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Critical behavior of the two-dimensional XFmodel: A Monte Carlo simulation
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We have performed Monte Carlo (MC) simulations on systems of L xL classical planar unit spins
on square lattices, for L =6, 1S, 30, 60, 90, and 200. The interaction between any two given spins

Sl and Sz is given by —JSl.Sz if Sl and Sz are nearest neighbors and vanishes otherwise. In or-

der to make sure that our results correspond to equilibrium values, we have looked into the time-

dependent properties of this model in the vicinity of critical temperature (T,). We have found that
the diffusion constant for vortex motion is given at T, by 8=0.2 (in units of nearest-neighbor dis-

tance squared per MC step per spin). The values of the relaxation times follow from the value of D.
Our computer running times were typically 10' MC steps per spin, larger than any relaxation time
for the system sizes we deal with. We use a procedure based on finite-size scaling to establish the
value of T, =0.89J/k~, the value of v=0. 5+0.1, and the value of g, =0.24+0.03, in agreement
with the values predicted by the Kosterlitz-Thouless theory.

I. INTRODUCTION

Kosterlitz and Thouless' (KT) developed some years
ago the currently accepted theory of the critical behavior
of the XY model in two dimensions (2D). Additional
theoretical work published since then supports this
theory. However there are very few experimental or
computational verifications of the value of v, the index
governing the critical divergence of the correlation length
(g). Monte Carlo (MC) simulations have produced
values close to v=0.7, but with errors that are overly
large. Other calculations oftens give results somewhat
different from the value v=0.5 predicted by KT.

Experimental work has been reported on the critical
behavior of He" films, superconducting films and two
dimensional arrays of superconducting grains all closely
related to the XY model in 2D. The critical value,
ri( T, ) = —,', predicted by KT (ri is defined by (SoS„)-r
below T, ) has been approximately confirmed. The value
of v predicted by KT also fits experimental results well
but with errors in the value of v about 0.1, originated in
uncertainties in the value of T, .

We have performed fairly long MC calculations (typi-
cally, 10 MC steps per spin) on systems of I.&(L spins
for I.=6, 15, 30, 60, 90, and 200. We are interested in the
quantity,

where 8; is a classical unit spin at the ith site and the sum
is over all i and j sites. %e use the relation

valid for T&T„ to obtain ri(T) from plots of ln(P)'
versus ln( L }. We have determined: (a) the value
ri(T, ) =0.24+0.03 in agreement with ri(T, ) = —,, predicted
by Kosterlitz and Thouless, and (b) the value of
T, =(0.89+0.02) J/kii, in close agreement with the value
of T, obtained previously ' in MC simulations.

Kosterlitz and Thouless derived for the correlation
length (g) the expression

g( T) =goexp[b/(T T, )"], — (1.3)

v=0. 5+0. 1 . (1.5)

The method we use to arrive at this result accounts for
finite-size effects and should be quite useful to analyze
critical behavior data obtained in experiments on granular
superconductors.

We have taken care to make our computer running
times sufficiently long to be able to obtain equilbrium re-
sults. We have computed equilibrium relaxation times (~)
for the time dependent correlation (M M(t}), where M is
the total magnetization of the system. We have also com-
puted the diffusion constant (D) for vortex motion for

where go and b are nonuniversal constants and v is the
critical index which interests us here. To determine v, we
use a procedure based on the finite-size scaling"' rela-
tion

A -I. "I'(g/L ), (1.4)

where g=g/go, which serves to define the scaling func-
tion F.

%e are able to establish the result
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T=T, . D and r are related, for the time (~„}it takes one
vortex to diffuse across the length (L) of the system is
given by

(1.6)

and since there is one vortex in the system at T=T„' it
foBows that r„ is about the same as the time it takes M to
relax. Incidently, we have obtained D 0.2 at T= T, .
We have also checked that our results are independent of
the initial state.

