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The effective dc conductance of an ultrasmall tunnel junction is calculated from the
functional-integral description beyond the weak-coupling limit by employing the self-consistent
harmonic approximation. %ith increase in the normal conductance R~, the effective conduc-
tance exhibits a crossover from the weak-coupling regime, dominated by thermal activation over

the Coulomb gap to the Ohmic behavior in the strong-coupling limit. As the temperature and

capacitance approach zero, the results indicate a possibility of a precipitous transition for R& of
the order of h/e'.

Recently, several authors' have pointed out that the ef-
fective conductance of a normal tunnel junction with low
capacitance becomes temperature and frequency depen-
dent as a result of quantum voltage fluctuations associated
with the electron transfer. Previous calculations of the
conductance' have been limited to weakly damped junc-
tions, for which the nominal junction resistance RN (de-
fined by the Ohmic response of a large-capacitance junc-
tion) must satisfy the inequality

RN ~ e
Ro kttTC

'

where T is the temperature, C is the capacitance of the
junction, and Ro It/e 4.11 kA. For weakly damped
junctions, the calculations' predict an activation-type T
dependence of the dc conductance:

l 2

Y(co 0) exp— (2)
Rtv 2ktt TC,

Also, the frequency dependence of Re Y(co) is found to
exhibit, at low temperatures, a threshold near the charging
energy 6co=e /2C, indicating a photon-assisted tunneling.

The present work attempts to answer the following ques-
tion: How are the above weak-coupling effects modified as
one decreases Rtv so that Eq. (I) is satisfied no more'?
Specifically, we calculate Y(co 0) for a wide range of the
parameters g trio/2Rtv, and a e /2z kttTC, well out-
side the weak-coupling regime. In a strongly damped
junction, the charging energy rapidly decays during the
electron transfer as a result of the capacitor discharge.
Consequently, one expects the dc conductance to depend
on g faster than indicated by Eq. (2). This nonlinear
dependence of Y(to 0) upon g is borne out by the present
calculations. In particular, on increasing the parameter a,
the conductance exhibits an interesting trend towards a

precipitous onset at a certain critical value of g, suggestive
of a cooperative breakdown of the Coulomb barrier in
electron tunneling.

Our calculations start from the Kubo formula for the
conductance

Re Y(to) —Im
1 ~p

lim d re' "'(T,I(r)I(0))
I N„O)+ I b

(3)
where ro„2tt/Pn is the Matsubara frequency and

p (ktt T) '. The current-current correlation function is
calculated from the generating functional2

~p
Z[g] -tr T,exp — d r[H —Ig(r)], (4)

where H is the Hamiltonian of the junction, including the
charging energy and g(r) is an external potential. Follow-
ing Ref. 2, the quantity Z[g] can be expressed as a path
integral over the phase variable 8(r), which is related to
the potential difference V across the junction by 8 eV/A.
Then the current-current correlation can be expressed also
as a path integral

&T,I(r)I(0))- Dee ""a(.)cos[e(r) —e(0)],
Z[0] ~

where 3[8] is the effective action of the junction of the
form

ca +P pP
~ [e]- d r 8'(r)+2 d r d r'o(r r')—

e2 JO

„., 8(r) —8(r')x sin
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The function a(t) is given by

(nk, T/S)'
sin'(eke T z/h )

According to Eqs. (3) and (S), the calculation of the con-
ductance involves the phase correlator, defined as a non-

Gaussian path integral

In what follows, we employ the self-consistent harmonic
approximation (SCHA) to evaluate I (t). This approxi-
mation can be derived from the variational principle

F ~F,+ Dee "'"(~—~&)-F, ,
PZ u

~here

r(t) - Dee ""'cos[8(t)—8(0)] .
1

z[o]-
Z e ' DHe0

The tri~l action An[8] is chosen in the form

(io)

cr
Ho[8] d te (t)+ —,

' dz d z'a(t —t') [8(t')]2 . (11)
2e 40 up

The function K(t —t') plays a role of the variational parameter which is determined from Eq. (9) by requiring that
bF, 0 when K K+ bK. This yields a self-consistent equation for K:

K'(t —t') exp[ ——,
' D(t —t')],

where

D(t —t') - Dee """le(t)—e(t')]' .
Z0

According to Eq. (8), the phase correlator I (t), evaluated within the SCHA, is given by the Gaussian path integral

[I (t)]scHA-I o(z) - Dee "'' cos[8(z) —8(0)]-K(t) .
Zp

The explicit solution of Eqs. (12) and (13) is done by expanding 8(t) into a Fourier series

(12)

(13)

e(z)- g e„e '""'

