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Integral quantum Hall effect in superlattices

P. Vasilopoulos
Centre de Recherches Mathernatiques, Unioerstte de Montreal, Case Postale 6728,

Succursale A, Montreal, Quebec, Canada H3C 3J7
(Received 19 May 1986)

It is shown that an integral quantization of the Hall conductivity a~„occurs in superlattices

when a magnetic field is apphed in their direction, z, provided that (i) only the lowest miniband is

occupied and its width is smaller than the energy separation between neighboring Landau levels,

and (ii) the Fermi level lies in the resulting energy gaps. For very wide barriers there is no

dispersion in the z direction and at zero temperature cry„ is equal to 2n(%+1)e /h, where n is the
number of the wells and 1V the Landau-level index. This is also the case for very high but not too

thin barriers. Corrections due to finite dispersion and finite temperatures are evaluated. Tunnel-

ing between adjacent wells can modify the results considerably or even destroy the effect depend-

ing on how wide or how high the barriers are. The results are in reasonable agreement with the

available experimental data.

The existence of gaps in the energy spectrum of a two-
dimensional electron (or hole) system is generally regard-
ed as a prerequisite for the observation of the quantized
Hall effect (QHE). ' At very low tempeatures and high
magnetic fields the hall conductivity try„ is equal to ie /h,
where i is an integer. Quantization of the Hall conductivi-
ty has also been observed in superlattices which contain a
number of identical, strictly two-dimensional (2D) elec-
tronic systems, separated from one another by impene-
trable barriers;~ in this case oy, is equal to jie /h, where j
is the number of the 2D systems (wells).

In all these cases, the electronic spectrum is purely two
dimensional without any dispersion in the direction normal
to the 2D plane. However, recently the QHE has been ob-
served in GaAs-(A1, 6a)As superlattices, with a finite
dispersion in the direction normal to the 2D plane, and
with barrier widths and heights of about 40 A and 135
meV, respectively. The deviations from the traditional
QHE, observed in 2D GaAs-(A1, 6a)As structure have
been discussed in Ref. 5, the main one being that cry„ is
equal to j'ie /h, with j'& j. In such superlattices strong
tunneling is expected5 between neighboring wells and the
distinction between layers is not very good. It is therefore
of interest to study the influnece of tunneling and of finite
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In Eq. (2) I g) and e~ are the eigenstates and eigenvalues
of the one-electron Hamiltonian h (H gh ), respec-
tively; (nt)~ is the average occupancy of the state I g),
given by the Fermi-Dirac distribution function, and
Vo L„LyL, is the volume of the system. Equation (2)
leads to the usual Hall effect at high temperatures, s to the
oscillatory Hall effect at very low temperatures, and to
the integral QHE.

Equation (2) will be used to evaluate the Hall conduc-
tivity ay, in a GaAs-(A1, Ga)As superlattice when a mag-
netic field 8 is apphed in its direction (B Bz). The su-
perlattice consists of n identical wells (GaAs) of width d,

dispersion (in the superlattice direction) on the QHE. In
this Communication we study this influence on the QHE
quantitatively. The results obtained are mentioned in the
abstract.

To start with, let us consider an electron system
described by the Hamiltonian

H H +XV —A F(t) .

separated by n identical barriers [(Al,Ga)As] of width b
and constant height 8; for I z j(d+b) I »b/2, where j
is an integer (I » j»n). In the Landau gauge the one-
electron Hamiltonian, states, and eigenvalues read (p is
the momentum operator)

h'-(p+eA)'/2m*+W, A-(O,ax,O),

I g)= IN ky) I n.kz)

yN(x+l ky)(e "/Ly 2)eIn, k )

(1V+ —,
' )h, tac+e(k, ), lV 0, 1,2, . . . ,
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In Eq. (1) H is the largest part of H which can be diago-
nalized (analytically), kV is the interaction (XV((Hc),
and -A. F(t ) is the external field Hamiltonian. When an
electric field E(t) is applied, F(t) qE(t), A g;(r;
-r~) g, a;, q is the charge of the carriers (electrons),
and r~, r; are the positions of the carriers before and after
the application of the electric field.

