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Parametrization of the relaxation time in crystalline graphite
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The band theory of Slonczewsky, Weiss, and McClure (S%'Mc) is combined with an electron-
phonon interaction to determine the relaxation time in crystalline graphite as a function of the in-

teraction parameters. The transition probability between Bloch functions, which include atomic dis-
placements due to thermal vibration of the lattice, is evaluated. Wave functions are expanded at
each atomic site, leading to a simple relationship between the electron-phonon interaction and the
relaxation time. The splitting of the relaxation time parallel and perpendicular to the graphite plane
is introduced through the transition probability. The Komatsu dispersion relation, for parallel and
perpendicular acoustic phonons, is adjusted through experimental measurement. Relaxation times
are evaluated as a function of energy for temperatures between 25 and 300 K, giving results that de-

pend on the interaction parameters used. Both parallel and perpendicular relaxation times are of the
same order of magnitude, and the parallel relaxation time agrees with the one calculated using Ono's
theory.

I. INTRODUCTION

The study of the electric and magnetic properties of
graphite has been the subject of much research, because
these properties mix structural details of the real and re-
ciprocal lattices, the band structure, the Fermi surface,
and also dispersive processes undergone by electrons.

Graphite is a semimetal with a hexagonal lattice where
the atoms are distributed in layers, with four atoms per
unit cell [Figs. 1(a) and 1(b)]. The interatomic distance
within a layer is smaller than the distance between layers.
This introduces an important anisotropy which renders
the planar properties much different from those evaluated
in the direction normal to the layers.

The first Brillouin zone of this structure is hexagonal
with a strong electron distribution at the edges HEH'. '

The band structure of graphite has been studied by dif-
ferent methods ' but when dealing with transport proper-
ties, two models have been used preferentially: the
Slonczewski-Weiss-McClure (SWMc) model, ' which
makes use of the electron distribution at the edges of the
first Brillouin zone, and the Johnson-Dresselhaus model,
which makes use of the whole first zone. In both cases
the band structure is obtained from Bloch wave functions
in which 2Ji, orbitals of the four atoms of the base inter-
vene to form the m bands. The Fermi level lies between
these bands. The o bands, related to other orbitals of the
sp hybridization of the isolated carbon atoms, are suffi-
ciently separated from the m bands; for that reason only
the n bands are considered in the study of transport coef-
ficients.

Also, the transport coefficients referred to in the
Boltzmann theory are in one way or another related to the
relaxation time, which depends on the scattering processes
undergone by the electrons due to impurities, lattice vibra-
tions, or any other defects in the kind of graphite used.
Each of those mechanisms has its temperature range of
dominance over the others. In crystalline graphite, for

Tg50 K, the electron scattering is due to electron-
phonon interactions. The phononic modes can be separat-
ed into parallel and normal modes referred to the graphite
plane.

In the literature, we can see that different models for
the relaxation time have been used to evaluate the trans-
port coefficients. Wallace, in an attempt to explain the
electric resistivity of crystalline graphite, introduced a
phenomenologic relaxation time in which the Debye tem-

a= 2. 46 A

c= 6.72 A

c/2

, , A 8

|k

FIG. 1. (a) Atoms in the base. (b) Graphitic lattice. (c) First
Brillouin zone.
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perature entered into the electron-phonon interaction.
Sugihara and Sato and Ono and Sugihara have made a
mare consistent thtmry, through the combination of the
band structure and the electron-phonon interaction. In
their case, they used the rigid-ion model. Although this
theory is mathematically complete, its complexity obli-
gates one to make posterior suppositions to introduce con-
stants of adjustment that restrict its generality. Besides,
the rigid-ion model restricts the type of phonons that par-
ticipate in the dispersion processes. Most of the work on
transport coefficients that followed' " used the Ono
theory as a starting point.

