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Microscopic wave functions for the fractional quantized Hall states at v s and 7

R. Morf
Labortories RCA, Limited, CH-8048 Ziirich, Switzerland

N. d'Ambrumenil
Department of Physics, University of Warwick, Coventry, England

B. I. Halperin
Lyman Laboratory of Physics„Haruard University, Cambridge, Massachusetts 02I38

(Received 24 March 1986)

Ne~ microscopic trial ~ave functions are proposed for fractional quantized Hall states at
v 2/(2p+1). Results for v ~& and —', based on Monte Carlo and exact numerical computations

are presented. For N &10 electrons on a sphere, energies differ from the exact ground-state ener-

gy by less than 0.3%. For even p, such as v —', , the trial wave function may be regarded as a mi-

croscopic realization of the condensed quasiparticle state postulated in hierarchical schemes.

In a seminal paper, Laughlin' introduced the idea that
the fractional quantized Hall effect is a consequence of the
condensation of the two-dimensional electron system into a
novel ground state: an incompressible fluid with fraction-
ally charged excitations. He constructed an explicit trial
wave function for states where the filling factor v of the
lowest Landau level has the form v 1/m (rn an odd in-
teger). Studies by exact numerical diagonalization of the
Hamiltonian for small systems (up to N 9 electrons)
both in the planets

3 and on the surface of a sphere showed
that this trial wave function captures the essential proper-
ties of the ground state at v —,

' and v —,
' (Ref. 5) and

gives an excellent upper bound for the ground-state ener-
gy. The structure of the ground state (GS) at other filling
fractions, e.g., v —,', v —', , etc. , is less well understood
because Laughlin's wave function cannot be used in these
cases. Two alternative attempts have been made for the
description of the quantized Hall states at such filling fac-
tors: One is based on a hierarchical schemes 7 in which,
e.g., the v & state of an N-electron system is pictured as
an W-electron v 3 Laughlin state in which N/2 quasi-
particles with charge e/3 are condensed again into a
Laughlin-type fluid state. This approach makes use of
pseudo-waue-functions for the quasiparticles, which are
treated as point particles. The approximations which are
thereby made are not well controlled and lead only to
crude estimates for the GS energy, although they provide
the correct quantum numbers.

The second approach is based upon microscopic trial
wave functions (MTWF's). Several types of MTWF's for
states at v —', , —,', etc., have been proposed: In many
cases, such as the wave functions which involve multiple
deriv«ives and/or integrations, evaluation is very diffi-
cult even for systems with very few electons. Consequent-
ly, no exact numerical results for its energy are available. '

Another MTWF, based on the principle of forming pairs

of electrons, was introduced by Halperin. However,
Monte Carlo calculations" have shown that it produces
poor results for v —,'. There are several reasons why it is
useful to have MTWF's, if they are simple enough to allow
physical interpretation as well as accurate computations:
(i) they provide the basis for tests of approximate theories,
e.g., the aforementioned hierarchical scheme; ' (ii) they
serve as starting states yri for exact computations in finite
systems, based on the principle of vector iteration, where
one diagonalizes the Hamiltonian H in the basis generated
by ilt„H ter„ i H" 'Vri. Convergence can be very rapid
if ilri has a large overlap with the exact GS.

In this note, we introduce new MTWF's for states at
v 2/(2p+1) which are related to the pair wave functions
of Ref. 9 and which also allow studies both by Monte Car-
lo (MC) as well as by exact numerical calculations. For p
even, such as v —,', the MTWF may be regarded as mi-

croscopic realization of the condensed quasiparticle state
postulated in hierarchical schemes. s ~ We report results of
MC calculations with up to N 60 electrons as well as ex-
act numerical results for systems with up to W 12 elec-
trons on the surface of a sphere. At v 5, for N 10
electrons, the overlap between this new MTWF and the
exact ground state is 97.2% and the difference in the
Coulomb energy is about 0.3%%uo. For the v —', state and
N 8 electrons we obtain 99.6' for the overlap and 0.04%
for the energy difference. At our suggestion, computations
based on our new MTWF have been carried out also by
Fano, Ortolani, and Colombo. Their results for v

with up to N 6 electrons agree with ours and they have
also obtained promising results for v