Then the path integral (13) reduces to a multiple Gaussian integration over the coefficients 8„. An integral equation for
I o(z) is obtained in the form

—e p + 1 cos(ro„t)
I 0(zj exp

-l n +(e p/2lr C))t dta(z)la(z)[1 —cos(N„z)],

Introducing the dimensionless parameters a e p/2n C and g llRo/2RA, changing the variable t to x (2x/p) t, and
using Eq. (7) for a(z) we obtain from Eq. (16)

1 o(x) exp —a g 1 cos(nx—)

r ( )
1 cos(nx)

d
]. cosx

(17)

This equation has been solved numerically for I o(x) by
the method of successive approximations. This method ex-
hibits, in the present case, a good convergence, allowing us
to limit the number of iterations to 10. On the other hand,
the Fourier series in the exponent of Eq. (17) shows a slow
convergence, especially when the parameters a and g are
large. Hence, the number of terms in the series was taken
n 10, in which case the overall accuracy of I o(x) was of
the order of 1%.

In order to test whether some sort of critica1 behavior
takes place, as a result of the non-Gaussian nature of the
effective action 2[8], we calculate the effective conduc-
tance at ro 0, which according to Eqs. (3)-(14) is given
by

pK
YscHA(ro -0)- dx I o(x),

XR~ 40

the dimensionless conductance YscHA defined as

mRo
YscHA(ro 0) g dx ro(x)

CI~ [e]-,„dze'(z)2e' ~0
P l'P

+—,' d z d z'a(z —z') [8(z) —8(t') ] . (20)40 40

as a function of the coupling constant g for three values of
the parameter a.

For the sake of comparison, we also show, as dashed
curves, the conductance YH calculated in the harmonic
approximation, which is based on the Gaussian choice for
the action (6):

where I o(x) is the solution of Eq. (17). In Fig. 1, we plot YH is then given by Eqs. (18) and (19), with I o(z) re-
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FIG. 1. Dimensionless dc conductance Yof a tunnel junction
plotted as a function of the coupling constant g sit/2e2Rw,
where R~ is the nominal resistance of the junction. The parame-
ter a e2/2tt ksTC, where C is the capacitance. The full lines
represent YscHA given by Eq. (19); the dashed lines give the con-
ductance YH, based on the harmonic approximation of Eq. (20).

placed by

We see that the values of YscHA are always smaller
than those for Ytt, indicating that the harmonic approxi-
mation overestimates the role of dissipation in the suppres-
sion of the phase fluctuations. The difference YH—YscHA becomes more pronounced as the parameter a
increases, showing the increasing role of the non-Gaussian
phase fluctuations. We note that the "weak-coupling"
conductance Y„„calculated from Eq. (2), yields straight
lines (not shown in Fig. 1) with the slopes 0.8, 0.06, and
0.006 for a 1, 10, and 100, respectively. For very large
values of g, both the YH and YscHA curves tend to exhibit,
for all values of a, the same asymptotic "strong-coupling"

slope, equal to tr. The most interesting feature of the
SCHA calculations is the existence of the crossover be-
tween these weak-coupling and the strong-coupling re-
gimes, which takes place, for large values of a, over a nar-
row region near some critical value of the coupling con-
stant g, . The values of g, increase with the parameter a,
but tend to saturate towards g, =3. This indicates that,
for large values of a, the weak-coupling approximation
breaks down when g ~ 3, which is consistent with the cri-
terion R~/Ro&&1. The latter weak-coupling condition can
be also written as R~C&& 6/E„where E, is the charging
energy (Coulomb gap). This implies that, in a weakly
coupled junction, the time constant for the capacitor
discharge is large enough so as not to smear the Coulomb
ga,p.

Extrapolating the SCHA results to a ~, one expects
that in this limit the YscHA curve develops a precipitous
onset, marking a transition from an insulating to conduct-
ing regime at some critical value of g, . In this context, it is
useful to remark that as P 1/kttT goes to infinity, the ac-
tion (6) is equivalent to a one-dimensional xy model with
long-range interactions along the r axis given by the kernel
a(r) ce r z. According to the renormalization-group
analysis of Fisher, Ma, and Nickels the interaction decay-
ing as r 2 has a borderline range for the possibility of hav-
ing a phase transition in a one-dimensional system. Al-
though true phase transition with broken symmetry
((e)se0) is not expected in the problem of a tunnel junc-
tion, the present calculations indicate the possibility of a
critical behavior in the phase correlation function.

It should be interesting to apply the functional integra-
tion method to granular metals consisting of arrays of ul-
trasmall tunnel junctions. The crossover from activated
to Ohmic conduction found in the present work for a single
junction may also contribute to the metal-insulator transi-
tion in granular films. 7
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