The plan of the paper is as follows. In Six:. II we first
compute relaxation times for M and the diffusion con-
stant for vortices near T, . In order to obtain equilibrium
results our running times are longer than the correspond-
ing values of v. We then describe how we determine rl( T)
from our MC generated data. We next describe three dif-
ferent procedures we follow to determine the value v=0.5.
Two of these procedures are based on finite-size scaling.
Only one of them yields an error in v which is (0.1} not
overly large. In Sec. III we discuss our results and argue
that r1, =0.24+0.03. All values of the temperature are
given in units of J!ks.

II. RESULTS

We have used the standard Metropolis Monte Carlo al-
gorithm' on systems of L)&L classical planar spins on
square lattices L =6, 15, 30, 60, 90, and 200. Usually, the
first MC run for each system was performed at some high
temperature well above T, . The directions of all spins
were initially random for the first run. The state obtained
at the end of each run was used as the initial state of the
following run at the next lower temperature. For each
run, we first allowed the system to equilibrate for a time
(in units of MC steps per spin) comparable to the relaxa-
tion time (see Sec. IIA below for its definition and calcu-
lation) followed by a longer time during which equilibri-
um quantities were computed. Typically, 105 MC steps
per spin were taken for T ~ 1, which is about 1.1T,. For
T & 1 our runs were shorter, but none under 4&(10~ MC
steps per spin.

In the following subsection we examine the relaxation
behavior of the system in order to show that our runs are
sufficiently long to yield equilibrium values. '~

(2.4}

which for our most severe case (L=200) yields v=SX10
MC steps per spin.

This equation is expected on the basis of the following
simple ~picture at T„ there is typically only one vortex
present 3 in the system and it diffuses across the system in
the time v.„given by

L =Dc„, (2.5)

where D is a diffusion constant. As the vortex diffuses,I rotates and consequently ~„-~. This argument sup-
ports Eq. (2A) and leads one to expect D-0.5 at T, .

We have checked the argument above by computing D
directly at T„

D( T, )=0.2, (2.6)

in units of (nearest-neighbor distance)2/MC step per
spin. 's Thus, disregarding factors of 2 or 3, we see that
vortex motion does indeed account for the time relaxation
of M and gives us confidence in the validity of Eqs. (2.1)
and (2.3).

To compute the value of D, we set up a vortex at some
point in the system (x=0, y =0, by definition) at some
time (t =0) after the system has reached equilibrium. I.et
the position of the vortex, n MC steps after t =0 be r(t„),
then

1D = g[r(r„—)j'/t„~ a=i
(2.7}

I ' I

in the m~ 0o limit yields the correct value of D for an
infinite size system. We have arrived at the value of D
quoted for T, using the above expression for m —10' and
L=15, 30, and 60.

Finally, many runs were repeated starting from dif-
ferent initial states: either all spins parallel, or all spins

A. Relaxation times

A relaxation time (r) can be defined through the corre-
lation function,

(2.2)

P'(r)=(M M(r)), (2.1)

which we obtain using

1(M M(t})=—g M(r )M(t +r)
P7l

where M =(QS,",QS~) and t„t sd anfosr the time corre-

sponding to the nth MC step per spin after equilibrium
has been achieved. We define, '

~=f .X(t)dk/P'(0) . (2.3)

At T=0.89 (i.e., T=T,), the values we have obtained
obey the relation

200
II

'II I I a I a I a I a

O. O Q.5 i.O 1.5 g.o 2.5x 104

FIG. 1. Quantity P', defined in Eq. (1.1) is shown for a sys-
tem of 60' 60 spins, at T=0.92, versus the time (in units of MC
steps per spin) over which the average indicated in Eq. (1.1) has
been taken, starting from two different initial conditions: (i} all
spins parallel (Q)}, and (ii} all spins initially at random (QQ. Note
that, as expected, both curves approach each other for t &r;
~=7x 10' in this case (L =60), according to Eq. (2.4).
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FIG. 2. Values of q( T) obtained from curves of in{A') versus
ln(L) are sho~n. The straight line represents the spin-wave
contribution (T/2m) to g.

pointing in random directions. One such set of runs is
shown in Fig. 1 for 1=60 and T=0.92. The results ob-
tained were, within statistical errors, independent of initial
conditions for running times considerably longer than r in
every case checked. The equilibrium values obtained for
P' and the mean energy per spin (in units of J) are shown
in Tables I and II, respo:tively.

