small, we keep
only the terms up to the second order of those small quantities. Using the continuum approximation, we obtain

2

A =JS f +4u +sin8 ++a8 . . . ae
0 BZ BZ

+2b 2cos 8 Qsln8(/1~ cos@——/1 g slll@ ) 4u 8c(o/s~sl iI—+n/1c iIo)s11 (2.3)
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where h~ =yHN/4JS, z is the coordinate along the chain, and a is the lattice constant.
The equations of motion ean be obtained either directly, by applying the continuum approximation to the equation of

motion on the discrete lattice, or from Hamiltonian (2.3). We obtain

=2$ sin8+ (5+b I )u cos gsin@cos4 —h„cos4+h, sin@,l (9

4JS
1 a4

4Js at
2u

+5u cos 4 . +h, cotggsin@+h, cotggcos@
1+cos 8

81118 81118

b)U—bzu sing —b I p cosg sin@cos@+ sing sining,
2

U
2u—g cos8 co—s8 ——,sing —(5—b I )sing sin4 cos@+h P sin@+h,P cos4,ag ac, . a'e

at az az az

(2.5)

(2.6)

1 ap
4Js at

2u c~g . . . ae 1 a 82
'2

2
2—Q cos 8——,cosg I —5cosgcos 4—

sinzg az 281118 az
{h sin@+h, cos@)

sin28

cosg+p . 8 (h, eos@—h, sin@)+gizcosg —bicosgsinl@ .
81118

(2.7)

After eliminating the small angles P and u, we find

a'8 1 a'8 . ae
'

1 ae
'

az c atz az cz
JI

sinlg
(h„sin@+h, cos@)

ae

+singcosg[(h, sin@+h, cos@) +2blsin 4+25cos 4—2bl ], (2.8)

a4 1 a@ ag a@ 1 aga@ h»n@+heos~' a8=—2cotgg — + +sin@cos@(h, —h, +2bi —25),
az c at z z cz t t 2JS t

(2.9)

8=—+2 arctan[exp' y(z —ut)],
2

with energy

(2.12)

(2.13)

where y=(1 —u /c )
'~ and k=2(5 —bz) for yz soli-

tolis, alld k =2(b i
—bi ) for yx 8011'toils. Depelldlllg 011

the ratio r =(5—bz)/{bi —bz), the yz soliton (r &1, easy
yz plane) or the yx soliton ( r & 1, easy yx plane) has lower

where c =4JSa. For b, =bi ——0, h, =0, Eqs. (2.8) and
(2.9) are equivalent to the ones obtained by Fliiggen and
Mikeska, ' noting that we have used a different coordi-
nate system.

The general solutions of Eqs. (2.8) and (2.9) are very
difficult to obtain. Thus we will only consider some spe-
cial cases and soliton solutions. Let us first study the
problem for a null external magnetic field. If bz & bi and

bz & 5, the ground state is along the y direction. Since for
this case 4=0 and 4=m/2 satisfies the full Eqs. (2.8)
and (2.9), complete dynamical solutions are obtained from

azg 1 a84=0, — =2(5—bi )sing cosg, (2.10}
az c at

a 8 1 a 8 =2(bi —bI)singcos8 . (2.11)
az c at

These are sine-Gordon equations in the variable 28; the
fully dynamical yz and yx solitons are therefore given by

j

energy. From a linear stability analysis, we obtain the re-
sult that the lower-energy soliton is stable with respect to
small perturbations. For r =1 (i.e., 5=bi), there is rota-
tional degeneracy. That is, we have a dynamic sine-
Gordon soliton for any 4=40 ——const. In this case,
Hamiltonian (2.1}is equivalent to the Hamiltonian for an
Ising-like antiferromagnetic chain. Thus the picture for
the nonlinear dynamics for this case is the following:
There are always two sine-Gordon branches. For 5=bi,
these two modes become degenerate.

