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We discuss a statistical model for a spatially inhomogeneous two-dimensional electron gas in a
quantizing magnetic field which simulates the effect of Poisson’s equation and some essential
properties of self-consistent screening. The model yields an effective background density of states
between Landau levels and may explain a number of recent experimental observations.

Simple theories of a two-dimensional electron gas (2
DEG) in a quantizing magnetic field predict for the densi-
ty of states (DOS) broadened Landau levels (LL’s) of an
elliptical or a Gaussian shape, depending on the approxi-
mation in which the interaction of the electrons with ran-
domly distributed scatterers is taken into account.!? For a
sufficiently strong magnetic field B, the LL’s are energeti-
cally well separated and the DOS is expected to be zero or
exponentially small in the gap between the LL’s. A num-
ber of recent experiments>~!2 produce, however, strong evi-
dence for an unexpectedly large DOS in the Landau gaps
for the 2 DEG in both GaAs-(GaAl)As heterostructures
and silicon metal-oxide-semiconductor structures. For the
evaluation of the thermally activated transport in the
quantum Hall regime®~’ the following model DOS has
been used:
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where only a fraction 1 —x of the total states is described
by a Gaussian-shaped Landau DOS. Here g, =hon

++) is the spin-degenerate Landau-level energy,
1=(hc/eB)"? the magnetic length, T the level broaden-
ing, and
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a normalized Gaussian distribution. A constant back-
ground is represented by a fraction x of the zero-field
DOS Do=m/nh>. Measurements of equilibrium proper-
ties such as magnetization,® specific heat,” or capaci-
tance!® seem to support this picture, although the physical
origin of the background DOS remains unclear.

On the other hand, the importance of inhomogeneities
has been emphasized,'""'? especially for an understanding
of the measured capacitance,*!! and a statistical model
with a Gaussian distribution of the electron density has
been proposed!!"!? in order to describe their effect. In the
present Communication we discuss several aspects of this
statistical inhomogeneity model and demonstrate that the
statistical averaging procedure can create an effective
background DOS between the Landau levels. Thus, this
model might provide a physical explanation for the ap-
parent background DOS observed in many experiments.
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A systematic model study of several quasiequilibrium
properties of the quasi-two-dimensional electron system in
GaAs-(AlGa)As heterostructures is left for a future publi-
cation. Here we consider a strictly two-dimensional model
with given electron density ng, i.e., given mean value 7; in
the statistical model.

The physical situation one has in mind is a heterostruc-
ture which contains subregions with different n; values of
the 2 DEG in the GaAs, for instance, owing to large-scale
fluctuations of the donor concentration in the (AlGa)As
barrier. These “subregions” are assumed so large that
they can be treated as homogeneous systems with well-
defined, constant thermodynamic variables. The statisti-
cal model considers the electron density n; as a random
variable and replaces the physical observables of the inho-
mogeneous system by the average values of the corre-
sponding observables over an ensemble of homogeneous
systems with the same DOS functions D(E) but with dif-
ferent densities. For the homogeneous systems one has the
usual functional relationship
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between density and electrochemical potential u, with
f(E)=lexp(E/kT)+1]"! the Fermi function. Thus, to-
gether with n;, u is also a random variable and for a given
probability distribution G(n;) of n; one can calculate the
corresponding distribution,

P() =GV () 4N @)
du

of u and vice versa.

In an inhomogeneous physical sample, the electrochemi-
cal potential has a constant value throughout the sample.
Fluctuations of u must then be interpreted as fluctuations
of the electrical subband energy along the interface owing
to local fluctuations of the depth of the electrostatic poten-
tial well confining the electrons to the interface. In a real
system, spatial fluctuations of the electrostatic potential
and those of the electron density must be consistent with
Poisson’s equation. This physical aspect is not included in
the statistical model, which considers an ensemble of in-
dependent homogeneous “subregions” rather than spatial
fluctuations within a single sample. For B =0, the two-
dimensional DOS is constant, D(E)=D6(E), Eq. (3)
reduces (for u>kT) to the linear relation n; =Dou, and
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both n; and u have the same probability distribution. In a
strong magnetic field, however, Eq. (3) is strongly non-
linear, and according to Eq. (4) only one of the random
variables, either n; or u, can be Gaussian distributed (cf.
Fig. 1). Consequently, we consider two different versions
of the Gaussian statistical model for B 0.

