15 AUGUST 1986

## Angle-resolved photoelectron-spectroscopy study of the Si(111) $\sqrt{3} \times \sqrt{3}$ -Sn surface: Comparison with Si(111) $\sqrt{3} \times \sqrt{3}$ -Al, -Ga, and -In surfaces

T. Kinoshita, S. Kono, and T. Sagawa

Department of Physics, Faculty of Science, Tohoku University, Sendai 980, Japan

(Received 14 May 1986)

Angle-resolved ultraviolet photoelectron spectra have been measured for the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface. It has been found that the surface-state dispersions are very similar to those reported for the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Al, -Ga, and -In (column-III metals) surfaces except for the presence of an additional metallic surface state. The metallic state observed for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface seems to correspond to the otherwise unoccupied surface state for the  $\sqrt{3} \times \sqrt{3}$ -M (M = AI, Ga, In) surfaces. This suggests that the surface atomic geometry of the  $\sqrt{3} \times \sqrt{3}$ -Sn is essentially the same as those of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces, in which a metal atom is situated in every  $\sqrt{3} \times \sqrt{3}$  threefold-hollow site.

It is known that metal overlayers in submonolayer ranges on semiconductor surfaces cause surface superstructures with a variety of phases. It is expected that the study of the smallest surface superstructures of these submonolayer interfaces can give a basis for the understanding of the semiconductor surface reconstructions. Recently, electronic structures of Si(111)  $\sqrt{3} \times \sqrt{3}$ -Al,<sup>1,2</sup> -Ga,<sup>3</sup> and -In (Refs. 4-6) surfaces have been studied by angleresolved ultraviolet photoelectron spectroscopy (ARUPS). It became clear from these studies that the surface electronic structures of the  $\sqrt{3} \times \sqrt{3}$ -M [abbreviation for the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Al, -Ga, and -In surfaces where M = Al, Ga, In] are very similar to each other. The dispersions of the surface-state (SS) bands are in qualitative agreement with theoretical calculations of Refs. 4, 5, 7, and 8 for the threefold-hollow adatom models. This indicates that the atomic geometry of these three  $\sqrt{3} \times \sqrt{3}$ -M surfaces is essentially the same to each other and is the  $T_4$  or  $H_3$ structure.4,5,7

The first work on Sn (column-IV element) submonolayer overlayers on the Si(111) surface was the low-energy electron diffraction (LEED) study of Estrup and Morrison.<sup>9</sup> They found two kinds of  $\sqrt{3} \times \sqrt{3}$  and a  $2\sqrt{3} \times 2\sqrt{3}$ phase depending on the Sn coverage and substrate temperature. Ichikawa recently reported a detailed study of the Sn-Si(111) system.<sup>10</sup> He observed  $\sqrt{3} \times \sqrt{3}$ ,  $2\sqrt{3}$  $\times 2\sqrt{3}$ , and three large superstructures ( $\sqrt{133} \times 4\sqrt{3}$ ,  $3\sqrt{7}$  $\times 3\sqrt{7}$ , and  $2\sqrt{91} \times 2\sqrt{91}$ ) by reflection high-energy electron diffraction (RHEED). Yabuuchi performed a structural analysis for the Sn-Si(111) system by LEED and ion-scattering spectroscopy (ISS).<sup>11</sup> From these studies, it is now known that the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface is formed at about the same coverage  $\left[-\frac{1}{3}\right]$  monolayer (ML); 1 ML being the surface atom density of the truncated Si(111) 1×1 surface] as the  $\sqrt{3} \times \sqrt{3}$ -M metal overlayer surfaces. Therefore, it is of great interest to know how the electronic structure of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface differs from those of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces. In this Rapid Communication, ARUPS measurement of the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface is reported and compared with those of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces.

The experiment was carried out in the same way as in

previous studies<sup>1,3</sup> except for the evaporation of Sn atoms. 99.999% pure Sn was deposited from a Mo spiral basket onto a clean Si(111) 7×7 substrate at room temperature under a pressure of  $\leq 2 \times 10^{-10}$  Torr. Auger electron spectra showed no contaminants before and after the experiments. After heating the substrate, RHEED patterns showed  $\sqrt{3} \times \sqrt{3}$  and/or  $2\sqrt{3} \times 2\sqrt{3}$  structures depending on the conditions of coverage and heating temperature in accordance with Ref. 10. The well-ordered  $\sqrt{3} \times \sqrt{3}$  surface for the ARUPS measurement was obtained by deposition of  $\sim \frac{1}{3}$  ML Sn and  $\sim 430$  °C heating.