In this work we present a different way of checking the
electron-phonon interaction in graphite. This method will
be used to evaluate the planar and perpendicular relaxa-
tion times as functions of energy for different tempera-
tures. The band structure is taken from the model of
SWMc, and we will use in it the interaction parameters
more frequently reparted in the literature. The phonon
dispersion relations are taken from experiments. '

II. SAND STRUCTURE AND CONSTANT-
ENERGY SURFACES

In accordance with the ideas of SWMc, the band struc-
ture is obtained with a crystal wave function 14) which
is a linear combination of Bloch functions which are cen-
tered at each atom of the basis [Figs. 1(a) and 1(b)]. Each
of the functions is characterized by a 2p, arbital:"

lq)= g a„ly„), (1)

m'here

2
(14'~ &+ I kc&) I kz& =

2
(14~ &

—14'c&}
1 1

IA&= lkz & 144&= I'D&.

1$„(n=A,B,C,D}) designates the wave function cen-
tered at the nth atom. The selection of the basis
1$„(n =1,2, 3,4) ), instead of 1$„(n =A,B,CD) ), avoids

certain energetic degeneration around the HEH' edge.
The IP„) are wave functions characteristic of the

tight-binding model defined by

H)3 H)4

E2 —E 023

023 E3 —E

&24

=0,

where

Hiz ——2 ' Szzi(2y4cose —yo),

Hi4=2 '"S~a(2y4eose —yo),

H„=—2-'"S„,(2y,cose —y, ),
Hz4 —2' S„'z—i(2y4cose yo)—
H z4

——2 cos(8/2)sqzi,

Ei =5+2y ieose+ 2y seas 8,
Ez ——5—2y icose+ 2yscos'8,

Ez ——2yzcos 8,
I

Swzi =Swzi+ isgii

SAR8 =31/zsin( 21 U)CM( 21 N)
—cos( —,

' N )cos( —,
' U)+ cos(N ),

Szzi ——3'~ sin( —, U)sin( —,N )

—sin( —,
' N )cos( —,

'
U) —sin(N ),

with

U =a& cosa, N =3 '~ ag sina,

8=2~uk„X=(k,'+k„')'" .

The Hamiltonian H can be separated into a Hamiltoni-
an Ho associated vrith isolated atoms and another H'
which takes into account the details of the lattice. The

R„J are the overlap integrals of the atomic orbitals and
the H„J are the interaction integrals between P„and PJ.
The evaluation of these integrals is rather difficult; for
this reason the Hamiltonian is written in terms of the in-

teraction parameters y;.
Using Hiickel*s approximation, ' the secular equation

can be written in the form

In these equations g, which is the modulus of the vector g
[Fig. 1(c)], determines how far we are removed from the
HEH' edge in the k, k» plane, and a is the angle between
X and I P, where P is any point in the HKH' edge [in Fig.
1(c), P =K]. The distance between neighbors in the gra-
phitic plane is defined in Figs. 1(a) and 1(b).

The meaning of the various interaction parameters in-
troduced is as follows.

(i) Interaction between nearest-neighbor atoms A-B,

where the summation is over the j atoms (j =A,B,C,D}
of the N graphitic unit cells and 1$(r—rj)) is the 2p,
atomic orbital associated arith the nth atom.

The Schrodinger equation leads to a system of equa-
tions in A,J., such that

g Z, (H„,—EZ„,) =0,

1$„(n =A,B,C,D)) = +exp(ik. ri)1$(r ri)), (3)—
N

W'lth

H„, &y„lH ly, )

y.= —&y(.—., ) IH I
y(.—;)& .

(ii) Interaction between adjacent atoms A- C,

y i = & 4(r r~ } I
H'

l
—0«—rc) & .

(iii) Interaction between atoms T =8 or T =D situated
in second-neighbor planes,
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TABLE I. Interaction parameters in eV.