If h =0 but bi &bl, bi &5, the ground state is now
along the x direction. As we can see, 4= Ir/2, the xy sol-
iton, is still a solution. The other solution is given by

a 4 1 az4 = —2(5—b I )cos@sin@ . (2.14)azl el
The soliton solution of Eq. (2.14) is an xy sine-Gordon
soliton in the variable 24 with energy E
=4JS y(5 bi )' . For 5=b—l, there is rotational degen-
eracy for dynamical sine-Gordon solitons in any plane
passing through the x axis. Similarly, we can study any
other case, such as, for instance, 5&bi &b2.

Let us now consider the case where the magnetic field
is perpendicular to the chain (i.e., the H„component). As
far as static properties are concerned, the effect of the
magnetic field is to introduce an effective anisotropy
given by h /2. However, from the dynamical point of
view, a magnetic field is not equivalent to an anisotropic
term. Let us start with the case bl &5, bi&bi+&„/2.
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The ground state is along the y dire:tion. As we can see,
the dynamical yz soliton [4=0, Eq. (2.10)] is still a solu-
tion. Then the magnetic field has no effect in this mode.
We also find immediately that 4=m/2 is a static solu-
tion, the equation for 8 being

a'8 =2( h„ /2+ b i —bi )sinH cosH . (2.15)

Thus the static soliton solution is given by

Hp
——2 arctan[exp(h„+ 2b i

—
2b2 )

' z],
with energy

EP„=4JS'(h'+2b, —2b, )'"

(2.16}

(2.17)

A complete time-dependent solution for the xy sohton
cannot be obtained analytically. However, for small ve-
locities, we can take, following Ref. 14,

H„s(z, t}=Hp, (2.18a)

(2.18b)

sech(hs ), (2.19)

where

h =[h»+2(bi —bz)]'~

Equation (2.19) has the solution

Pi(s) =(R /2JS)sech(hs ),
where

2(5—b2)+hg
(2.21)

The u2 correction to the energy can be calculated using
Eq. (2.20). For small values of R we find

u l

C
(2.22)

(2.23)

where s =z —ut. Inserting Eqs. (2.18} into Eq. (2.9), we
find the equation

1 d 0i 2(5—b2)+hg 2 dpi
2 + 1 — Pi+ —tanh(hs)h' ds h' h s

If h, +2bi ——25, the yz soliton is the only dynamical
soliton solution. The xy soliton is a degenerate static
solution. That is, a static soliton in any plane +=const is
a degenerate solution with energy

E,=E„' =4ZS'[2(5 b, )—]'" . (2.24)

4=0,
2

——[2(5—b2)+ h, ]sin8cosH .88
(2.25)

The 4=m/2 solution is not changed by the presence of
the h, component. We have a symmetry between the
solutions 4=0 and 4=m/2 just by replacing (5,h, ) with

(bi, h„), and so we can use the results obtained before for
small velocities [see Eqs. (2.20} and (2.21}]. The other
cases can be discussed in a similar way.

Although postponing a thorough discussion of the sta-
tistical mechanics of our model until Sec. III, we will cal-
culate here the dynamical correlation function defined as

(q, ~)= dtdze'~' "(S (z, t)S (0,0)} .
1

2m

(2.26)

The curvature of the xy soliton dispersion [Eq. (2.21)]
changes sign at h„+2b, =25, which means that for
h„+2b»~25 the xy soliton is unstable against spontane-
ous motion.

Thus for h, +2bi «25 the essential contribution to
thermodynamical variables comes from the lower branch
of the spectrum E~(u), deviating from the sine-Gordon
solution with the increase of the field. For very high
fields (h, +2b»&25) the system should behave like a
pure sine-Gordon system. For fields near the anisotropic
values h„=2(5—bi) the upper and lower branches in
E,„(u) contribute equally. In this limit, therefore, unsta-
ble solutions are important in the calculation of thermo-
dynamic variables. We expect then, that we would not
observe any form of instability in any measurable parame-
ter in going from h, +2bi &25 to h„+2bi &25. In the
next section we will discuss more quantitatively this affir-
mative in a statistical-mechanics analysis of Hamiltonian
(2.1). Following similar steps, we can analyze all other
cases. For instance, if 5& b2 & bi+h„/2, the ground state
is along the x direction. Now H=n/2 gives a fully
dynamical sine-Gordon soliton in the 4 variables and
4=@/2 gives a static soliton in the 8 variable.