In our formalism, s H contains the periodic part of the
interaction A, V, expressed by the effective mass trt'. The
electrical conductivity is given as a sum of two terms:
cr„„o~i„+et~i' cr~i„depends on the interaction (nonperiod-
ic part) but cr„"„does not. In the presence of a magnetic
field (included in H ) cry, is shown to vanish identically. 6 7

Thus the Hall conductivity is given by oy"„. Its dc version
reads [cf. Ref. 7, Eq. (2.11)]
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where rop e8/m* is the cyclotron frequency, 12 h/m'roo, A is the vector potential, and where
~ n, k, ) is the wave func-

tion in the z direction. p~(x ) are the harmonic-oscillator wave functions, ¹isthe Landau-level index, and k~, k, are the
wave vectors in they and z direction, respectively. Using Eq. (4) and setting I' 1 cop/ (2)'/z we obtain

(gl a. I g) -a't —(W+ I)'"b „„+(W)'"b; —](n,k. In', k;)&

«I', I r) -I «~+»'" b.;.+,+(»'"~.;. , ](n,k, In;k;) b, ,,
w"ere ~k k' ~k k'&k k' U»ng Eqs (5)-(7) and proceeding as in Ref. 7, Sec. II, we find that for N fully occupied Lan-
dau levels a~, is given by

~y. =(2e'/ItL, ) y [](n,k, (n,k, ) ('+[[(n,k, (n+l, k, ) ('+ ((n,k, ]n —l,k, ) [z]/2]

x (&+1)fIv,k, (1 tv+, k, )(I

where f~,k (n~, k, ),„T.his result has been obtained by
writing

gy(n') -y(n)+ g y(n') = y(n)+y(n —I)+y(n+1),
I

n Wn

i.e., by assuming that the parameters d, b, and W are such
that only the wave functions centered on adjacent wells
have a significant overlap. The stronger this overlap the
larger the tunneling probability is. Now the quantities
I(k, ) ) (n, k, ~n+' l,k, ) ( are independent of the well
index n (see below). Using the normalization of

~ n, k, )
and observing that

tv k, (1 tv+ &,I,)exp( P& o) (1 fw, l, )tv+ i,k,

we can write'p Eq. (8) as

o~, =2n(e /hL, ) g [1+1(k,)]tv,k, . (9)
1V,kz

The tntegral I(k, ) has been evaluated approximately in
Ref. 11 [see Eq. A(ll) for q, 0] and the result, when
only the lowest miniband (assumed to be very narrow) is
occupied, reads

(a)'/ Wb+4(W —e~)'/zI k, =I ki 4
(a)'"Wd+2(W —e, )'/'

& (e(/W)zexp[ —2b [a(W —e))]'/z],

(10)

where e~ is the energy of the miniband hzk~z/2m' and
a -2m'/It'.

To proceed further we need to know the k, disperison of
the energy spectrum. We evaluate it numerically using the
Kronig-Penney model which entails that we neglect a
small difference in m' between GaAs and (Al, Ga)As and
the effect of band bending due to charge transfer from
(Al, Ga)As to GaAs layers. ' The effect of the nonpara-
bolicity of the conduction band is approximately incor-
porated into the dispersion relation in the manner of Ref.
13. We consider separately the cases of zero and finite
dispersion he, =he(k, ). We assume throughout that only
the lowest miniband is occupied. In Fig. 1 we plot the un-
perturbed density of states for h,s, 0:

It/(e) -(agnI') pa(e (It/+ ,' )t ~o —e.), ——

(dashed lines), and for he, se0 in the tight-binding model'

e(k, ) -ep —(a/2) cos[k, (d+b)],
m(e) - (4m*Ho/It') g [(a/26 top)

—Pv+-,'+(ep —e)/a~p]'1-'"

(hatched regions). In the second case, eo is the middle of
the miniband whose width is d and

I(&+ 2)strop+so —el ~a/2& t ~o/2 .

Ap is the area: Ap L L& [the exact form of N(e) de-
pends on the parameters b and W which modify e(k, )].

(i) de, 0. As shown in Fig. 2, this is the case of wide
and not too low barriers (b ~120 A, W = 85 meV) or of
high but not too thin barriers (W~200 meV, b «40 A).
1(k,) and fN k are independent of k, .„At zero tempera-
ture Eq. (9) becomes [gk, L f „dk,/2n, kp n/

(d+b)1,
a~„2n(N+1)[1+I(k~)]e /h . (11)

In the presence of interactions (A, V) we assume, in anal-
ogy with the two-dimensional case, 's' that the unper-
turbed energy levels (dashed lines m Fig. 1) are broadened
into bands whose center consists of extended states while
localized states exist at the top and bottom of these bands.
Equation (ll) then makes the quantization of cr~„ap-

5
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FIG. 1. Plot of the unperturbed density of states %(s) vs

(s —so)/2hcop. The width 6 of the miniband is zero (dashed
lines) or finite (hatched regions, 4 & hmo).
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FIG. 2. Lowest miniband width hs, as a function of (a) the harrier's width b and (h) the harrier's height g.

parent whenever the Fermi level lies in the region of these
localized states as the magnetic field varies. Since I (k ~) is
independent of the magnetic field its value will shift the
quantization but it will not affect it further.