Our new MTWF, like the one introduced by Halperin,
is based on the principle of grouping electrons into pairs.
The motivation for this has been discussed in detail in Ref.
11. In the spherical geometry, our MT%'F has the form

W/2 X/2
I/fT Apz' A Vr Q (u2 u2 —i u2„u2„—i) Q [u2„u2„—iu2„'ug„' +u2„u2„—&u2„'u2„'
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where y is the Laughlin-Jastrow wave function'

lp Q (Q;uk uQk) (2)
i,k

(i &k)

and uk and uk are the spinor variables, uk
cos(ek/2)e' ', and uk sin(ek/2)e ' ' . The symbol

A denotes the antisymmetrizer and m, t,s are integers
satisfying s ~0, m t —~ 1, and odd, so that tt T is antisym-
metric under exchange of electrons belonging to the same
pair. The wave function yT is associated with a number of
flux quanta N+ m(N —1)+s(N/2 —1)-t and thus
corresponds to a filling factor v=N/Ne, which tends to
v 2/(2m+s) as N ~. Our MTWF is an eigenstate of
the operator L with eigenvalue L 0, ' so that itt2. is rota-
tionally invariant and the state therefore has a uniform
charge distribution on the sphere. In the disk geometry,
our new MTWF takes the form

AD ApD

/V/2-A tt~+(z2. -z2.-i) '

X/2
+ / (z2 z2 —i+z „'z '- 2Z Z„') (3)

I
n,n

In&n
where

& Izk I'
y - Q (z;-zk) exp -g

,k, k 4lh,
(4)

(i &k)

is the Laughlin-Jastrow trial wave function in the disk
geometry. Here, lo denotes the magnetic length la

(l'ic/e80) 't2 in a magnetic field of strength 80. The po-
sition of electron k is denoted by the complex coordinate
zk xk t'yk, —and Z„stands for the center of mass
Zg (z2g + z2g —i)/2 of the pair of electrons (2n, 2n —1 ).
Wave function yD differs from the original pair wave func-
tion9 only in the pair-pair "interaction" term [last prod-
uct in Eq. (3)j. The previous form is obtained if the
factor (z2„zz„ i+z2„z2„,-2Z„Z„) is replaced by
(Z„—Z„)2. The new forms (1) and (3) were actually
found when we attempted to generalize (Z„—Z„)2 to a
form valid for electrons on the surface of a sphere.

For v 2/(2p+ 1), with even p, we expect the lowest en-
ergy is obtained by choosing m p, s t 1.3 " (For
v —', , we have checked that the alternative choice m 1,
s 3, and t 0 leads to higher values for the energy. ' )
Our first studies were carried out in the disk geometry
based on the methods outlined in Ref. 11. This involved
MC importance sampling with weight I tttD I (i.e., the
not-fully-antisymmetrized part of wave function yD) and
led to an unexpected difficulty: It turned out that for
N ~ 12 electrons, distribution I pn I

2 corresponds to a state
of broken symmetry in which members of a pair get
separated by distances of order of the disk radius and the
separation vectors r2„—r2„ i are aligned in parallel. Also,
this state is characterized by a nonumform density p(r)
with a minimum at the disk center and a monotonic in-
crease toward the edge. Clearly, such a state I pD I can-
not be used as a basis for systematic calculation of an-

tisymmetrization corrections (cf. Ref. 11). In the spheri-
cal geometry, the same state of broken symmetry occurs
for N~46 electrons. This phase transition can be avoided

by use of a different MC sampling weight, ' ' and we be-
lieve the problem is absent in the antisymmetrized wave
function. The result for the Coulomb energy E of the
nonantisymmetrized state at v —,

' is E/N =(—0.4190
+'0.0005)e2/elo and antisymmetrization corrections due
to two-electron interchanges"" decrease the energy by
2.1% while three- and four-electron exchanges lead to a
further reduction by about 0.7%, leading to a value
E/N = ( —0.4307+ 0.0010)e /elo.

