
PHYSICAL REVIE% 8 VOLUME 34, NUMBER 4 15 AUGUST 1986

Overlap interactions and bonding in ionic solids
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The virial theorem is used with tight-binding theory to show that the overlap repulsion should

vary as 1/d" in covalent solids, as 1/d in ionic solids, and as 1/d' in inert-gas solids. The 1/d'
form is used to predict equilibrium spacings in alkali-metal halides and alkaline-earth chalcogenides.
It is then combined with the equilibrium condition to obtain analytic formulas in terms of the tight-
binding parameters for the cohesive energy, bulk modulus, and Gruneisen constant for these sys-
tems.

I. INTRODUCTION

Tight-binding theory provides electronic energy levels
and a theory of the cohesive forces in covalent' and ion-
ic' solids. It ordinarily treats the atomic states as
orthogonal and then yields total energies which decrease
monotonically with decreasing spacing. It is the
nonorthogonality of atomic states on adjacent atoms
which leads to a repulsion between atoms and stabilizes
the lattice against collapse. That repulsion is called the
ouerlap interaction Such. contributions arise since the
orthogonality between states on adjacent atoms requires a
modification of the wave functions, increasing the kinetic
energy of the electrons, this being ultimately responsible
for the stability of condensed matter against collapse.

In the present analysis we combine this nonorthogonali-
ty description with the density-functional theory of the
same interaction, and the virial theorem, to obtain an
algebraic form for the overlap interaction. With a
power-law dependence for the repulsion, the equilibrium
condition can be used to eliminate the coefficient and ob-
tain the volume dependence of the energy entirely in terms
of the parameters of the electronic structure, a covalent
energy of coupling V2 between nearest-neighbor atomic
states and a polar energy V3 obtained from a difference in
free-atom term values.

II. OVERLAP INTERACTION FROM
DENSITY-FUNCTIONAL THEORY

In density-functional theory, the formulation of the to-
tal energy, and the needed repulsion, is based upon the
proof by Hohenberg and Kohn that the total energy of a
system of atoms in the ground state can be written as a
function of the electron density n(r). Kohn and Sham
then noted that this energy could bc approximated
writing the functional of n(r) as a simple function of
n (r). They took the energy density to be the energy densi-
ty of a uniform electron gas at that density and then in-
tegrated over volume. (They actually calculated the elec-
tronic kinetic energy by a more accurate procedure but, in
the subsequent evaluation of the overlap interaction which
we shall discuss, the free-electron formula is used also for
kinetic energy. )

Nikulin and Gordon and Kim approximated the elec-
tron density of a collection of closed-shell atoms by the
superposition of free-atom densities, which were obtained
from a Hartree-Fock calculation, and used existing ap-
proximations for the energy density for a free-electron
gas. An examination of their results shows that the dom-
inant term in the repulsion is the excess kinetic energy of
the overlapping charge densities, as suggested by the argu-
ment given above.

This calculation of overlap repulsion can be carried out
approximately for the limiting case of widely spaced
atoms (and will be extrapolated down to small spacings)
using the asymptotic form of the electronic wave func-
tions for free atoms. That is obtained directly from the
Schrodinger equation and is proportional to r "e ~", ~here
v is near zero (and equal to zero for states just one Ryd-
berg in energy) and JM is related to the energy s; of the
atomic state by

A'p /2m= —s;.
Thus we may approximate the electron density by a con-
stant times e ""and if we further extend the approxima-
tion back to small r and require that the integral over that
density correspond to one electron (normalize the wave
function) we obtain a charge density for each atomic state
of (p /m. )' e "'. Using this form we may write the
electron density for the highest-energy occupied states
(which dominate the repulsion), for example multiplying
by six for a full p shell. We may then carry out the calcu-
lation of excess kinetic energy giving the overlap interac-
tion for two atoms separated by a distance d. In fact we

may note that we may scale all positions r in the calcula-
tion by d and see that the result will be of the form
(fi p /2m)f(pd). A detailed evaluation for two atoms
with identical c.; gave

Vo(d) =70.8(A' p /2m )@de

which is of course this form.