We define the “n;-Gaussian” model by the Gaussian
distribution G (n;7;,8n;) of the density with B-
independent fluctuation én;. As seen from Fig. 1, this
model leads to a pinning of the most probable values of u
to the LL’s, since the thermodynamical density of states
(TDOS) dN/d u is practically zero in a finite range of u
values between the LL’s. As a consequence, the mean
value (dN/d u) of the TDOS is finite (not exponentially
small) even if the mean value I (=(u)) of the chemical
potential is well between the LL’s. Thus, (dN/du) plotted
as a function of [, which are the quantities the statistical
model attributes to an inhomogeneous system, will show a
nonzero background between the LL’s. For a homogene-
ous system, on the other hand, one would plot AN/dpu vs u
and see no background.

In a real inhomogeneous sample we do not expect such a
pinning of u, which would imply large potential variations
of the order of Aw between adjacent subregions of the
sample pinned to different LL’s, whereas within each
subregion the variation of the potential must be much less
than <A o to keep the density fluctuation small. Such a
behavior of the electrostatic potential would result in a
large curvature at the boundaries of the subregions and be
in conflict with Poisson’s equation.

As an alternative, we consider the “u-Gaussian” model
with a Gaussian distribution G (u;@,6u) of 1 and assume
again that dng, not 8u, is independent of B. If we would
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FIG. 1. The electron density n; as a function of chemical po-
tential u in the region of the lowest two Landau levels is shown
as dashed line. The solid (dash-dotted) lines indicate a Gaussian
distribution of n; () and the corresponding distribution of u(n;).
The parameters used are m =0.067mo, B=5 T, T =1.64 K,
I =0.3%+/5 meV, én,/ii; =0.05, and Z=10.7 meV. The normal-
ization constants are no =~ and po =+
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assume a small Sy independent of B and & between two
LL’s, we would obtain én, =0 (cf. Fig. 1), that means con-
stant n; in an inhomogeneous sample, and no local screen-
ing of the fluctuating donor charges. This again conflicts
with Poisson’s equation which then requires large éu in
contradiction to the assumption. Poisson’s equation re-
quires large but smooth variations of the electrostatic po-
tential, nonzero én; and, for & in a Landau gap, a consid-
erable probability for n; being pinned to an even integer
value of the filling factor v=2xI%n,. These requirements
are simulated by the u-Gaussian model which for a Gauss-
ian DOS D(E;0) [cf. Eq. (1)] yields

=N = dEDGEE-D, )

where Dg(E) is given by D(E;0) with I being replaced
by
Terr=[2+(8p)%1'2. ©6)

One also finds (dN/d u) =0n,/d for the average value of
the TDOS.

Qualitatively, the physical content of the u-Gaussian
model is easily seen within the simple approximation

ong = <"‘1‘1\—/'>5[1 , )
du
which leads to an effective DOS with a broadening param-
eter

Tese =2+ (8n,/(dN/d u))*1'2. ®)

Thus, the linewidth of the effective DOS depends on the
value of the TDOS at the chemical potential 7. Figure 2
shows a typical result obtained from the self-consistent
solution of Egs. (5), (6), and (8). The effective DOS
shows narrow, well-separated peaks if 7 is in the center of
a level but broad overlapping peaks for 77 in a Landau gap.
The resulting TDOS as function of i exhibits an apparent
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FIG. 2. Average TDOS (dN/d u) vs i (solid line) and D¢ vs
E for f in the center of the lowest Landau level (dashed line),
and of the lowest Landau gap (dash-dotted line), calculated us-
ing Eq. (7); parameters as in Fig. 1.
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background.