FIG. 3. q(T) as given by Eq. (2,8) is plotted versus T for
various values of L: 8 is for L=6, Q) is for L=15, h, is for
L=30, + is for L=60, )( is for L=90, and is for L=200.
Note that there is considerable spread of the data points for
T &0.9, indicating that T, =0.9.

B. Value of g

To obtain rl for T & T„we compute P', defined by Eq.
(1.1). Now, since A-l. ' " for T & T„lptosof in&
versus lnL yield 2 —rI for each value of T. The values of
rI obtained are shown in Fig. 2. We note that the value
predicted by Kosterlitz and Thouless, rl(r, )= —,', occurs

TABLE I. Equilibrium values of P', defined in Eq. (1.1), at different temperatures (in units of J/ks)
for systems of L g L spins.

0.80
0.83
0.85
0.87
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30

21.7
21.2
20.8
20.2
19.4
19.1
18.3
17.5
17.2
16.6
15.8
15.3
14.6
14.2
13.5
13.9
12.7
12.2
11.7
11.0
10.6
10.2
9.86
9.31
9.1

115
110
106
102
94.9
91.1
86.8
79.9
74.5
68.9
65.8
59.7
52.5
47.5
44.6
40.7
35.8
32.5
27.8
25.2
23.5
20.6
18.8
17.25
15.9

409
386
370
357
317
300
289
263
221
187
182
142
118
106
80.8
64.5
53.9
47.6
42.0
36.0
29.3
25.7
23.4
20.4
18.7

1490
1420
1340
1180
1070
1060
941
745
663
518
350
246
197
165
94 4
80.1

73.2
54.9
47.1

37.4
34.7
26.5
27.3
21.4

2910
2820
2910
2410
2060
1950
1840
1560
1020
836
604
327
251
166
114
90.0
71.0
62.0
43.0

8560

5970
4700
2270
1660
708
387
220
169
95
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TABLE II. Equilibrium values of the mean energy per spin (in units of 8 at different temperatures
(in units of Jjk~) for systems of L XL spins.

L= 15
Mean energy per spin
L =30 L=60

0.80
0.83
0.85
0.87
0.90
0.92
0.94
0.96
0.98
1.00
1.02
1.04
1.06
1.08
1.10
1.12
1.14
1.16
1.18
1.20
1.22
1.24
1.26
1.28
1.30

—1.3572
—1.3322
—1.3164
—1.2966
—1,2686
—1.2495
-1.2298
—1.2116
—1.1695
—1 ~ 1490
—1.127
—1.1076
—1.090
—1.068
—1.050
—1.029
—1.008
—0.9874
—0.9684
—0.9510
—0.9289
—0.9122
—0.8958
—0.8760
—0.8596

—1.4526
—1.4245
—1.4076
—1.3888
—1.3594
—1.3375
—1.3166
—1.2894
-1.2701
—1.2441
—1.2210
—1.1960
—1.1702
—1.1406
—1.1200
—1.0910
—1.0660
—1.0450
—1.0090
—0.9937
—0.9703
—0.9502
—0.9303
—0.9134
—0.8953

—1.4883
—1.4624
—1.4428
—1.4270
—1.3953
—1.3755
—1.3541
—1.3285
—1.3042
—1.2769
—1.2546
—1.2250
—1.1986
—1.1705
—1.1405
—1.1153
—1.0903
—1.0675
—1.0432
—1.0151
—0.9936
—0.9725
—0.9523
—0.9338
—0.9143