Some of the observed ARUPS spectra of Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface are shown in Fig. 1, where the polar angles of electron emission are changed along  $\overline{\Gamma} \cdot \overline{M} \cdot \overline{\Gamma}$  and  $\overline{\Gamma}$ - $\overline{K}$ - $\overline{M}$  directions of the  $\sqrt{3} \times \sqrt{3}$  surface Brillouin zone (SBZ). The SS peaks are marked with bars and named  $S_1, S_1, S_2$ , and  $S_3$ . The distinction of these SS peaks is described later. Figure 2 shows the diagram of the binding energy  $(E_b)$  plotted against the electron wave vector  $(k_1)$ parallel to the surface for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface (filled symbols) along the  $\overline{\Gamma} \cdot \overline{M} \cdot \overline{\Gamma}$  direction, which is converted from the actual spectra in Fig. 1 and others not shown here. Figure 3 is the diagram along the  $\overline{\Gamma} \cdot \overline{K} \cdot \overline{M}$  direction. In Figs. 2 and 3, the diagrams for the  $\sqrt{3} \times \sqrt{3}$ -Ga surface<sup>3</sup> (open symbols) along the same directions are also shown for comparison. It is apparent from these comparisons that the electronic structures of the  $\sqrt{3} \times \sqrt{3}$ -Sn and  $\sqrt{3} \times \sqrt{3}$ -Ga surfaces are very similar to each other except for the presence of the  $S'_1$  band for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface. Actual spectra of the  $\sqrt{3} \times \sqrt{3}$ -Sn and the three  $\sqrt{3} \times \sqrt{3}$ -M surfaces are also very similar to each other except for the  $S_1$  and  $S'_1$  bands near the Fermi level for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface. The distinction of the  $S'_1$  band from the  $S_1$  band is described later. The  $E_b$  vs  $k_1$  diagrams below  $\sim 2 \text{ eV}$ are also similar to those for the Si(111) 7×7 surface. This implies that the electronic structures below  $\sim 2 \text{ eV}$  are mostly bulk in origin.<sup>1,3</sup> It is clearly seen in Figs. 2 and 3 that the SS bands  $S'_1$ ,  $S_2$ , and  $S_3$  disperse in accordance with the periodicity of the  $\sqrt{3} \times \sqrt{3}$  SBZ.

In Fig. 4, the dispersions of the SS bands along the  $\overline{\Gamma}$ - $\overline{M}$ - $\overline{\Gamma}$  and  $\overline{\Gamma}$ - $\overline{K}$ - $\overline{M}$  directions are summarized for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface (a), and for the three  $\sqrt{3} \times \sqrt{3}$ -M sur-



FIG. 1. ARUPS spectra of the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface. Polar angle,  $\theta$ , of electron emission is changed along the  $\overline{\Gamma} \cdot \overline{M} \cdot \overline{\Gamma}$ and  $\overline{\Gamma} \cdot \overline{K} \cdot \overline{M}$  directions of the  $\sqrt{3} \times \sqrt{3}$  SBZ. Unpolarized HeI light is incident at  $\theta \approx -45^{\circ}$ . Symmetric points of the  $\sqrt{3} \times \sqrt{3}$ SBZ are indicated. The origin of the binding energy is the Fermi level determined from that of a Ta sample holder.

faces (b)-(d). It is clear from the comparison that the  $S_2$ and  $S_3$  bands for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface disperse very similarly to those for the  $\sqrt{3} \times \sqrt{3}$ -M surfaces. The separation between the  $S_2$  and  $S_3$  bands for all the surfaces is not visible in the direction between  $\overline{\Gamma}$  and  $\overline{K}$  in Fig. 4, for which the two bands are probably very close. The separation is visible near the  $\overline{M}$  points along the  $\overline{\Gamma}$ - $\overline{M}$  direction for all the surfaces. It is also visible near the  $\overline{M}$  points along the  $\overline{\Gamma}$ - $\overline{K}$ - $\overline{M}$  direction for the  $\sqrt{3} \times \sqrt{3}$ -Ga and  $\sqrt{3} \times \sqrt{3}$ -In surfaces.

It has been shown that the  $S_1$  band is extrinsic to the  $\sqrt{3} \times \sqrt{3}$ -M surfaces.<sup>1,3</sup> This extrinsic  $S_1$  band is indicated by open circles in Fig. 4 to distinguish it from the intrinsic SS bands. It is also found for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface that the  $S_1$  band is seen only at smaller polar angles ( $\leq 8^\circ$ ), and overlaps with the new band  $S'_1$  (intrinsic to the  $\sqrt{3} \times \sqrt{3}$ -Sn surface, as explained below) around the midpoints of the  $\overline{\Gamma}$ - $\overline{M}$  and  $\overline{\Gamma}$ - $\overline{K}$  directions of the  $\sqrt{3} \times \sqrt{3}$  SBZ as seen in Fig. 4(a).