Interaction
parameter

Qo

Pl
r2
y3

$5

2.85
0.30

—0,02
0.0
0.0
0.0
0.006

—0.026

2.73
0.32

—0.0186
0.29
0.15
0.021

—0.017
—0.0213

(v) Interaction between atoms T =A or T =8 and
T'=D or T'= C in adjacent planes,

r.= &0(r rT)
I
H—'

I
y(r rT ) &—

(vi) Interaction between atoms T =A or T =C in
second-neighbor planes,

(vii) Energy variation due to differences between sites A

and 8 (the energy Ei in point H of the first Brillouin
zone is taken as a reference}

6= &P(r —r„)
I
H'1$(r —r„)&

The determinant given in (5) has been solved analytical-
ly by several authors' ' for values of X adjusted near the
HEH' edge, without considering all the parameters. In
our case we consider all the parameters and allow any
value of X. The interaction parameters y; are taken from
the work of Dillon er al. '6 Structural details have been
evaluated by Luiggi and Barreto' with each of Dillon's

y2 ——2&/(r —rT) I
H'1$(r —rT —a3}&

(iv) Interaction between atoms T =8 or T=D in adja-
cent planes,

five sets of parameters. In this work we only utilize two
sets of parameters. One set (the 8 set, Table I) is that
which best reproduces the areas of the maximum orbits of
electrons and holes reported by Dillon et a/. ' The other
set (the A set, Table I) is that which is least successful in
reproducing such areas. Table I shows both sets of pa-
rameters.

Figure 2 shows details of the band structure for both
sets of parameters. The energy is plotted as a function of
k, on the KH edge (central part} and as a function of X in
the planes k, =0 and k, =n /c along the direction K—1

and H A, re—spectively. On the EH edge, both sets of pa-
rameters„A (dashed line) and 8 (solid line) indicate the
existence of three bands labeled Ei, E2, and E3, the last
being doubly degenerate. Outside the EH edge, band Ei
calculated from set A splits because of our base of wave
functions 1$„(n =1,2, 3,4) &, but unfortunately they over-

lap with bands Ei and Ez. The 8 set of parameters pro-
duces a complete splitting, thus giving four bands. In Fig.
2 is also indicated the location of the Fermi energy,
Ez- —0.02 eV, which at the KH edge cuts the bands Ez
and E3, at the I K edge cuts the band E3, and at the HA
edge cuts the bands Ei and E2 (for the bands evaluated
with the set of parameters 8) and the bands E3 and E2
(for the bands evaluated with the set of parameters A).
These cuts have a primary importance because they limit
the type of current carrier which participates in the trans-
port propertIes.

Constant-energy surfaces (CES), characterized by wave
vector k, (X,a, k, ), are obtained from (5) by fixing E to a
desired value. In our case the variables in the calculation
have been a and X to characterize the plane and 8(k, ) for
the perpendicular direction to the plane. CES are built by
planes fixing k, and a, and requiring a X that satisfies (5).
The value of X is refined upon the CES for

I
k —k,

I
& 10 ' through the inverse interpolation

scheme of Aitken. '

Figures 3, 4, and 5 give some interesting details of these
surfaces. In Fig. 3 we present tridimensional CES for the
8 set of parameters with E =EF, E & EF, and E & EF.
These surfaces show trigonal symmetry with planar satel-
lites around the cutting point between the Fermi level EF
and the energy bands E(k}. Parameters y3 and y4 are re-

sponsible for the warping of the CES. This warping is

EI~ EI~ Eg
Et

E3 E3

FEG. 2. Band structure of graphite.
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E=-0.05 eV

c

E =-0.0l eV

E -K&--O.Or~3 eV

K =. 65—1T
Z

Kze0

K~~0

(b) (&)

FIG. 3, Tridimensional constant-energy surfaces for different
values of E. {a) E=E~———0.0213 eV. (1) E=—0.01 eV. {c)
E = —0.03 eV.

necessary to explain galvanomagnetic properties in gra-
phite. ' The choice of yi &0, rather than y2&0 made by
Ono and Sugihara, changes the distribution of holes and
electrons around the center K and the top H of the HXH'
edge. In Figs. 3(b) and 3(c) we show CES with energies
above and below EF, which constitutes a simplified view

of what would happen if a donor f E &SF) or acceptor
(E &E~) element were intercalated in graphite. o The A

set of parameters leads to conical cylindrical surfaces
which are rather different from the one given in Fig. 3.
Those surfaces are used by the majority of researchers to
calculate the transport properties. s'o

Figures 4(a) and 4(b) and 5(a) and 5(b) show the same
effect of longitudinal and transverse cuts on CES for both
sets of parameters. Longitudinal cuts correspond to dif-
ferent values of a and the transverse cuts are those for
which k, =0.