III. APPLICATION OF THE VIRIAL THEOREM

%'e may next see that the lowering in energy obtained
in tight-binding theory is essentially a potential energy.
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We do this using linear combinations of atomic orbitals
(LCAO's) for the simplest case, that of two identical
atoms, each with a single state. %hen the atoms are
brought together an even and an odd molecular orbital are
formed. The expectation values of their energies are
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which may be written out in terms of the atomic energy
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ergies is written —2V2, with V2 the covalent energy given

by Vi —(Hi2 —eiS)/(1 —S ), which is negative. This
gives the splitting in tight-binding theory which results in
the bonding of the atoms. It corresponds to orthogonal
tight-binding atomic states coupled by V2. The average
of the two molecular orbital energies is e, —SVz. It con-
tains the repulsion arising from the nonorthogonality,
SVz. Also, since 0 contains the kinetic energy operator
"rand the potentials V(l) and V(2) from each atom, ei
contains a potential shift (1

~

V(2)
~
1); detailed evalua-

tion ' has shown this to be small compared to the kinetic
energy shift and we neglect it throughout.

We may look further at Eq. (4). Noting that
['r+ V(2)]

~

2) =ei
~
2) if we again neglect the potential

shift, we have (1
~

H
~
2) =(1

~
e&+ V(1)

~
2) =Sei

+ (1
~

V(1)
~

2) so V2 above is given by
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2)/(1 —S ). The numerator is a pure potential

energy; the denominator is from a renormalization of the
wave function. Thus in this LCAO theory, the covalent
energy is purely potential.

For this simple case, with two electrons in the bond, the
energy of the system is the atomic energy plus
2 Vp —2SV2, with Vq negative. The first term is purely
potential energy, the second is predominantly kinetic. At
the equilibrium spacing, with no external forces applied,
the virial theorem tells us that the second must be half the
first. This is the result we sought. A number of approxi-
mations have been made, including the neglect of the shift
potential in comparison to the shift in kinetic energy in
the evaluation of the average energies of the states (the
overlap repulsion per electron for closed-shell systems
where both odd and even states are occupied). We have
also used LCAO theory to place the results in the context
of tight-binding theory. This model system represents a
simple covalent bond.

Before making use of this result, we may note that it
applies also to ionic systems. Then the two coupled states
have much different atomic energies e& and e2. The ener-

gy gain in tight-binding theory can be calculated in per-
turbation theory in the coupling V2. In first order the
lower-energy state

~
1) becomes

~
1)+

~
2) V2/(ei —e2)

and its energy is shifted by Vz/(Ei —e2), a change in po-
tential energy of the modified state. The repulsion again
is the increased kinetic energy of the overlapping closed-
shell atoms. Again at equilibrium we expect the repulsion
to be half the attractive term.

IV. USE OF A 1/d~" FQRM

If we choose to use a power-law form for the repulsion,
we see immediately that the virial theorem tells us the

value of n for each system. In tight-binding theory we
use universal parameters for which couplings Vz vary as
1/d near the equilibrium spacing. This was originally
derived by noting that near equilibrium the bands were
both representable in tight-binding theory and were free-
electron-like; the dependence of the couplings on d fol-
lows immediately. Thus in the covalent case described
above, the dependence of the total energy upon d is of the
form E= —A/d +8/d ". The equilibrium condition is
BE/Bd =22/d 2n8—/d "+'=0. Writing the equilibri-
um d as do this yields 2n8/do" ——2A/do. If the repul-
sion is to be half the attraction, 2n must be equal to four
(and 8= —,

'
Ado).

We had obtained this 1/d dependence of the overlap
interaction earlier in quite a different way. We noted
that in extended Huckel theory, ' the couplings are related
to nonorthogonalities by assuming, in our notation,
V2 ——hei, with K an empirical constant, frequently tak-
en as 1.75. This also leads to a repulsion —SVz propor-
tional to V2 and therefore 1/d, but uses an empirical for-
mula to do it. In fact, the derivation given here could be
considered as a crude derivation of extended Huckel
theory.

The same analysis for ionic solids, where the attractive
term varies as Vq/(ei —e2), proportional to 1/d, gives an
overlap repulsion proportional to 1/d . (We should note
that in the tight-binding theory of ionic solids, the elec-
tronic terms are regarded as the dominant attraction.
The atoms have effective charges, but they are changing
rapidly near the observed spacing so that though a force
—e /d would be appropriate at large spacings, the real
electrostatic interaction is negligible at the equilibrium
spacings. ) The same analysis might even suggest that for
inert gas solids, where the dominant attraction is a van
der Waal's interaction, proportional to 1/d, the repulsion
should be proportional to 1/d' . All of these predictions
are in rough accord with the dependences obtained by fit-
ting experimental equilibrium spacings and force con-
stants. This lends strong support to the somewhat intui-
tive derivation.

