PHYSICAL REVIEW B

VOLUME 34, NUMBER 4

15 AUGUST 1986

Exciton absorption tails in one-dimensional systems

M. Schreiber
Institut fiir Physik, Universitat Dortmund, 4600 Dortmund 50, West Germany
(Received 20 February 1986)

Exciton absorption tails in direct- and indirect-gap materials are investigated using Toyozawa’s
exciton self-trapping model as well as Halperin’s solution of the random impurity-potential prob-
lem. In contrast to the Urbach rule obeyed in two- and three-dimensional systems, the logarithm
of the absorption coefficient of a one-dimensional chain is shown to depend on the energy as E¥2,
as well as on the inverse temperature T ~!, in accordance with the respective dependences of the
density of states in one dimension derived by Halperin.

The exponential dependence of the low-energy tail of
the fundamental exciton absorption line with respect to en-
ergy and inverse temperature— the Urbach rule'—
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has long been experimentally established for a wide variety
of insulators and semiconductors? and has provoked
several theoretical attempts at explanation.? In a series of
papers,>~7 Toyozawa and the present author have demon-
strated, by numerical simulation, that the Urbach rule can
be reproduced®~’ by the exciton self-trapping model.> A
deviation from Eq. (1), however, was derived for the tem-
perature dependence of the exponent in one-dimensional
(1D) systems (T ~%? rather than T ') for direct® as well
as indirect® absorption edges. Moreover, the exact solution
to the 1D impurity problem in the continuum limit gives a
density of states®

p(E)exexp(| E |¥?),

E being measured from the band edge of the ideal crystal.
Applying scaling arguments to this result has lead to the
conclusion® that the slope of the Urbach tail in 1D crystals
should follow E2 as well as T~ 3 in contrast to the con-
clusions of Ref. 5. It is the purpose of this report to clarify
this open point by theoretical considerations, as well as an
analysis of more extensive numerical experiments.

Our former investigation attributed the Urbach tail to
the existence of excitonic states trapped momentarily at
energies below the band edge of the ideal crystal due to
thermal lattice vibrations.>® In its simplest form the
model Hamiltonian in the site representation
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contains the transfer between nearest neighbors (NN)
only and a fluctuating site energy due to a linear on-site
exciton-phonon interaction; for harmonic lattice vibrations
the fluctuation of the site energies ¢, is governed by a
Gaussian distribution with variance proportional to the
temperature.’

This Hamiltonian has been studied widely in a different
context, namely for the analysis of the localization
behavior of disordered systems.'® Assuming that the exci-
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ton is localized in a d-dimensional well of size A%, the treat-
ment of Halperin and Lax!! yields the density of states
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where W? is the variance of the random _potent1a1 (kgT in
our case). In Eq. (4) a dependence on E%/W? arises from
the Gaussian distribution; the additional energy depen-
dence |E |42 is due to the spatial confinement of the
wave function resulting in a kinetic energy E e\ 2. How-
ever, a variety of experiments on amorphous 3D systems
has established an Urbach-like behavior of the density of
states, i.e., Eq. (4) with y=1. In a recent Letter!? it has
been shown that this dependence does indeed follow from
the approach of Halperin and Lax (where localization
arises due to long-wavelength fluctuations), if one employs
the correct scaling between energy and size of the localized
states known from localization studies, i.e., if one takes
into account the effect of small-scale fluctuations of the
potential on the energy of localization. For 1D and 2D
random systems Eq. (4) is not changed by that argu-
ment.'? In particular, the disorder always enters as W ~2

In a different approach,'3 the 1D result of Halperin and
Lax (y =) has been established as a universal behavior
(i.e., independent of the employed probability distribution
for the disorder) for the near-tail density of states within
the coherent-potential approximation. In that denvatxon
the (natural) unit of energy contains W*>, so that y =4
yields a universal dependence of the exponent on W™
on inverse temperature.

Thus the Urbach-like dependence of the tail of the den-
sity of states holds for all dimensions with respect to tem-
perature, and for 2D and 3D with respect to energy. The
1D dependence on energy remains y =3 In all cases, this
behavior sets in only somewhat below the band edge de-
fined in the absence of disorder, and it will turn into
Gaussian dependence for extreme energies.>!? The ex-
ponential tailing in between covers two or three orders of
magnitude.