—1.5076
—1.4826
—1.4658
—1.4459
—1.4160
—1.3975
—1.3743
—1.3490
—1.3252
—1.2985
—1.2697
—1.2401
—1.2139
—1.1914
—1.1579
—1.1315
—1.1037
—1.0780
—1.0552
—1.0338
—1.0109
—0.9890
—0.9675
—0.9476

—1.5141
—1.4894
—1.4715
—1.453
—1.428
—1.4030
—1.3806
—1.3428
—1.3302
—1.3064
—1.2785
—1.2472
—1.2197
—1.1918
—1.1646

—1.1076
—1.0859
—1.0611

—1.4315

—1.38S7
—1.3658
—1.3387
—1.3119
—1.2836
—1.2553
—1.2261
—1.1978
-1.1698

ln(c)= —0.20 . (2.9)

Figure 3 has two virtues: (i} one can see the values of the
statistical errors in rl and (ii) it shows clearly that for
T & 0.9, Eq. (2.8) fails, as it must for T & T„whence one
gets an independent estimate of the value of T„and of
g(T, ).

We read from Fig. 3,
Tc =0.89+0.02 (2.10)

g(T, )=0.24+0.3 . (2.11)

%'e shall return to these numbers in Sec. III. %e shall ar-
rive there at the value quoted here for T, via an indepen-
dent route.

C. Value of v

We next describe three different procedures we have
followed to arrive at a value of v. To obtain v, one might
try plotting In(P'} versus (T T, ) "for various va—lues of

at T=0.89, which agrees with previously computed '
values for T, . It is helpful to examine the data in the fol-
lowing slightly different way. We use

A=cL' "
valid for T & T„and plot [ln(P') —ln(c)]/lnL versus T,
to obtain 2—iI. All the data points fall, within statistical
errors, into a universal curve (see Fig. 3) at low tempera-
tures for

T, =0.89+0.1(0.5 —v) . (2.12)

Since the error in T, is 0.02, we allow v to vary only by
+0.2. In addition, variations in the value of v smaller
than about 0.2, keeping T, fixed, do not seriously affect
the fits. This method yields v=0.5+0.3. The error,
which is unfortunately large, accounts for both incoherent

T, and v. Nate that for g «L, ln(P') -1n(g), whence, us-
ing Eq. (1.3), it follaws that In(P'}-(T—T, ) ". Unfor-
tunately, fulfillment of g«L requires that the most
relevant data, that in the neighborhood of T„be neglect-
ed, unless one deals with macroscopic systems. Good ex-
perimental data fits have been obtained in the past using
such procedures with experimentally determined values of
T, and v=0.5. Figure 4 shows such a plot, using our
data of Table I, for T, =0.89 and v=0.5. Size effe:ts are
obvious. Gur results seem to be size independent for
L =200 and ( T—T, ) "&3, which corresponds to
(T/T, )&1.1. The other end point of the data corre-
sponds to ( T/T, )=1.4. This is a small temperature range
[(T T, )

" only cha—nges by a factor of 2 here, but note
that it does not change by more than a factor of 3 or 4 in
data analysis of experimental work], and furthermore it
only comes within 10% of T, .

The data points in Fig. 4, which do not suffer from
finite-size effects, all fall into the same straight line, as
they should. The same data points all fall into one
straight line if T, and v are changed as long as the follow-
ing equation is satisfied:
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2.5
if (T-To)

FIG. 4. Quantity ln(P'} versus (T T, } " i—s shown for
v=0.5 and T, =0.89 for systems of L=200 (), L=90 {X),
L=60 (+ ), L=30 (4, ), and L=15 {Q). Size dependence is ob-
vious in these data points.