At finite temperatures and strong magnetic fields we as-
sume exp( —C)«1, C P(s —(X+—,')a~o —s, ). Equa-
tion (11) must then be multiplied by 1 —exp( —C), as is
easily seen by expanding f~ k, . As in the two-dimensional
case: (a) the deviation err~„(T) from the zero tempera-
ture value, o~„(0), shows an activated behaviors with ac-
tivation energy C/P and (b) the plateaus of Eq. (11)
shrink with increasing temperature due to the "washing
out" of the Fermi function, cf. Eq. (9).

The data of Ref. 4 have been obtained at T 0.2 K. We
assume that b d 143 A and 8' 85 meV (b and W are
not given in Ref. 4). We obtain a~ = 14 meV,
I(ki) =6x10 ' and e c= 10 —10 s for stv+st & sF
& s~+ ~+ s~. Assuming cr„„0 (p„„—10 ' 0/&), we

find from Eq. (11) that p~„= I/o~„h/inc, within one
part in 10 which is the reported accuracy [i 2(N+ I),
spin included, n 172].

(ii) d,a, WO. As shown in Fig. 1 (hatched regions) the
Landau levels develop into bands which are assumed to be
broadened in the presence of interactions. The energy
spectrum again exhibits gaps when the miniband width
d,s, is smaller than hroo and the reasoning of (i) can be re-
peated.

In Fig. 3 we show the dispersion relation in the z direc-
tion for the first two bands; the parameters shown are tak-
en from Ref. 5. h,e, is about 2.5 meV for the lowest mini-
band. The bands are broadened slightly when the nonpar-
abolicity of the conduction band is taken into account. For
example, using Eqs. (7) and (9) of Ref. 13 with ET (Ã
+ 2 )hroo+s„at 8 8.6 T, and Es, 5Es„we find that
the bandwidths increase by about 15% and 10%, respec-
tively. The effect is weaker for smaller 8 or Eg, & 5F~,.

The data of Ref. 5 have been obtained at T 0.15 K.
Using the reported activation energy, C/P 0.26 meV, we

obtain e ~-10 and 10 for c(k, ) evaluated at the
bottom and top of the miniband, respectively. For N 0
we have @duo=15 meV. Since the bandwidth ha, =2.5
meV is small we again use Eq. (10) for l(k, ) and obtain
I(k, ) = 1.5x10

As Fig. 3 shows the dispersion relation is almost linear
and can be reasonably well described by a(k, ) = uk„
a (2.5 mVe)(d+b)/x. Equation (9) then, for N 0,
gives (within one part in 10 ) cr~„=60e2/h whereas the
experimental result for p~„, assuming cr„, 0, leads to
cry 48e /h to five parts in 10s. The result cry 60e2/h
remains unaffected (to one part in 10 ) when the nonpara-
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FiG. 3. Dispersion relation in the z direction; s, is measured
from the bottom of the first miniband.
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bolicity of the conduction band is taken into account. In-
clusion of electron-electron interaction leaves Eq. (2) un-
changed'7 but, in general, broadens the bands of the
Kronig-Penney model' slightly. This could affect slightly
the activation energy but not the value 60e /h. The
discrepancy between these two values of o~, could be
probably associated with depletion of several top and bot-
tom layers of the superlattice due to pinning of the Fermi
level, as discussed in Ref. 5.

In the examples considered here the effect of tunneling,
as reflected by Eq. (10) and the Kronig-Penney model, is
very weak and does not seriously affect the reported accu-
racy of the QHE (which, however, is poorer than in the
two-dimensional case). However, as Eq. (10) indicates
and as one intuitively expects, tunneling can drastically af-
fect the accuracy of the effect or even destroy it when one

reduces the width or the height of the barrier. In this case
Ae, increases (cf. Fig. 2), the gaps of Fig. 1 shrink, and
Eq. (10) becomes a progressively poorer approximation.

In conclusion, we have shown that the QHE can occur in
three-dimensional's systems when their energy spectrum
exhibits gapa and the Fermi levels lies in them. For super-
lattices this happens for values of the barrier width and
height such that the bandwidth is much smaller than @too.,
in this case the effect of tunneling between adjacent wells
affects the accuracy to about one part in 10 . The results
are in reasonable agreement with the experimental data.
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