DI. ELECTRON-PHONON INTERACTION

The phenomenological theory of Ono and Sugihara
considers the electron-phonon interaction in the rigid-ion
model. 2' The evaluation of the matrix elements associated
with that interaction is done between electron wave func-
tions and hole wave functions in which the limits are de-
duced from band structure.

In our case, we do not introduce exphcitly a deforma-
tion potential associated with the lattice vibration; instead,
this effect is considered, assuming that the interaction be-
tween electrons and phonons displaces the atomic position
by a distance Sr from the static initial position of the lat-
tice. The total wave function

~
F& is then written as the

product of the deformed electron wave function
~
Hk(r) &

and the phonon wave function
~ r)z &. In this way, the

Hamiltonian matrix evaluated with these wave functions
is written

eV

BeV

eY

FIG. 4. Constant-energy surfaces for the set of parameters 8.
{a) Longitudinal cut for different values of E with a=0 and
a=m/3. (1) Transverse cut for different values of E with

k, =0.

By analo y with the relation (1) the deformed wave func-
tion,

~
k(r)& is written

I +a(r)& = g ~~ I 0r &, (8)
a=1

where ~p, (r =1,2, 3,4)& as in relation (2) is defined
through the deformed wave functions

~
P",(t =A,B,C,D) &

centered in each of the atoms of the base, which are
Bloch-type functions defined by

~P",(r)&=X ' gexp[ik ( +rj5rj)] ~P(r —r&)&; (9)
J

the summation over j is for all the t atoms in the lattice.
Equation (9) shows the displacement 5rJ of the jth

atom due to lattice vibration. For small displacements,
one can write (9) as

~P, {r)&=X ' +[1+it 5rj ——,'{k 5r.~) ]

Xexp(ik. rj) ~4(r —rJ)& . (10)

The first term in (10) is associated with the static lattice;
the second one contains the effect of the electron-phonon
interaction. The third term is neglected for small dis-
placements.

The overall effect of the electron-phonon interaction
reduces simply to the evaluation of matrix elements, using
the wave function defined in (10):



34 PARAMETRIZATION OF THE RELAXATION TIME IN. . .

— Ea-0.0l eV

——E -0026 ev—E=-0.05 IV

K'
0

I-0

—
E. =-Q,Ql eV--- E=-O.Q26eV

——E=-Q.Q3 e V

FIG. &. Constant-energy surfaces for the set of parameters A. (a) Longitudinal cut for different values of E with a=O and

a=a/3. (b) Transverse cut for different values of E with k, =O.

(P",(r) ~H i/I, (r)}=X '+exp[i(k r, —k r„)](P(r—r„)~H (P(r —r, )}
p~j

+S ' g i (k 5r, —k 5r„)exp[i(k rJ —k r„}](P(r—r„~ H
i P(r —rj) } .

5r„=g
2NMcoz (q)

where q is the phonon wave vector, p fixes the type of vibrational mode, e is the phonon polarization vector, and a and
a are the creation and annihilation phonon operators, which lead to matrix elements different from zero if the wave

functions
~ ri~ },upon which they operate, represent phonon states whose occupation numbers differ by one phonon.

After some algebraic operations, relation (7}can be written for normal processes as

Taking r„—rj =T„J,where T„~ is a translation vector, (11)can be rewritten as

(P",(r)
~

H
~
((ts(r) }= g exp( i k T„J)—(P(r.—r„)

~
H

i
P(r —rj ) }

+ gi(k —k') 5r„((()(r—r„) ~H
~
P(r —ri)}exp( ik T„J—), (12)

in which we have centered on the jth atom. Notice that j (j = A, B,C,D) is fixed, whereas n runs through all the atoms
A, 8, C, and D. The first term in (13}is the same mentioned above for the static lattice. The deformation has the effect
of introducing 5r„as a phonon operator which acts upon the phonon part

~ rl~ } in (7).