Finally, let us consider what happens when h, &0. If

b2 (5+h, /2, b2 (bi+h, /2,
the ground state is along the y direction. As we can see,
4=0 is now only a static solution. We have

For b, =b2 —0, h, =0, Eq. (2.22} agrees with the result
obtained in Ref. 14.

We could also study the case for large +, but we are in-
terested here in corrections to the sine™Gordon model, and
for large R, the system behaves like an Ising model. Sum-
marizing, we see that for u =0, the soliton is in the xy
plane. For a non-null velocity, the soliton moves out of
this plane. If R (1, we have E~ (E~. The energy E,„
increases with u, the soliton being stable against small
perturbations.

We will be interested (in order to study experimental data)
in the fiuctuations perpendicular to I (i.e., a=y).

As we saw above, the soliton model is found to deviate
substantially from the sine-Gordon form with a large
out-of-plane component when 8, defined by Eq. (2.21), is
large. Thus, to understand nonlinear effects due to soli-
tons, we need to take into account the out-of-plane fiuc-
tuations neglected in the sine-Gordon approximation.
Following the approach of Currie et al. ' to evaluate
dynamical correlation functions (also, see Ref. 20), we
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start with the soliton density n given by

n = ——=—ln J exp{ —P[E(p)+X]I
F 2 dzdp
T I. 2m

(2.31) and (2.33) we obtain

(2.37)

(2.27)

m =mf(A, ), m =E~/c
For large A, ,f (A, ) is given by

f (A, )=1+8/3iL+O(A, ) .

(2.29)

(2.30)

Then the out-of-plane component renormalizes the "soli-
ton mass. " If we use, for X, the result for the pure sine-
Gordon model given in Ref. 19, we find, from Eq. (2.27),

n =nso[f (I,)]'~ (2.31)

where F is the free energy per unit length, I. the system
size, z the position of the soliton, and E(p} the energy
dispersion of soliton. X is the "self-energy" of the soliton.
Using Eq. (2.22} for small fields and low-velocity solitons,
we can write the soliton energy in terms of the linear
momentum p. We find

E(p)=E,„+p /2m, (2.28)

where

Thus, the effect of the out-of-plane fluctuations at tem-
peratures sufficiently low, such that only low-velocity sol-
itons contribute, is just to renormalize j. ~ and I . The
functional form S (q, to) is the same as the one for the
sine-Gordon model. ' This explains why the experimental
findings from neutron scattering ' are qualitatively ac-
counted for by the sine-Gordon theory.

III. STATISTICAL MECHANICS

It has been pointed out by some authors'2 2 that the
static properties of the Hamiltonian (2.1) are equivalent to
those of a ferromagnetic Heisenberg model with single-
site anisotropic terms. To discuss this equivalence in
more detail, we start with the partition function, given by
the functional integral

Z= exp —A cos 4 sin d v, 3.1

where A is given by Eq. (2.3). The functional integral
over the components P and u is Gaussian and can there-
fore be carried out. We obtain

where nso is the usual sine-Gordon result. ' Using the
correct expression for X would only change the function

f (A, ) to a new function g (A, ). In the next section, we will
present the correct value for g(A, ) obtained through the
transfer-integral method. The temperature-independent
function g(A, ) is always greater than 1 and approaches 1

as A, ~00.
Within Boltzmann statistics, the probability of finding

a soliton with velocity u is

Zu+84 ~

A =JS
a

where Z,~
——const/P and

Zygo = cos 4 exp —P
'2 '2

88 . 2 84+sin 8 +(25+h, )
2

z z

(3.3)