I j I j I I I i I l I I i s I I I ~ I-2
0 i 2

~ogio( g/L)

FIG. 5. Logarithm (base 10) of the scaling function F, de-
fined in Eq. (1.4) is plotted versus logio(g/L) for v=0.5,
T, =0.89, and b=1.7, for systems of L=6 (E), L=15 (6),
L=30 (g), L=60 (+ ), L=90 (X), and L=200 (4). The solid
line is a cubic spline fit to the L =200 data.

sources.
The main weakness of the above procedure is that it

does not allow us to use the data produced by our MC
simulations in the most relevant region: the close neigh-
borhood of T, . We now turn to finite-size scaling. "

In the procedure that follows, we assume the functional
dependence g(T), Eq. (1.3), predicted by KT, and a set of
values for b, T, and v. Now, it follows from Eq. (1.4)
that P'/Li & is a universal function of g/L. If a set of
values for b, T and v, does not yield a universal function
F((/L ) for S/L ", those values are ruled out. The crit-
ical value r), = —, is used. Figure 5 exhibits logic(F) versus
1 ogi(og /L) for T, =0.89, b=1.70, and v=0.5. Indeed, F
seems to be a good universal function, within statistical
errors, of g!L. Note that g/L covers the range 10 ' to
10 . Similarly good fits can be obtained if v and T, fulfill
Eq. (2.12).

For instance, Fig. 6 exhibits the results obtained for
v=0.2 and T, =0.92 if we set b=5 7, and Fig. 7. corre-
sponds to v=0.9, T, =0.85 and b=0.7. Thus, our error
in T, (0.02) again, produces an error of about 0.2 in v. In
addition, given a value of T„we have found that varia-
tions of v within 0.1 of its best value are acceptable.
These two incoherent sources of error in v lead to
hv=0. 2. We are therefore led by this method to the value
v=0.5+0.2.

The results shown in Fig. 8 follow from assuming the
non-KT form

g=(T —T, )

«r T, =0.93 and v=1.6. Looking up this value of T, in
Fig. 2 yields rI, =0.29. The value of the critical exponent
y =2.7 for the divergence of P', follows from the scaling
relation y=v(2 —rl) for d =2. This value of y is rather
close to the values obtained by Rogiers et aI. ,

' but much

bigger than the value y=1.4 computed by Tobochnick
and Chester. The fact that the method just described
cannot discriminate between the KT prediction for g'(T)
and the algebraic form shown in Eq. (2.13) is a shortcom-
ing of this method.

The weakness of the above procedure is that it has too
many parameters (b and T, ) in addition to v, and we do
not know T, very accurately. %e next use a procedure
based on finite-size scaling which does not depend on the
value of T„ indeed, v is the only fitting parameter.

I x s s
~

~ s s ~
~

a I e s I ~ e I s0
8

4—-1O
Q30

~ a a s l a s s a I s s a a I a a I a

2 3
logiot f/L)

FIG. 6. Logarithm (base 10) of the scaling function F, de-
fined in Eq. (1.4} is plotted versus logio(g/L} for v=0.2,
T, =0.92, and b=5.7, for systems of L=6 (6), L=15 (Q),
L =30 (h, ), L=60 (+ ), L=90 (g), and L=200 (). The solid
line is a cubic spline fit to the L=200 data.
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-2 s j s s I s s s s t s s s s I ~ s s s-j5 W5 05 15 25
log&&( f/L)

Consider the quantity~

a in(P')
T (2.14)

Substitution of Eq. (1.4) yields

dg
1 (L) t)ln(E) Bln(g/L) (215)

a in(PL)
Since good universal functions were obtained above using

FIG. 7. Logarithm (base 10) of the scaling function E, de-
fined in Eq. (1.4) is plotted versus log~o( j/L) for v=0.9,
T, =0.85, and b=0.70. tg is for L=6, Q) isfor L=15, 4 isfor
L=30, + is for L=60, &( is for L=90, and 4 is for L=200.
The solid line is a cubic spline fit to the L=200 data points.

v 8 ln(F)

aln(PL)
(2.17)

which using Eq. (2.13) again, can be written as follows:

A =I, ""Z,(g/L ), (2.18)

where E2 is some function. If follows then that the max-
imum value of A versus T corresponds to g/L =const, the
maximum value (A~) of A(T) for each value of L must
fulfill

ln(A )-—ln(L) .1
(2.19)

Figure 9 exhibits A versus T for L =6, 15, 30, 60, 90, and
200. Figure 10 exhibits ln(A ) versus ln(L). The points
shown do not fall on a straight line as they should if Eq.
(2.19) were fulfilled.