In other studies, we examined the coverage dependence of the ARUPS spectra for the  $\sqrt{3} \times \sqrt{3}$ -Al,<sup>1</sup>-Ga,<sup>3</sup> and -In (Ref. 6) surfaces in order to characterize the  $S_1$  band. It was observed that the intensities of the  $S_1$  band for these three surfaces are rather high at lower coverage at small polar angles ( $\theta \lesssim 18^\circ$ ) but become weaker as  $\sqrt{3} \times \sqrt{3}$  domains spread wider with an increase in coverage. The



FIG. 2.  $E_b$  vs  $k_{\parallel}$  diagram for the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Sn surface (filled symbols) as compared with that for the Si(111)  $\sqrt{3} \times \sqrt{3}$ -Ga surface (Ref. 3) (open symbols) along  $\overline{\Gamma} - \overline{M} - \overline{\Gamma}$  direction. Circles are strong or sharp peaks and triangles are weak or broad structures in actual ARUPS spectra.

same sort of coverage dependence is observed for the  $S_1$ band of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface this time. However, for the  $S'_1$  band of the Sn overlayer, the intensity does not change very much with an increase in coverage and remains rather strong until the  $\sqrt{3} \times \sqrt{3}$  phase changes completely to the  $2\sqrt{3} \times 2\sqrt{3}$  phase which is the second phase at higher coverage. These facts give evidence for the intrinsic nature of the  $S'_1$  band and the extrinsic nature of the  $S_1$  band.

The  $S'_1$  band shows a sharp Fermi edge for the spectra at  $\theta = 13^\circ$  and  $16^\circ$  in Fig. 1. This is also the case for the spectra at  $8^\circ \lesssim \theta \lesssim 17^\circ$  along the  $\overline{\Gamma} \cdot \overline{M}$  direction and at  $7^\circ \lesssim \theta \lesssim 13^\circ$  along the  $\overline{\Gamma} \cdot \overline{K}$  direction as judged from Figs. 2 and 3. This means that the  $\sqrt{3} \times \sqrt{3}$ -Sn surface is metallic. Along the  $\overline{\Gamma} \cdot \overline{K}$  direction, the  $S'_1$  band shows clear dispersion, where the binding energy becomes largest at the  $\overline{K}$ points as seen in Fig. 3. Also in Fig. 2, the  $S'_1$  band can be observed again at  $\overline{M}$  point ( $\theta = 55^\circ$ ) of the second SBZ in contrast to the  $S_1$  band, which is not observable in the second SBZ. This is another reason why we distinguish the two and assign the  $S_1$  band as extrinsic and the  $S'_1$ band as intrinsic to the  $\sqrt{3} \times \sqrt{3}$  surface. This is because the extrinsic  $S_1$  band is expected to distribute all over the SBZ without dispersion, but it is visible only at small  $\theta$ 's.

The close similarity of the dispersions of the  $S_2$  and  $S_3$ bands between the  $\sqrt{3} \times \sqrt{3}$ -Sn and the  $\sqrt{3} \times \sqrt{3}$ -M surfaces suggests an equivalent surface atomic geometry for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface to those for the  $\sqrt{3} \times \sqrt{3}$ -M sur-



FIG. 3. As in Fig. 2 but along the  $\overline{\Gamma} \cdot \overline{K} \cdot \overline{M}$  direction.

faces. However, to proceed with this idea, we need to find the origin of the additional metallic  $S'_1$  band, which is the following.

The calculated SS dispersions of the  $\sqrt{3} \times \sqrt{3}$ -Al (Ref. 7) and  $\sqrt{3} \times \sqrt{3}$ -In (Refs. 4 and 5) surfaces are shown with solid lines in Figs. 4(b) and 4(d) together with our experimental results. These calculations have been carried out for both the  $T_4$  and  $H_3$  models by Northrup.  $H_3$  is a model in which there is  $\frac{1}{3}$  ML of adatoms in the threefold-hollow sites of Si(111) substrate and with no second layer of Si atoms underneath.  $T_4$  is a model in which  $\frac{1}{3}$  ML of adatoms are in the threefold-hollow sites above second-layer Si atoms. The calculated dispersions for the  $\sqrt{3} \times \sqrt{3}$ -Al and  $\sqrt{3} \times \sqrt{3}$ -In surfaces shown in Figs. 4(b) and 4(d) are of the  $T_4$  and  $H_3$  models, respectively. As seen in the figures, the calculated bands for both models are essentially similar to each other, but Northrup supported the  $T_4$  model from total energy calculation for both the  $\sqrt{3} \times \sqrt{3}$ -Al and  $\sqrt{3} \times \sqrt{3}$ -In surfaces. Comparing the experimental results with theoretical calculations in Fig. 4, the dispersions of  $S_2$  and  $S_3$  bands for the four surfaces qualitatively agree with the calculated ones.