P(u) =( mP/2m)'~ exp( Pmu /2) . —
The thermal velocity [ue ——2 J du u P(u)] being

ue (Pm )——

(2.32)

(2.33)

Xsin 8cos 4+(2b~+h, )sin 8sin @

—2h„h, sin 8 sin@ cos4+ 2b icos 8

N(u)=2nP(u) . (2.34)

Using Eq. (2.34), we can calculate Eq. (2.26). For the spin
component perpendicular to the direction of the field H„,
we have

The number of solitons plus antisolitons with velocity u is
therefore

(3.4)

The terms independent of 8 and 4 have been omitted in
Eq. (3.4). Equation (3.3) is the partition function of an
anisotropic Heisenberg ferromagnet,

F'= —2J $S;

S;+i+De�(S,

') +Bi $(S; )

s„"(t)=( —1)"cos[8„(t)+( —1) Un (t) l . (2.35) +a, g (s,')'+c g s,"s,', (3.5)

In the calculations of correlation functions, we can neglect
U„ in Eq. (2.35). To be consistent with the approximation
used (i.e., low-velocity solitons), we take for 8(t) the sine-
Gordon result. Following the procedure used by Mikes-
ka'i for the sine-Gordon model, we obtain (for A,~ oo )

D =2J5+Jhg,

&i ——2J(b i b2)+Jh„, —
(3.6)

(3.7)

S~~(q,co}=S (cos 8)— I
~ I +co I q+q

(2.36)

with I
&
—4n and I „=4nu s/V n, —and where.

(cos 8) =(sz ) will be presented in Sec. III. Using Eqs.

82 ——2Jb2,

C=2Jh„hg .

Using the condition

(3.8}

(3.9)

(S;") +(S,") +(S,') =S (3.10)



310 M. E. GOUVEA AND A. S. T. PIRES 34

( F) = f d I cos8jd [4jFe
ZQ p

(3.12)

Then the equivalence between the Hamiltonians (2.1}and
(3.5) can be correctly expressed as the thermodynamical
properties of Hamiltonian (2.1), for operators depending
only on the variables 8 and 4 are the same as those of the
Hamiltonian (3.5). In the calculation of variables such as
susceptibilities and correlation length, we can neglect the
small quantities u and P in the expressions for the corre-
sponding operators in the integrand of (3.11}and then ob-
tain the same results using Hamiltonian (2.1) or (3.5).

The statistical mechanics of the classical Hamiltonian
(3.5) can be studied by means of the transfer-integral
method. 2' The easy axis for the spin system will result
from the competition between the arusotropic terms. Dif-
ferent cases have to be considered. Let us start, for sim-
plicity, with the following cases:

(i) b2 ——0 [otherwise we could use Eq. (3.10) to eliminate
(Sf) ]. The easy axis for the spin system corresponds to
the y axis. In the case of low temperatures ( T«JS )

and weak anisotropies (D, 8i «J), the problem is re-
duced to solving the equation

we can eliminate one of the components (S; ) (a is
chosen such that the final anisotropic parameters are posi-
tive) and write Hamiltonian (3.5) in terms of two anisotro-
pies and a crossed term. There will be an extra term in-
dependent of spin operators, which we will neglect.

If one of the field components H„or H, is zero (then C
vanishes), the magnetic field is equivalent to an effective
anisotropy given by Eq. (3.6) or (3.7).

The thermodynamic properties are studied through
thermal averages of operators given by

(F)=—f 1Icos8jd I4 jd Igsin8jd Iu jFe ~ . (3.11)
Z

If F depends only on 8 and 4, then the integrals in u and
{() can be derived as before and we obtain

A=T2m*(4JS ) '=A. D,
B=AA =k+D . (3.20}

%'e see that if r =0, we have A =D and 8 =8&.
Equation (3.16), with A &8, has been solved by Sasaki

and thus, using his results we can calculate the suscepti-
bilities, inverse correlation lengths, static correlation func-
tions, etc., for Hamiltonian (2.1). From now on, we will
take h, =0; then in all statistical mechanics calculations
(with b2 ——0), the total anisotropy in the x direction can
be defined through an effective anisotropic field along the
x axis given by

h",rr =(2b i+A, )'~ (3.21)

A & 8 means h eff & v 25. If h",rr ——v 25, Hamiltonian (3.5)
is equivalent to the one solved exactly by Faria and
Plres.