A further test of these predictions can be made using
the more complete form of the overlap interaction, Eq.
(2). We could fit that form to a form 2 /d "

by matching
the value and the derivative at the equilibrium spacing.
Matching logarithmic derivatives gives directly

2'= ~pl —1 (4)

We may obtain p immediately from the atomic term
values and Eq. (1) and insert the observed spacing for any
system to see what values of 2n are predicted. For silicon
we use the hybrid energy to obtain 2n =5.15, to be com-
pared with the four obtained with the virial theorem.
(Use of p states gives a slightly lower value, 4.93, but the
use of hybrids seems appropriate here. ) For potassium
chloride we use the average of the p's obtained for the
chlorine p state (1.90 A ') and the potassium core p state
(2.61 A ) and the equilibrium spacing of 3.15 A to ob-
tain 2n = 10.85, compared to the derived 8. For argon, at
the observed spacing of,3.76 A we obtain 11.87, to be
compared with the derived 12. The agreement is only
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semiquantitative, but so also is the tight-binding theory
we use and some of the discrepa, ncy may well come from
the use of Eq. (2). The increase in the exponent 2n from
covalent to ionic to inert-gas systems is seen to arise part-
ly from the increasing depth of the atomic states, but
mostly from the larger spacing.

Another interesting point may be made using Eq. (2).
It may be surprising to be able to derive dependences of
such high order as 4, 8, and 12 since it corresponds to
coefficients 8 with peculiar units, energy-length ". How-
ever, we noted in deriving Eq. (2) that the repulsion was
of the form (A p /2m) f(pd ); using Eq. (1), we see that it
follows that the form proportional to 1/d " may be writ-
ten as

Vo(d)= —goe (A /me d )"

with go, a positive dimensionless constant to be deter-
mined (a prime was included to distinguish it from anoth-
er constant to be introduced) and n =2, 4, and 6 for the
three solid types.

We might also mention that a familiar form of the in-
teratomic interactions called the Morse potential has simi-
lar properties. The total interaction energy for a pair of—p(d —do) 2

—P(d —do)atoms is written D (1—e ) =D(1—2e
(d-do)+e '). Again there is an attractive term and a

repulsive term with twice as rapid a variation with dis-
tance and with this the repulsive term is half the attrac-
tive term at the equilibrium spacing do. It is advanta-
geous to have the attractive and repulsive terms of the
same form since then formulas for properties can fre-
quently be written in simple analytic form, as we shall see.
When we earlier used algebraic forms for the interaction
and the exponential [Eq. (2)] for the overlap interaction,
numerical calculations of properties were required; they
were simple but less informative. Since our attractive
terms are algebraic, the algebraic form for Vo(d) is to be
preferred here.

This form for the overlap has been used to study
cohesion and bonding in covalent solids in the zincblende
structure, with good results for the equilibrium spacing,
cohesion, and bulk modulus. %e extend the theory now
to ionic solids in the rocksalt structure.

V. BONDING IN IONIC SOLIDS

In alkali halides there is an energy gain in the forma-
tion of the solid equal to e» —s, (negative, for an energy
gain) from transferring an electron from the alkali to the
halogen. The E» of course refers to the nonmetallic atom,
the c, to the metallic atom. This gain does not depend
upon the coupling between neighboring electronic states.
In Sec. III we indicated that the gain in energy from the
coupling could be included in perturbation theory, propor-
tional to V» /(E» —e, ).

We can, in fact, be more accurate using the special-
point method of Baldereschi" in which the average ener-

gy for a band is approximated by the value at one
representative wave number, called a specia/ point. In the
rocksalt structure with nearest-neighbor interactions, this
leads to an energy gain per atom pair, due to the coupling,
of2

2 2 ]/2E„„»);„s——s, —e» —2[(s» —c,, ) /4+6V» ]

This was obtained by noting that with nearest-neighbor sp
coupling only, two of the valence bands are flat with ener-

gy e». The other valence band has the form

E(k)= —,(e, +e») —[(E» —e, ) /4+f(k)V» ]'~

where f(k) is a function of wave number, to be evaluated
at the special point. %e know the value must turn out to
be equal to the number of nearest-neighbor atoms so that
for small V», Eq. (6) becomes 12V» /(e» —e, ), the per-
turbation theory gain in energy with each of the three p
states coupled to two neighboring s states by V&, and
doubly occupied. Equation (6) will remain appropriate
when the coupling becomes larger in comparison to

We shall not use this modified form for the
coupling energy to modify the 1/d form of the overlap
interaction.

It will also simplify our expressions if we introduce a
covalent energy V2 and a polar energy V3,

V2 ——v'6V, ~= —3.48fi /md

V3 ——(c,, —e»)/2

in analogy with covalent solids. Then we may add Eq. (6)
to the energy gain s» —s, for the alkali halides to obtain
the energy gain per atom pair, Et „d.For divalent com-
pound we must add an additional c& —e, . The results in
terms of V2 and V3 are

Ebo d 2( V2 + V3 )
' for halides (valence I )

Eb,„g———2V3 —2( V2+ V3)'

for chalcogenides (valence II), (8)

Eb,„d=e»—ed —2V3 —2(V2+ V3)' '2 2 i!2

for pnictides (valence III) .