In usual notation, 5r„ is written as
1/2

exp(i' r„}[a+.( —qz)+a (qz)]ez(q), (13)

{H ~H
~

I }=—i&@„~H [e„&(k—k}.g
2NMcoz (q)

' 1/2

e~(q), (14)
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&
I" IH

I
I') = —i&+i IH I'4) q() 2NMcoq

Rne,

2XMmq

where

fico(q; )
nq= exp KT

with i =~~ or J. .

where nq~ is the number of phonons defined by Bose
statistics.

Relation (14) defines the matrix elements of the
electron-phonon interaction as the product of the matrix
elements of the static lattice (evaluated in the last section)
multiphed by a factor which is due to the phononic ef-
fects; this relation is more general than that referred to by
Ziman ' for the group of models of rigid iona, deformable
ions, and deformation potentials. It also has the advan-
tage of introducing no less phenomenologic parameters
than those introduced in the SWMc model of the band
structure. Considering that only acoustic phonons partici-
pate in the dispersion, (14) transforms to

V~Eds'=X'da'dk, ' X ~ (20)

where X, =(cosa', sina') is a unitary vector normal to the
cylindrical surface and the ratio of energetic gradients is a
unitary vector normal to the CES.

Considering the elastic scattering approximation in
which phonon energies are considered insignificant with
respect to electronic energies, Eq. (18) can be written, after
using (13), (15), and (17), as

q(( (((1—o 8) [ &Vi, ~H
~
%i, ) ('

II
ds',

Mm co
~ ~

/
Vif'E

(18')

~

k ) =
~
X cosa,X sina, k, ),

~

k') = [X'cosa', X'sina', k, ),
~ q ) =

~

X' cosa' —X cosa, X' sina' —X sina, k,
' —k, ), (19)

cos8= [k,k,'+XX'(cosa cosa'+ sina sina')]/kk',

q =X' +X —2XX'(cosacosa'+sinasina') .

The evaluation of (16) is done over the CES, such that
the area element ds' is taken on each of those surfaces.
The numerical calculus is easier if our surface is projectixi
over a cylindrical surface, so that

Each of the terms in the matrix elements allows us to in-
troduce the parallel or perpendicular characteristics asso-
ciated with these vibrational modes.

l q n (1—case)
I (@a IH

I
@a'&

I

Mm cog
~
Vi;E

~

(18")

IV. RELAXATION TIME

The inverse of the relaxation time is defined by

7 = Igy 1 —cos gg~ s

where Pk k defines the transition probability between elec-
tronic states

~
k) and

~

k'). The factor (1—cos8i„i, )

characterizes momentum transfer in the process for in-
cident

~
k) and

~

k') electron wave vectors, 8 being the
angle between them.

I'~ ~ is written usually as

Pi, i,
——

[ & F
~

H
~

I')
[
i5(E (k') —E(k)+iricoq) .

Taking into account that vibrational modes are divided
into two groups which are parallel (q~~ ) and perpendicular
(qi) to the plane, we introduce in (16) the transition
probabilities associated with both modes; that is, we de-
fine

Phonon occupation n~~ and ni as well as matrix elements
are taken in the same way as in the preceding section.

Each of the integrals is evaluated for a CES with k,
varying between points E and H of the first Brillouin
zone, and owing to trigonal symmetry, a scans —,

' of each
plane in which k, is constant. The role of holes and elec-
trons in this formulation is controlled by the k, parameter
(Figs. 3, 4, and 5) because there exists a k, value, that de-
pends on the energy, for which the orbits for electrons and
hole touch each other and have a minimum area.