(ii) bi ——0 and b2 & h„/2. We will always take b2 &5;
then, h & v 25. Using Eq. (3.10) to eliminate (S,"),Eq.
(3.5}can be written as

~= —2J gS,'S, „+Ag(S,')'+8+(Ss)2, (3.22)

with

A =2J(5—h„/2), 8=2J(b2 —h„/2) . (3.23)

The effective field is now given by

h;ff = (25—h„')'i,

huff=(2b2 h„)'/2 (b2—&h'/2) .
(3.24)

~=—2J QS; S;+i+A g (S ) +8 g(S,") (3.25)

h, fr decreases with increasing h„. The easy direction is
along the x axis.

(iii) bi ——0 and h„&2b2. Using Eq. (3.10) to eliminate
(Sf), Eq. (3.5) can be written as

V, + s, + —,s, + —,
' rs, s, g„(s}=e„P„(s), (3.13)

2m

with

A =2J(5—b2), 8 =2J(h„/2 —b2) . (3.26)

~m =2S v'JD/T, p—=8i/D, r=C/D,
2 a' a' a' 2 2 2

~s 2 + 2 + 2 ~ sx+ss+sz —1Bs„as as,

(3.14)

The effective field is

h,'rf =(h,' —2b2)' ',
and we have an effective anisotropy in the z axis,

5.fr=5 —b2 ~

(3.27)

(3.28)

j.
'p, +—s„+—,s, f„(s)=e„1(„(s),

2ply
J

(3.16)

m'=1, m, b, =A,+/&, e„=e/& (3.17)

Let

=0.5I(p+1)+[(p —1)'+r']' j . (3.18)

Now we can make a rotation in the s„,s, plane to diago-
nalize Eq. (3.13}. We find

The easy axis corresponds to the y axis. If h„=2b2, as a
consequence h",ff

——0 and the system is equivalent to a
model with no external field but with an effective aniso-
tropy in the z axis. The isotropic character in the xy
plane is restored.

With the aim of using our calculation in the next sec-
tion to analyze experimental data in TMMC, we will now
discuss in more detail the case b~ ——b2 ——0, H, =0. Using
the equations given by Sasaki and solving them numeri-
cally, we could obtain results for any values of the param-
eters A and 8 (this is 5 and h„). However, we will use an
asymptotic expansion given in the same reference that, in
fact, for low temperatures, covers most of the region of
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K» —T[ai(q) —ao(q)] '/4JS (3.29)

interest. In the following, two energies will be important:
the soliton energy associated with the magnetic field
Es ——4szv'JB =4JS h and the ener y associated with the
anisotropy Ez —4S—v'JA =4JS 25. To understand
what happens to the ferromagnet, we should consider
several relations between the parameters (let 8&A; if
h & 25, we just change 8 for A). Since we are concerned
with low tel.peratures, we should have T ~&Ed.

If h «25(h «1), the spins are confined to the vicini-

ty of the xy plane. If T»Ei„only spin waves contribute
to the thermodynamics. If T «Es, the soliton contribu-
tion will be important. We note that for large T, the sys-
tem behaves like an XYmodel. For small T, the spins are
aligned almost parallel (or antiparallel) to the y axis. We
say that the system is in the "Ising region, " although in
the soliton, the spins turn in the xy plane because
h «25. Since some authors call this region xy-like, we
call it XYi„„s.

If h =25, we have a classical Ising model. For h ~-25
the system should behave like a true Ising model with the
spins turning in any plane in going from z to —z. How-
ever, for the solitons to be important we should have
T «Eq, but now Ee -Es and so T «Es. Thus the con-
dition for the hing region is always T «Es.