Let us now turn to exact numerical computatians based
on our MTWF yT. For this purpose, we expand yT in
terms of Slater determinants D(l i, l2, . . . , l~) of the basis
functions u u; ', where 0&l;~2S Ne, and, for de-Il 2$ -Il

finiteness, li&l2). . . ) ln. Let us order these deter-
minants according to decreasing values of the "variance"

g,n, (S —l;)2. It is easy to verify that the deter-
minant with maximum variance hi included in yT (for
u —', , i.e., m 2, s t 1) is D (2S,2S —1,2S —5,
2S —6, . . . , 1,0) where 2S N~ 5N/2 —4. All remain-
ing determinants included in yz can be generated by itera-
tively applying operators L,+L; (ij 1,2, . . . ,N and

j )i) thereby simultaneausly raising lj and lowering l; by
one unit and thus reducing the variance h. Because yr is
rotationally invariant, the coefficients e~ of the expansion
yt g~c&D(h) satisfy a set of linear equations which is
obtained from the condition L+yT=0 and which can be
salved recursively. It turns out that for systems with up to
N 12 electrons these linear equations in fact have a
unique solution in terms of e~, (which is defined by nor-
malization of y2 ) and the coefficients e& can be written as
integer multiples of c~,. The uniqueness of the decomposi-
tion results from the special property of illT that many
determinants such as D (11,10,9,2, 1,0), and
D(11,10,8,3, 1,0), for the case N 6, do not occur in yT.
(A similar property is observed in Laughlin's wave func-
tion y~ at v 1/m. ) Based on the decomposition of yT
we now solve the Schrodinger equation in the L 0 sub-
space of dimension D using as basis vectors the iterates
H~ 'ilier V 'err (p 1,2, . . . , D). (The interaction
potential projected onto the lowest Landau level is denoted
by V.)

In Table I we list our results for the energy E/N at
v —,

' for our MTWF yT, the exact GS yc and for the
"hard-core" wave function itic, which is the GS when the
electron-electron interaction is infinitely short range com-
pared to lo. For the computation of the Coulomb energy
we use the "chord" distance between two electrons. As
unit of energy, instead of the conventional e /elo, we use
e /elo where the length unit lo (N~v/N)' lo is chosen
such that the areal electron density is p v/2(ilt)0in-
dependent of N. ' Also listed in Table I are the results for
the overlaps &yT I yc& and (yHcI y~) between the exact
GS tttc and wave functions yT and yHc, respectively. In
the second column the dimension D of the L 0 subspace
is tabulated. Since for N 4 electrons, only one I 0
state exists, our MTWF becomes the exact GS. As can be
seen, both the results for the energy and for the overlap
sho~ that our MT%F is a close approximation to the ex-
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TABLE I. Coulomb energy and overlap of trial wave function yT with exact ground state y~ at

v 5. Results for the "hardcore" ground state are denoted by yH~.

E/N (yr) E/N (yc) E/& (yHc) &wr I wc& &QHc ~ Ipc)

1

3
8

52
418

—0.426 104
-0.427 641
-0.428 283
-0.428 939
-0.429 327
-0.4310

—0.426 104
—0.428 517
-0.429 543
-0.430258

-0.4330

—0.426 104
-0.428 502
—0.429 368
-0.429 987

-0.4326

1

0.98840
0.977 12
0.971 54

1

0.99984
0.99591
0.99083

act GS, with values for the energy E/N which are too high
by less than —,'%.

On the other hand, the hard-core wave function yH~ has
a remarkably low Coulomb energy, just about 0.190 too
high. Indeed, one might call yHc the proper generaliza-
tion to arbitrary filling factors v of the original Laughlin
state y, with which it coincides at v 1/m. ' However,
the usefulness of yHq at arbitrary v is more limited since it
is no easier to compute than the exact GS yc and, unlike
our MTWF yt, yHg cannot be used in MC calculations
which are of particular interest for the study of larger sys-
tems (N &10) as well as of excited states which tend to ex-
hibit large finite-size corrections. We also note that the
convergence to the exact GS is very rapid as the number of
iterates V~ yt (p 1,2, . . . ,M) is increased: Devia-
tions from the exact GS energy are 0.31% (M 1, yr,
cf. Table I), 155 ppm (M 2, yT, and VyT), 16 ppm
(M 3), and 4ppm (M 4).

