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Raman scattering inmlving nmklapp processes in Si/Ge, Sit — snperlattices
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Raman scattering from folded acoustic phonons in Si/Ge„Si~—,strained-layer superlattices

grown by molecular-beam epitaxy is reported. The superlattice periodicity ~as chosen so that the
transferred photon momentum exceeds the minizone momentum n/d, where d is the superperiodi-

city. The observed peaks agree very vrell ~ith calculations involving umklapp and folding of the
scattered phonons into the minizone.

The formation of a mini-Brillouin zone in a superlattice
dramatically changes the phonon spectrum by "folding"
the dispersion curves into the minizone. Gapa are created
at q 0 and at the minizone edge, viz. , q, tr/d, where d
is the superlattice periodicity. Such folded phonons in

GaAs/A1As superlattices have been studied by acoustic
transmission and Raman scattering (RS).'

In this Rapid Communication we report a RS study of
folded longitudinal-acoustic modes from Si/Ge„Si~
strained layer superlattices grown by molecular-beam epi-
taxy (MBE) on (001) Si substrates. This system has less
favorable photoelastic constants than in GaAs/A1As super-
lattices, z but the folded phonons were readily observable
(see Fig. 1). We have exploited the possibility of making
the minizone wave vector qm, comparable to q~, the
momentum transferred from photon scattering, to investi-
gate umklapp-like RS which is impossible in ordinary
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FIG. 1. The unpolarized Raman spectra of Si/Ge„Si~—„su-
perlattices (a) No. 17 and (h) No. 26, recorded at 295 K. See
Table I for the labeling of the peaks.

crystals. Denoting the minizone-center phonon frequen-
cies by trtcoo, where m 0, 1,2, . . . is the folding index,
light scattering peaks should occur at the shifted frequen-
cies dto=m too+'q&U, 1, where U, 1 is the superlattice sound
velocity. Thus, each folding index tttWO would lead to a
doublet, ma and mb corresponding to -qU, 1 and qU, ~,

respectively. The case m 0 corresponds simply to Bril-
louin scattering. Since the observed dto were small ( & 75
cm '), Rytov's theory of acoustic vibrations in layered
media was used to calculate too and U,1. The observed
peaks agree very well with the calculations.

Silicon layers of thickness d~ were alternated with
Ge Sit, layers of thickness dz, with x the Ge composi-
tion. A Vacuum Generators V-80 MBE system was used
to grow several Si/Ge, Si~ „superlattices of various
thicknesses and composition. We discuss here only two
samples, viz. , Nos. 17 and 26, and will report other aspects
of this study elsewhere. In both superlattices the
Si/Ge„Si~

„
interfaces were commensurate as revealed by

cross-sectional transmission electron microscopy (TEM).
The epitaxial material was of excellent crystalline quality,
as confirmed by Rutherford backscattering. The sharp-
ness of the interfaces are seen from the [110]TEM cross-
section micrograph (Fig. 2) of sample No. 26. The accom-
panying selected area diffraction pattern shows a splitting
of the (004) spot along the [001] direction, indicative of
tetragonal distortion. Small variation in the layer thick-
ness is seen in Fig. 2. The values of d~ and d2 used in the
calculation are the mean values for approximately 20
periods of the superlattice sampled by the light (4579 A.).
In No. 17, d~ 225 A, d2 50 A, so that d d ~+d2 275
k The Ge composition x 0.2. In No. 26, d~ 450 A.,
d2 200k, and x 0.45.

The Raman spectra of the samples placed in a He atmo-
sphere were measured in a 90' scattering geometry with
the (001) surface inclined at an angle of 12' to the in-
cident light. The spectra were excited with 300 mW of
4579-A laser light and analyzed with a Spex 14018 double
monochromator at resolutions of 0.8 and 1.6 cm ' for the
lower and higher frequencies, respectively. Typical Ra-
man spectra for the two samples are given in Fig. 1. The
spectrum of sample No. 17 comprises a number of strong
lines accompanied by weaker features, ~hereas the spec-
trum of sample No. 26 exhibits a remarkable complexity
of detail and in appearance is quite unlike the spectra ob-
served so far for GaAs/A1As superlattices involving small
perlodtclttes. '
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FIG. 3. The calculated dispersion curveses and experimental
points for sample No. 17.
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In summary, the unique physical properties of thick-layer superlattice structures have enabled extraordinary measure-
ments of the Raman spectrum of a solid at wave vectors outside its first Brillouin zone. The corresponding positions
within this zone are found by folding a given wave vector q/q, n+ f, where n is an integer and f the fractional part, to
give q/q, R+ (—1)"f,where R is 0 or 1 for even or odd ri, respectively. This is the first time such umklapp processes
have been observed in a light scattering experiment.
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