One of the most important variables in the analysis of
experimental data is the inverse correlation length K» for
the spin component in the xy plane perpendicular to the
direction of the applied magnetic field. As we saw in Sec.
II, K„directly gives the soliton density. For the XY re-

gion (b «&1) we have

g=[(1—v b)/2v b](Ei, /T), (3.35)

"e ~ID(g), (3.36)

where K» —T/4—JS is the inverse correlation length for
the planar model. For A =8 (i.e., h =v 25), Eq. (3.36) is
identical to the result of Nakamura and Sasada for the
pure Ising chain:

32JS h ~ski, /Te (3.37)

In the (XY)i„„sregion, g is very large and we can use the
expansion for Io(g} for large g, obtaining

' 1/2

(K )
1 +h /~25
1 —h/v 25

(3.38)

where (K» )so is the inverse correlation length for the pure
sine-Gordon chain given by Eq. (3.32). Equation (3.38) is
valid if g» —,'.

In order to make a comparison with experimental
data, 7 in the next section, we will define an energy E,
and a parameter a by

and as before, D =2J5. Io is the modified Bessel func-
tion. Equation (3.33) can be explicitly written as (8 & A)

' 3/2

K = ' — 64v"2J'S'(25)'"
T 1/2

1/2

where

iq i
=JS 8/T =(JS h/T) (3.30)

Es ———T ln
m'

2

1/2
JS2T1/2

(}Hs)'" 'E (3.39)

and a„(q) are the characteristic values of the Mathieu
equation. We can use Eq. (3.29) in the whole XY region.
For

~ q ~
&&1(i.e., T&&Ei, ) we have

1+q+ 8 q q /64 iII6 q

'3/2 *

Bin K»

Bu EC~ H
(3.40)

5+ 36864 q + (3.31)

(3.32)

where the first three terms give the spin-wave results.
For

~ q ~
&&1 (i.e., T &&Es ), we obtain

1/2 1/2

8 J1/2Sh h 4lsih/T—
T

J

E, = —T in[2~ms(JD)' R (u, T)e "],
where

(3.41)

with u =H/T, and here we will use H and D instead of h

and 5. For the sine-Gordon model, E, is just Ei, and
a=aso ——ys is the constant relating the field to the ener-

gy EI (=aH}.
Using Eq. (3.36), we obtain

in the XYi„„s region. Equation (3.32} is the well-known
result for the pure sine-Gordon chain. '9

For the Ising region (including the pure Ising and the
XYi„„s),T «Es and we have'

a11d

R (u, T) =(1/T+yu/4sv'JD )'/ e &Io(g)

a =as&—o'op

(3.42)

(3.43)

K» 4DS ro/T, ——

where

(3.33)

where

Bin
aop= R (u, T),

8Q
(3.44)

~0——4v 2b, ' '(1+v g)' 'e " e-&I (g)

is the com~tion to aso due to fluctuations out of the xy
plane. » the (XY)i«„s region we can use the expansion
for Io(g) for large g, obtaining
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gXY

SG

FIG. 1. A rough sketch of the regions discussed in Sec. III.
The dashed areas indicate the XF, the 7Z, the Ising, and their
intersections, the XXI„~ and FZ~;„~ regions. The XF region is

given by h « ~25, T «Eq/4 {Eq=4JSi~25). In this region,
we have the spin-wave (SW) limit

i q ~
«1 {T»y, where

y=JS~h} and the sine-Gordon {SG) limit
~ q i

&&1 (T&&y).
The YZ region is given by h »V 25, T «y. In this region, the
8%' limit is T pgEq/4 and the SG limit is T «pe/4. The Is-
ing region is given by T«Ea (E„=4y} for h &~25, and
T &&Eq for h & ~25. The parameter 5 is kept constant while T
and h are varied,

S2» ——S2cos28+Sy2sin28+2S. Sycos8 sin8 .

Taking an average over 8, we obtain

2 1 2 & 2
S» ———,S~+—,Sy .