Regarding the absorption intensity, we have to take the
average oscillator strength per state into account as an ad-
ditional factor.* By its energy dependence, it influences
the line shape in such a way that the exponential tailing is
observed over a considerably wider range (approximately
two more orders of magnitude),> in agreement with the
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FIG. 1. Exponential tails of the absorption line shape (F is the
absorption intensity) of 1D systems with direct edge. The
transfer ¥ in Eq. (3) is chosen in such a way that the ideal band
would reach from —0.5 to +0.5 eV.

fact that absorption experiments on crystals usually show
longer Urbach tails than the measurements of the density
of states of amorphous systems. The contribution of the
oscillator strength does not, however, qualitatively change
the tailing behavior,>%? so that the above discussion of the
energy and temperature dependence holds true for the ab-
sorption intensity, too. The Urbach rule remains valid in
its original form (1) for 2D and 3D systems, but as a
consequence of the behavior of the density of states the ab-
sorption tail drops faster in 1D, leading to a modification
of the Urbach rule:

F(E)=Fgexp| — (5)
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It is important to note that the dependence on temperature
is not changed.

Finally, we intend to clarlfy how these 1D results can be
reconciled with our previous numerical data.>® Our at-
tempt to fit the 1D line shape to Eq. (1) emphasizing the
energy_ depcndence had led us wrongly to assume log(F/
Fo)<E/T*3, although due to the bending curves the
agreement was somewhat poorer than for the respective
2D and 3D fits. A reevaluation according to Eq. (5) did
not turn out to be more convincing either, because the
statistics of the absorption curves obtained by a Monte
Carlo procedure* were too poor. We have therefore re-
peated the calculations for direct, as well as indirect ab-
sorption edges with a considerably larger system contain-
ing 199 instead of 30 atoms and with increased accuracy,
diagonalizing up to 40000 different samples of the random
Hamiltonian (3) for each temperature. The results _are
shown in Figs. 1 and 2, employing an energy scale of E*
On this scale, the tails can be convincingly fitted by
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FIG. 2. Exponential tails of the absorption line shape of 1D
systems with indirect edge.

straight lines. With respect to the steepness, we have,
however, fitted only the curve for the highest temperature.
For the other temperatures we have determined the grad-
ient according to Eq. (5), i.e., repeatedly dividing it by 2.
The straight lines and the agreement of the determined
gradients with the computed absorption tails corroborate
the above-derived modified 1D Urbach rule (5). We have
ascertained that a tolerable fit of these data by means of
Eq. (1) is not possible. It is interesting to realize that our
original analysis thus remains valid, in so far that for con-
stant absorption intensity in 1D stlll E «T?3 in contrast to
the proposal of Thm and Phillips.'*

In the described way, the knowledge!! of the exact ener-
gy dependence of p(E) has lead to the correct description
of the 1D exciton absorption tail, while the Urbach rule of
Eq. (1) had been misleading. However, in that region of
the tail which corresponds to states localized almost com-
pletely on one single site, the above-mentioned universal
behavior is no longer correct. In this case, the coherent-
potential approximation yields'? the usual Urbach result,
i.e., Eq. (4) with y =1, for the Gaussian distribution. This
region, which is intermediate between the near-tail result
of Halperin and Lax and the extreme-tail Gaussian de-
crease, is barely reached in the numerical results in Figs. 1
and 2, but might complicate comparisons with future ex-
periments aiming at a corroboration of the modified Ur-
bach rule.

In conclusion, the derivation by Soukoulis et al. of the
exponential band tails in disordered materials applies simi-
larly to the absorption tails in crystals. Thus, an explana-
tion of the puzzling dependence of the slope on E> /T fol-
lows naturally, but a modified Urbach rule for 1D systems
is required. Experiments on polyacetylene'® would rather
fit Eq. (5) than Eq. (1), but more extensive experiments
on 1D exponential tails are called for.
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