The metallic  $S'_1$  band for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface seems to disperse in accordance with the unoccupied SS bands of the calculations. If the atomic geometry of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface is the  $T_4$  or  $H_3$  structure, it is reasonable to consider that the unoccupied band for the  $\sqrt{3} \times \sqrt{3}$  surface is par-



FIG. 4. (a) Summary of surface-state dispersions for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface. Filled and open circles are surface states intrinsic and extrinsic to the  $\sqrt{3} \times \sqrt{3}$  surface, respectively. (b) As in (a) but for the  $\sqrt{3} \times \sqrt{3}$ -Al surface (Ref. 1). Solid curves are theoretical calculation by Northrup (Ref. 7) for the  $T_4$  model. The value of  $E_F - E_V \approx 0.8$  eV is assumed as in Ref. 7. (c) As in (a) but for the  $\sqrt{3} \times \sqrt{3}$ -Ga surface (Ref. 3). (d) As in (a) but for the  $\sqrt{3} \times \sqrt{3}$ -Ga surface (Ref. 3). (d) As in (a) but for the  $\sqrt{3} \times \sqrt{3}$ -Gn surface (Ref. 6). Solid curves are theoretical calculation in Ref. 5 for the  $H_3$  model. The value of  $E_F - E_V \approx 0.5$  eV is assumed, as in Ref. 4.

tially filled, since the Sn atom is a column-IV element and has one more valence electron than the column-III atoms. This partially filled band would result in the metallic  $S'_1$ band of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface. Filling of an antibonding-type orbital would cause weakening of the bond. The  $\sqrt{3} \times \sqrt{3}$ -Sn surface is, however, very stable up to ~860 °C.<sup>10</sup> Therefore, the present model needs to be examined further by theory.

In conclusion, we have found that the  $\sqrt{3} \times \sqrt{3}$ -Sn surface has  $S_1$ ,  $S_2$ , and  $S_3$  SS bands similar to those of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces. In addition to these bands, the metallic and dispersive  $S'_1$  band is present for the  $\sqrt{3} \times \sqrt{3}$ -Sn surface. The  $S_2$ ,  $S_3$ , and  $S'_1$  bands are identified as intrinsic to the  $\sqrt{3} \times \sqrt{3}$  surface. Considering the increase in valency of the Sn atom as compared with the column-III atoms, it is tentatively proposed that the atomic geometry of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface is essentially the same as those of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces and that the  $S'_1$  band of the  $\sqrt{3} \times \sqrt{3}$ -Sn surface corresponds to the otherwise empty SS bands of the  $\sqrt{3} \times \sqrt{3}$ -M surfaces.

We thank Dr. S. Suzuki for his invaluable contribution in the construction of our apparatus.

- <sup>1</sup>T. Kinoshita, S. Kono, and T. Sagawa, Phys. Rev. B **32**, 2714 (1985).
- <sup>2</sup>R. I. G. Uhrberg, G. V. Hansson, J. M. Nicholls, P. E. S. Persson, and S. A. Flodström, Phys. Rev. B 31, 3805 (1985).
- <sup>3</sup>T. Kinoshita, S. Kono, and T. Sagawa, Solid State Commun. **56**, 681 (1985).
- <sup>4</sup>J. M. Nicholls, P. Mårtensson, G. V. Hansson, and J. E. Northrup, Phys. Rev. B 32, 1333 (1985).
- <sup>5</sup>G. V. Hansson, J. M. Nicholls, P. Mårtensson, and R. I. G. Uhrberg, Surf. Sci. 168, 105 (1986).
- <sup>6</sup>T. Kinoshita, S. Kono, and T. Sagawa (unpublished).
- <sup>7</sup>J. E. Northrup, Phys. Rev. Lett. **53**, 683 (1984).
- <sup>8</sup>H. Nagayoshi, in *Dynamical Processes and Ordering on Solid Surfaces*, edited by A. Yoshimori and M. Tsukada, Solid-State Sciences, Vol. 59 (Springer-Verlag, Berlin, 1985), p. 167.
- <sup>9</sup>P. J. Estrup and J. Morrison, Surf. Sci. 2, 465 (1964).
- <sup>10</sup>T. Ichikawa, Surf. Sci. 140, 37 (1984).
- <sup>11</sup>Y. Yabuuchi, Ph.D. thesis, Osaka University, Suita, Japan, 1984 (unpublished).