(4.1)

(4.2)

Thus, if the anisotropic term is bS„, we have for the
equivalent ferromagnet

ture becomes monoclinic. z The magnetic properties of
TMMC are not strongly affected by the structural
behavior, in that the Mnc13 chains are not appreciably
distorted when the temperature is lowered. However, a
small magnetic anisotropy b is induced within the XF
plane (easy plane) perpendicular to the chain axis. ' How-
ever, because of the structural phase transition, three crys-
tallographic domains coexist in a single crystal of
TMMC, below 126 K. For each domain, the orientation
of the effective field, describing the anisotropy, is dif-
ferent, resulting in different values of the total effective
field being actually experienced by the electron spin. z7

To allow several orientations of the anisotropic axis in
relation to the external field H, let us suppose that H is in
the x direction but the anisotropy is in the il direction
making an angle 8 with the x axis. The z component is
not changed. Then we have

~=—2J +S, S,+i+2J5y. (S,'. )

+Jb g (Sf) +J(b+h }g {S'} (4.3)

+
T2

4S(4Sv'M —I-oy H
)i

(3.45)

Using Eq. (3.10) to eliminate (Sf)2, we obtain

(4.4)

For b, —1 (3 -8), (=0, and we can take Io(g) l. We
obtain

with

2 =2J(5—b/2), 8=Jh
O'SG T

4Sv'JD +yH
(3.46)

IV. APPLICATION TO TMMC [{CD3}gNMnC1g]

At room temperature, the crystal structure of TMMC is
hexagonal. At T 126 K, the tetramethyl mnmoniuxn.
ions undergo an order-disorder transition and the struc-

The results of this section can be best analyzed through
Fig. 1, where we show the XI; the YZ, the Ising and their
intersection, the (XY)i,~, and ( YZ)i„„regions. The XI'
region is given by h «~25, T«JS ~25. In this re-
gion, we have the spin-wave (SW) limit

~ q ~
&&1 and the

sine-Gordon (SG) limit
~ q ~

&& 1. The YZ region is given
by h »~25, T«JS h. In this region, the SW limit is
T»JS i/25 and the SG limit is T«JS2v 25. The Is-
ing region is given by T«Es for h &%25 and T«Eq
for h & ~25. For h & ~25, Eq. {3.29) is valid in the XI'
region, as is Eq. (3.36) in the Ising region. Equation (3.38)
is a correction to the SG expression and Eq. (3.31) is an
asymptotic expansion in the SW limit. All these equa-
tions can be used for h & ~25 by just changing h for ~25
and vlcc versa.

Thus, in a configurational average, the effect of b is to re-
normalize the parameter 5.

The 5 value calculated for TMMC on the basis of a full
Ewald sum for the classical magnetic dipole-dipole cou-
pling alone is 5=0.014. However, 5 obtained from the
measured energy ga in the spin-wave spectrum is
5=0.0086. Bouche and Pires and Gouvea, analyzing
low-temperature EPR shift, have obtained 5=0.0123 and
0.0101, respectively, in agreement with the results of Heil-
mann et al. ' The discrepancy between the classical value
and the experimental one has been attributed to single-ion
anisotropy effects as well as quantum corrections. ' In
this paper, we use the value 5=0.0101 (which corresponds
to an effective field of Hq 69 kOe) obtained from ——Ref.
35. For J, we take the usual value J=6.5 K.

In Fig. 2 we plot E~ as a function of the external field
in the x direction for fixed T. We have used Eqs. (3.29)
and (3.33) to calculate K„and as we can see, K„decreases
during the XY Ising crossover transition and very large
effects can be expected, even for relatively small values
of H.

In Fig. 3 we present K„[H(H/T)'~z] ' as a function of
H/T for T =2.5 K on a semilog scale. The experimental
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in Sec. II, we expect that for higor high magnetic fields in the x

yz plane with energy
K independent of the value of the
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' 1/2
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FIG. 7. Maximum of the intensity integrated over energy of
the central peak (at q =0) as a function of the magnetic field for
T =2.5 K. Solid line, calculation for the Ising region', dashed
line, XY region. The experimental data are from Ref. 29.