The value co(q) has been taken directly from neutron in-
elastic scattering measurements of Nicklow et al. ' for
pyrolitic graphite. We have also adjusted modes 1 and 2
of Komatsu's relations, 6 which corresponded to our paral-
lel and perpendicular modes, to the longitudinal acoustic
branch of Nicklow et al. ,

' obtaining the following
dispersion relation:

(21)

with m& ——${)' s ' and ~2 ——2 Q $O"s

~~~
'= J P~~(1 —cos8)d',

~, '= JP, (1 cos8)ds'. —

Both relaxation times are evaluated with the help of the
following relations in cylindrical coordinates:

V. ELECTRONIC %'AVE-FUNCTION
COEFFICIENTS

The relations (18') and (18") are completely defined
when we know the electronic wave-function coefficients
introduced in (1). In their evaluation we recall that the
secular equation (4) is a homogeneous system of equations
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kzF
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coefficients I, evaluated onFIG. 6. Electron wave-function coe
the Fermi su ace. e vrf Th values of k~ and A, q are exaggerated.

g.. 6. = 0

p, g - Tf/3

c, o( = ~»

P:g= 0

I= 300 i(

T-300 1(

T= ~5 I(

. Also we suppose that the wave func-in those coefficients. so we
tions associated with eaeach atom o no ov

rmilled(4 4)= A,;,=, soA, ;A,' —1 that we get an overdetermine

cients for CES, we get unique solutions or; w ic
e endent ox t eseec ei h 1 t d system for their calculation.
'g ' f f the coefficients for the set ofFigure 6 gives the rorm o e c

'
h E=E in the plane k, =O. As can eparaIIlc'tcl's B, wit = F g can c

seen, the coe icien sff' '
t have the trigonal symmetry

ssociated withrfacc. CocfflclcIlts Al Rnd A,4, Rssocla c
atoms B and D (situated in different planes,nes) are ten times

an I, and A.z associated with the atomic combina-

an es, assing to weigh more t e
flcients. Note that this consideration musRlld A,I coc flcicIlts. 0

nitude of the transporth some influence on the magnitude o eave
I

'
d therefore we must take care wwhen we con-coefficients an

1 instead of asider graphite as a w-h t a two-dimensional semimeta
'

three-dimensional one, as rea y11 it is.

VI. DISCUSSION

results which follow have been obtained by the nu-

71 corn uter. The temperature is e m
use of n~~ and nl and is maintam ix

valuestion on the, w icCES h' h were determined for fixe va ues
of energy in the vicinity of the Fermi energy.

A. Electron and hole contributions

')-' t thcF' . 7 the relaxation time r=(r~~ +r& a
of k . For this calcula-EH ed e is plotted as a function o

dtion we selected the
ge

CES E=E and used e=O an
the details of the Fermi-surface an-a=n/3 to emphasize t e e ai s o

em erature was fixed at 25 andisotropy. Tempera
A defined in Table I wasset of interaction parameters A de in in

used.
v. in the electron zoneThis graph shows an increasing v. in

0.0375

I
0.2375

i
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FIG. 7. Relaxation time in arbitrary
'

ra units as a function of k,
for T=25 and 300 K and for a=0 and m/3.

' . 3 a from k, =O to an intermedl-[ tippled r gion i Fig.
ate value between the I(. po', I . Croint and ihe k,~ point.

m in the vicinity o t e gf
oint. In the hole zone a similar behavior, althoug ess

agreement with those reporte y no
0 exchanges, with respec o

this work, the results for electrons and holes. ote a
f k where X is multivalued [region of the Fer-

rface where the satellites appear, ig.mi su ace w
'

h d hed lines at T=2S K the depend k, .endence of r on k, .wit as
a ears for the values ofThe Fermi-surface anisotropy appea

a=O and a=m, s/3 howing a tendency towards isotropy
inlmuIIlat the H end of the first Brillouin zone. The minimu

o I at the E point, where the electronic orbit is

to the carrierinto account that ~ is inversely proportional to
density.

indicated in the fig-Th behavior in the vicinity o,~, in ice
r T=25 K, is due to the fact that for a=o, =O there areure for

'
t or a=~/3 there iswell-defined orbits, while at that point or a =

orbit defining a value VIE some orders of
s. That leads to the

that w ic is expech
'

xpected in other words, ~ is arger
higher temperatures.

B Parallel and normal relaxation times

8 show the evolution of the parallel relaxa-In Fig. we s
tion time ig. atF' 8(a)] and the evolution of the no

r all thatLFi . 8(b)] both as functions of energy,ation time ig.
B) in the temperaturer est set of parameters set, infor our es

K for both relaxation-timerange between 25 and 30O K or o