On the other hand, consider the form of g(T) predicted
by KT, then, Eq. (2.14) becomes,

8 ln(E) vb
(2.20)

ain(PL) (T T, )"+'—
Substitution of (1.3) for g(T) yields

A-Fs( f/L )[ln(g)]"+' "',
where

(2.21)

rl(T)=rl, for T& T„we neglect the first term above.
Then,

8 ln(E) 8 1 n(g/L )

8 In(g/L )

Consider now the non-KT form for g(T) of Eq. (2.13),
then

~~' 8
30

~ s l s s I s I s s s ~ I s s s ~

5 -05 05 i 5 25
log io(f /L )

FIG. 8. Data points that follow from assuming the algebraic
temperature dependence of f(T) expressed in Eq. (2.13); 8 is for
L=6, Q is for L=15, h, is for L=30, + is for L=60, X is
for L=90, and ~ is for L=200. The solid line is a cubic spline
fit to the L=200 data points.

0 I I I I

0.8 0.9 1.0 i. 1 i.2 1.3 1.0
T

FIG. 9. Derivatives of cubic spline fits to ln(A) versus T
yield the curves shown for A= —Bln&/BT for systems of
L=6, 15, 30, 60, 90, and 200. The most sharply peaked curve
corresponds to L=200, the second highest peaked to L=90,
and so on to the lowest curve which is almost flat and corre-
sponds to L=6.
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~ ) 1

0
s l s

1
ln ( In(L) )

FIG. 10. Logarithm of the maxima of A versus T shown in

Fig. 9 are exhibited here versus ln(L) to test the validity of Eq.
(2.18) which is based on Eq. {2.13). Failure of the data points
shown to fall on a straight line is our basis for rejecting the va-

lidity of Eq. (2.13).

FIG. 11. Logarithm of the maxima of A vs T (taken from
Fig. 9) are exhibited here versus lnln(L). A straight line is
shown as a guide to the eye. The errors in the data points are
given by the size of the circles shown.

F3(g/L )= (2.22)
8 1n(g/L )

Adding and subtracting ln(L) within the square brackets
leads to the desired expression

A-F (g/L )[ln(g/L )+ln(L)]"+'~' . (2.23)

Let (g/L)~ be defined by A[(g/L) ]&A(g/L}. Equa-
tion (2.23) implies that (g/L ) decreases toward its
asymptotic value as L increases, in qualitative agreement
with Szeto and Dresselhaus. ' To obtain (g/L), we use
the results shown in Fig. 9, Eq. (1.3), b=1.7, v=0.5, and
T, =0.89. The results obtained are summarized reason-
ably well by the relation (g/L)~=1+10L '. We can
therefore neglect In(g/L ) in Eq. (2.23) for L lnL »10. It
follows that

as L increases. This is so because the number data points
decrease as L increases, leading to increasing statistical er-
rors in the slope (1+1/v) of the best fit.