Our values for the bulk limit of the energy E/N
(N oo) are obtained by extrapolation in 1/N. The value
E/N = —0.4330 for the exact GS rye (cf. Table I) is
somewhat higher than Su's value' E/N = -0.434 ob-
tained at v 5 for N 8 electrons in the plane and subject
to periodic boundary conditions. The bulk limit E/N= -0.4310 obtained for the MTWF pre is consistent with
our MC results E/N = —0.4307 ~ 0.0010 discussed
above which demonstrates the convergence of the antisym-
metrization corrections to the energy. This, in turn, may
be interpreted as evidence that the pair structure of the
nonantisymmetrized state &T has a physical relevance.

Finally, let us discuss the radial distribution function
g(R) in the limit of small separation R Following Yoshio-
ka, let us write g(R) gkckR . Our values for c~ in the
bulk limit are 0.116, 0.105, and 0.103 for wave functions
yT, yc, and qrHg, respectively. ' Numbers given are in
units of lo . Clearly, c~ is minimum for the hard-core

wave function yHc. This actually constitutes a possible
definition of yHc (for v & —,', for —,

' )v) —,
' the conditions

are c~ c2=—0, c3 minimum). On the other hand, the ex-
act GS yc leads to a remarkably low value for c~, just 2%
larger than the minimum (cf. Ref. 4).

An important property of our MTWF, is that it led us to
the natural sequence of v —', states for which the number
of flux quanta No 5N/2 —4. This coincides with the se-
quence suggested by hierarchical schemes. 6 It turns out
that other sequences, where Nc, N~+const all corre-
spond to GS's which, in the language of the hierarchical
schemes, have additional defects (quasiparticles or
quasiholes). ' As a consequence, for those "unnatural" se-
quences, the energy E/N shows marked finite-size effects.
By contrast, for our sequences of states the size depen-
dence of E/N is very smooth and basically linear in N
(cf. Table I and Ref. 15).

Let us now turn to the v 7 state which is obtained by
setting m 3 and s 1. The most obvious choice for t
might seem t 0." However, for N 4 electrons (Ne

10) no L 0 state exists, which contains y3LJ as a factor
and yr vanishes after antisymmetrization. '9 The "natur-
al" sequence of states has in fact a number of flux quanta
Ng, 7N/2 —2, which is obtained for t —2. This
meets all requirements (m —t «1 and odd). More gen-
erally, states at v 2/(2p+1) with p odd are represented
by our MTWF setting m p, s 1, and t —2. In Table
II we list the results obtianed from this MTWF yT for
v 7.2 The total number D of L 0 states is listed to-
gether with the number D' of those containing y3L~ as a
factor. The results for both the energy E/N and the over-

lap (yT ( yc) demonstrate that our MTWF is a very close
approximation to the exact GS. For N 4 electrons our
MTWF actually coincides with the hard-core GS yHc
since only one L 0 state exists which contains yr3" as a
factor.

TABLE II. Coulomb energy and overlap of trial wave function with exact ground state at v

El& (yr) E/Iv (vc) &v T I wc&

2
10
80

—0.386004
-0.384 527
—0.383671

—0.386012
—0.384626
—0.383 811

0.999939
0.997 163
0.996293
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The physical interpretation of our MTWF for v —', is

quite natural: Members of a pair of electrons come some-
what closer, thus representing the charge accumulated at
the position of a quasiparticle. The interpretation of the
v —,

' state MT%F is not so clear: %"e have not yet inves-

tigated the properties of the nonantisymmetrized state &T.
In particular, we do not know if the pairs in the presence of
the additonal repulsive term (z2„—z2„~) maintain their
character. If they do and if the antisymmetrization
corrections are small, we might conclude that the pairs
would be associated with the quasiholes of the hierarchical

picture. Otherwise, the precise physical significance of our
MTWF at v —,

' remains unclear, but in any case it is an
excellent MTWF with a very large overlap with the exact
GS.
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