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FIG. 8. Relaxation time as a function of energy for different
temperatures for the set of parameters 8. (a) Parallel relaxation
time versus enefgy. (b} Perpendicular relaxation time versus en-

ergy.

FIG. 9. Relaxation time as a function of energy for different
temperatures for the set of parameters A. (a) Parallel relaxation
time versus energy. (1) Perpendicular relaxation time versus en-

ergy.

behaviors. In the energy range under study there is an in-
crease of r, a minimum, and a decrease of r For energ. ies
below E~ the parallel relaxation time varies between
5X10 'i s at T=300 K and SX10 ' s at T=25 K,
whereas the perpendicular relaxation time varies between
10 's and 3 X 10 '~ s. For E=0.01 eV, both times reach
their maximum values: r~~

——6X 10 " s and
~j ——4.2&10 " s at 25 K. For mergies greater than E~
the relaxation times diminish and tend to be constant.
The effect of decreasing temperature is to increase ~. Our
results are encouraging because they agree qualitatively
with the ones reported by Ono and Sugihara md Glsen. '

It is important to mention that our calculation has not
been adjusted to reproduce experimental transport coeffi-
cients.

When the set of parameters A is used to calculate r~~

aild Ti [Figs. 9(a) and 9(b)], we get a behavior of r, as a
function of energy, slightly different from the one ob-
tained before; nevertheless, both

r~~ and ri have a good or-
der of magnitude (10 ' —10 ' s) and a reasonable
behavior with temperature. In this calculation we have
chosen and integration increment in k, such that the

minimum orbit on the CES is avoided [Fig. 5(a)]. In the
case where the set of parameters 8 was used, the CES
showed such orbits on the HKH' edge but the presence of
satellites introduced through the yz and yq parameters
[Figs. 3(a), 3(b), and 3(c)] with orbits of areas well defined,
avoided any computational complication in the evaluation
of (18') and (18").

Presently, following our formulation, we are studying
the transport coefficients of crystalhne graphite, and we
have gotten satisfactory results for the electric conductivi-
ty on the graphitic plane. The best agreement is for
T=300 K, where we know that the relation (16) is good
enough. For the resistivity normal to the graphitic plane,
we have gotten a metallic dependence with temperature. '

We also note here that, inasmuch as the effect of inter-
calation will produce little structural change in the planar
characteristics of graphite, the formulation for the paral-
lel relaxation time reported here should also apply, at least
in first approximation, to intercalated graphite by donors
(E ~EF) or by acceptors (E ~EF). A discussion of this
topic is is given by Pietronero and co-workers. ' In the
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search for a model adequate to explain the electrical prop-
erties of intercalants, it is necessary to consider the effects
of charge transfer between the carbon atoms and those of
the intercalant, as well as their respective ionization po-
tentials. The aim of the search is to achieve the proper
variation of the perpendicular properties of intercalants
(relaxation time, conductivity, etc.} with respect to those
of crystalline graphite.

In a future paper we extend the details of the formula-
tion reported here, with respect to band structure, Fermi
surfaces, and relaxation times, to the study of the inter-
calant ECs. We obtain a value of tr~~/tri of approximate-
ly 90 and a value of tr~~, in complete agreement with that
reported by Vogel et al. s

To conclude, we have formulated a relatively simple
way of determining the relaxation time in graphite which
can be extended to apply to intercalated graphite. The
electron-phonon interaction is the dominant scattering
mechanism and its matrix elements introduce indepen-
dently the phononic contributions and the details associat-

tel with the static lattice of graphite. We have verified
that the interaction parameters that select the Fermi sur-
face affect both the magnitude and the form of depen-
dence of r on energy. Our results are encouraging because
they are in agreement with the general results reported in
the literature, and their use in the evaluation of the elec-
tric resistivity in graphite and intercalated graphite
predicts magnitudes according to the measured ones.
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