The simple approximation of Eq. (7) nicely demon-
strates that the u-Gaussian model for inhomogeneities
leads to a self-consistency relation for the average TDOS
and the linewidth of the effective DOS. This aspect is
similar to recent self-consistent calculations of the level
broadening due to scattering of the electrons by charged
impurities.!3-!, The screening of the impurity potentials,
which determines the level broadening and therefore the
DOS, depends itself on the DOS at the Fermi level. The
calculated level broadening is an oscillating function of the
Fermi energy'>!* and becomes large if the Fermi energy is
well between two LL’s. Values of the level broadening
which correspond to an overlap of adjacent LL’s have even
been reported.!*!> This indicates a finite DOS in the Lan-
dau gap. The calculations are, however, based on an over-
simplified approximation which yields an elliptical line
shape for the broadened LL’s and, in the case of overlap,
unrealistic sharp structures but no flat regions of the DOS
between adjacent levels.?

For an accurate numerical evaluation of the u-Gaussian
model, the simple approximation, Eq. (7), is not appropri-
ate. For instance, it does not take into account that §u has
an upper bound, say suShw, and thus overestimates the
value of the apparent background DOS. In Fig. 3 we com-
pare the calculated TDOS for this simple approximation
with that for the u-Gaussian model and that for the n;-
Gaussian model.

Figure 3 demonstrates that both versions of the statisti-
cal model for inhomogeneities, which take the density fluc-
tuation dn, independent of the magnetic field and assume
either n; or u to be Gaussian distributed, lead to an ap-
parent background in the average TDOS as function of the
chemical potential 7. The magnitude of the calculated
background DOS and also its dependence on the input
linewidth T [cf. Eq. (1), is different for the two distribu-
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FIG. 3. Average TDOS as a function of average chemical po-
tential for the n,-Gaussian model (dash dotted), for the u-
Gaussian model (solid curve), and for the simple approximation
Eq. (7) (dashed curve), respectively. Parameters as in Fig. 1.

RAPID COMMUNICATIONS

3001

DOS (10 mevem?)

bng/ 7, (%)

FIG. 4. Effective background TDOS at filling factor v=2 as
a function of the percentage fluctuation of n, for different damp-
ing T=y+/5 meV with y=0.2, 0.3, and 0.5 as indicated in the
figure. The parameters m, B, and T are the same as in Fig. 1.

tions, as shown in Fig. 4. This can be understood from
Fig. 1. For f in a Landau gap, the y-Gaussian model em-
phasizes the tail regions of the LL’s, where the DOS is
small and an increasing function of I. The n;-Gaussian
model, on the other hand, collects contributions from the
interior of the Landau peaks, where the DOS is large and
increases with decreasing I'.

We have checked that typical values of the background
DOS determined from experiments can be reproduced by
both models with reasonable assumptions for én;. A sys-
tematic comparison with the different experimental obser-
vations3~!! must, however, be left for a detailed future in-
vestigation. It is clear that both versions of the statistical
model are simplified limiting cases which cannot fully ac-
count for the effects of spatial inhomogeneity in a real
sample, where the distribution and the fluctuation of n;
and g (ie., the electrostatic potential) are related by
Poisson’s equation and depend on the magnetic field.

As we discussed, the n,-Gaussian model which has been
applied previously®!""12 is in conflict with the requirements
of Poisson’s equation. Moreover, activation energies much
larger than the level width I', as are observed in experi-
ments,*~® are hard to understand within this model, since
pinning of the Fermi level to the LL’s means that in the
“subregions” thermally activated processes take place
within a LL. These problems do not occur with the u-
Gaussian model which yields an oscillating level broaden-
ing similar to recent self-consistent screening ap-
proaches,!3-!3 but in contrast to the approximations used
in the latter, also a reasonable, flat background DOS be-
tween adjacent LL’s. Therefore, there is some hope that
this relatively simple pu-Gaussian statistical model, which
to the best of our knowledge has not been considered be-
fore in the literature, may describe some aspects of real in-
homogeneous samples reasonably well.

Stimulating discussions with K. v. Klitzing are grateful-
ly acknowledged.
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