FIG. 9. Phase diagram of TMMC for H perpendicular to the
chain axis. The experimental data are from Ref. 17.

with a and a' possibly different. The resulting curve for
T~(H), with experimental data from Ref. 21, is shown in
Fig. 8. In Fig. 9 we show the phase diagram of TMMC.
The experimental data are from Ref. 17. This diagram
can be interpreted by taking into account the small aniso-
tropy b in the plane perpendicular to the chain. ' '

Boucher' calculated parts of the diagram using perturba-
tion expansion and numerical results obtained by
Loveluck. ' Our calculations were done using only one
theory. For a better discussion of this diagram, the reader
should refer to Refs. 17 and 18.

It should be interesting to have experiments done with
the applied field, making an angle 8 with the chain direc-
tion (i.e., keeping H constant but varying 8). Using Eqs.
(3.19) and (3.20) and taking

H, =H cos8, H„=H sin8,

we have, explicitly,

(4.11)

~ =0 5~[(25+h ) —[(25+h ) —85h sin 8]'~ I,
(4.12)8=0.5JI(25+h )+[(25+h ) —85h sin 8]' I .

Inserting Eq. (4.12) into Eq. (3.33), we can calculate Kz as
a function of 8, and compare it with experimental data,
should it become available.

V. CONCLUSION

) i ) ~ I s l a t ~ i

20 40 60 80 100 120 H(k0e)

FIG. 8. Field dependence of the three-dimensional ordering
temperature. The experimental data are from Ref. 17.

In this paper we have studied the dynamic and thermo-
dynamic properties of a classical one-dimensional aniso-
tropic antiferromagnet in the presence of an external mag-
netic field. Our results were based on the classical contin-
uum limit. We have neglected quantum effects which
have been discussed by Maki, Mikeska, and Risebor-
ough, and discreteness effects which have been investi-
gated by Riseborough et al. Using Mikeska's calcula-
tions, the quantum correction to the soliton energy is
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E,(quantum) =E, (classical) [v'S (S + I ) ——,
' ]/S,

which, for S = —,', gives E,(quantum)=0. 98E, (classical),
a negligible correction. However, me think that quantum
corrections have already been taken into account in the
use of the value of 5 obtained from fitting experimental
data instead of the classical value. The discreteness effect
seems to play no role at the temperatures of our calcula-
tions.

To conclude, we can say that vnthin the experimental
accuracy, and since there are no adjustable parameters, the
agreement between our theory and experiments may be
considered very good.
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APPENDIX

Following the procedure given in Ref. 3, we have

&s.')= I &@.IS l@o) I' and &&»')=
I &0» IS» l&o) I'

%vhere

tbo ——Noceo(8, q)exp[ —(m ' )' u /2],
Q„=N„se,(8,q)exp[ —(m')'» u /2],

Q» =N»cei(8, q)exp[ —(m ')'»2u2/2] .

In the above expressions, 8 and u are coordinates defined
in Ref. 3, ceo(8,q), cei(8,q), and sei(8, q) are the Mathieu
functions, and Na (tz=O, x,y) are normalization con-
stants determined by imposing the condition

I (ga I Pa) I
=1. The parameter m' is given by Eq.

(3.17).
Explicitly, (s, ) and (s„) are obtained by solving the

integrals

and

(P~ I S, I Po) =&o&„f (sechu)exp[ (m')—' u ]du f sin8ceo(8)set(8)f(u, 8)d8

(P» I S» I go) =No%» f [1—(1—4)tanh u]'» exp[ (tn')'» u']—du f cos8ceo(8)cei(8)f(u, 8)d8,

where

f ( 8) ( h )
[ 1 —( 1 4 )tanh u]

[1—4cos 8]'
4cos 8

[1—(1—4)tanh~u]'» [1—4 cos 8]'»'

is the Jacobian related to the transformation of coordinates done in Ref. 3.
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