Finally, we summarize how to use the numbers we ob-
tained to predict experimental results on finite systems.
First note that the magnetic susceptibility Q') is related to
5 by 2T/=5 . For T&T„P' is given by Eqs. (2.8)
and (2.9), and ri(T) can be extracted from Figs. 2 or 3.
For T & T„Eq. (1.4), ri = —,', in addition to the values of
F(x) and other relevant parameters given in Table III

ln(A, „)- 1+—ln
~

ln(L)
~

1
(2.24) 0.6

v=0.5+0. 1 . (2.25)

Note that the error bars for vz in Fig. 12 increase in size

for L large.
Figure 11 shows ln(A, „) versus ln[ln(L)]. The data

points fall near a straight line, even for small L, where
some deviations are expected. Lest it be thought that the
near-straight-line behavior is a consequence of having tak-
en too many (two} logarithms of L for the abscissa in Fig.
11 it is worth remarking that a plot of In(A, „}versus
ln ln lnL shows data points on a markedly curved line.

To arrive at a value of v, let vL be the value of v ~e ob-
tain from the slope (1+1/v) of the best straight-line fit to
the data shogun in Fig. 11 excluding the points corre-
sponding to lengths smaller than L. Figure 12 exhibits vI
versus 1/L. The (1/L)~0 limit of vL is the desired
value of v. From Fig. 12, we read off,

0.5

p q s s i

0.0
s l

0. 1
i/L

0.2

FIG. 12. Sloped straight-line fits to the data shown in Fig. 11
yield values of 1+ 1/v. %'e show here vq (the value obtained
for v if all data points corresponding to systems of length small-
er than L are excluded from the fit) versus L. For instance, the
point shown for 1/L = ~ corresponds to a fit including only

the points for L=90 and L=200 in Fig. 11.
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TABLE III. Values of the logarithm (base 10) of the scaling function F(x). The definition of F, its
asymptotic behavior, as well as values of parameters necessary to compute the correlation length g and
P', defined in Eq. (1.1), for any fmite system, are included for convenience. For T & T„P'=cL ~ ",
c=0.82, g is given in Fig. 2. For T & T„P'=L 'I' {j/L ), g, =0.25, /=exp[b/(T T,—)"], b= 1.70,

T, =0.89, v=0.5, E(x)~0.72x ' for x &0.2, I'((x) )=0.82.

log~o(x)

—0.6
—0.5
—0.4
—0.3
—0.2
—0.1

0.0
0.1

0.2
0.3
0.4
0.5
0.6

log, p'{x)

—1.76
—1.60
—1.43
—1.27
—1.11
—0.97
—0.83
—0.71
—0.60
—0.51
—0.43
—0.37
—0.32

loglo(x)

0.7
0.8
0.9
1.0
1.1
1.2
1.3
1.4
1.5
1.6
1.7
1.8
1.9
2.0

log ioF(x )

—0.28
—0.25
—0.23
—0.21
—0.19
—0.18
—0.16
—0.15
—0.14
—0.14
—0.13
—0.13
—0.12
—0.12

yield P' in the neighborhood of T, for any value of L.
The numbers shown for F(x) in Table III follow from the
best cubic spline fit to all the data points in Fig. 5.

III. CONCLUSIONS

Our main result is the value of the critical index,
v=0.5. We have been able to reduce the error in v to 0.1

using a procedure, described in Sec. II, based on finite-size
scaling. This procedure does not rely on the value of T, .
Thus, we can now return to the second procedure used in
Sec. II, and which using the determined value of v can
now be turned around to determine T, . Then, we get
T, =0.89, and since dv=0. 1, the error in T, turns out-
see Eq. (2.12) and below —to be 0.02. This independently
determined value of T, can in turn be used to obtain,
from the data shown in Fig. 2, the value of g(T, ) quoted
in Eq. (2.11).

The procedure we have followed in Sec. III, examining
the behavior of A,„as a function of L to determine v,
should prove useful analyzing data from experiments on
systems, such as Josephson-junction arrays, which are not

extremely large. Thus, rather than performing experi-
ments only on arrays of L =10, say, it will prove useful
to do experiments on several systems of different sizes,
much as we have done here.

All simulation for systems of 200)&200 spins were car-
ried out at IBM Yorktown Heights. All other simulations
were performed on a VAX-380.
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