We have noted in the last ease that the pnictides form ion-
ic compounds with Sc, Y, the lanthanides (rare earths),
and the actinides. The third valence electron in these met-
als is of d character.

We can also define a polarity a» = V3/( V2+ V3)' and
a covaleney a, =

~
Vq

~
/(V2+ V3)' . Polarities are typi-

cally 0.8 or 0.9 for alkali halides, 0.6 to 0.8 for chal-
cogenides and about the same for pnictides.

In all cases we use an overlap repulsion of the form, Eq.
(6), proportional for simple ionic solids to 1/d . Only for
predicting lattice constants will we need the detailed form
of the coefficient.

A. Lattice distance

Equation (6} was derived for the overlap of states of the
same energy c;. Here, in KC1 for example, the highest-
energy occupied states are the valence p states on the
nonmetallic atom and the core p states on the metallic
atom. The form of the interaction, Eq. (2), is not simple
when the two energies are different. A convenient ap-
proximation is the use of the valence cz for the inert gas
atom between the two elements; e.g., s» for argon in the
case of Kcl. For compounds with constituents from dif-
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ferent rows we use the geometric mean and write it e;s. It
is also convenient to write the interaction in terms of the
V2 ———3.48A' /md from Eq. (7). Thus the nearest-
neighbor overlap interaction of Eq. (5) becomes

v, (d) =q, v,'/
I
...I

',
with i)o——i)o/(3. 48) . We have found empirically that ilo
depends primarily upon the row of the nonmetallic atom
so we define such a value to give the correct spacing of
the potassium halide. We shall shortly find 4.69 for the
fluorine row, 7.93 for the chlorine row, 9.02 for the bro-
mine row, and 11.48 for the iodine row. We use these for
predicting bond lengths for all ionic compounds.

In tetrahedral structures the second neighbors were
more distant than the nearest neighbors by a factor v 3
and we neglected the corresponding overlap interaction.
In ionic solids this is inadequate for second-neighbor
nonmetallic iona; they are much larger [smaller iM in Eq.
(2)] and are only more distant by a factor of v 2. We use
Eq. (9) for the second-neighbor anion interaction also, us-
ing the same BIO since the nonmetallic ion is the same in
both cases. However the p-state energy for the nonmetal-
lic ion, cz, applies to both interacting ions and is used in
the denominator in place of e;s. For the undistorted
structure the second-neighbor spacing is v 2d. There are
twelve, rather than six, neighbors at that distance, but
each is to be counted only as a half for each anion, so the
overlap interaction energy per ion pair is

F. „„=6i)OVi(1/I6; I
+1/16

I
e

I
) . (10)

For a cesium chloride structure the numbers of neighbors
change and V& becomes v 8V~ . The ratio of distances
also changes and Eq. (10), in terms of the new Vi, be-
comes

Eo er= 2 r)ave[1/I eig I
+243/(2048

I ep I )] .

This specifies all of the parameters needed in the analysis
for both structures.

All three expressions for bond energy in Eq. (8) depend
upon bond length only through the term —2( Vz+ V&)'~,
so to predict the bond length we may simply add this to
Eq. (10) and minimize the result with respect to Vz. The
predicted bond length may then be determined from this
value using

I
Vq

I
=3.48fP/md for the rocksalt structure

(4.02fi /md for the cesium-chloride structure). A con-
venient form for the minimization condition for the rock-
salt structure is

1/Vz =12')0( V2+ Vi)'"[1/
I as I

'+1/(16
I ~p —

I
')] .

V2. The polar energy V& is given by (e, + —ez )/2; the

e;s is the geometric mean of the p-state energies for the
inert gas atoms adjacent to the anion and the cation, and

go depends only upon the row of the anion. The first step
is to substitute values for the potassium halide, including
the observed d, and solve for i)o. This gives the four
values we gave after Eq. (9). We then insert parameters
from Ref. 7. We do not include lithium compounds for
which there is no core p state and a formulation in terms
of core s states would be needed. We shall consider the
trivalent compounds, along with the rare-earth and ac-
tinide compounds in a separate study. The results of solv-

ing Eq. (10) for the monovalent compounds are given in
Table I.

Note that rlo had been set to give the correct value for
the potassium halide and the table demonstrates the extent
to which the theory predicts the variation among different
alkali metals for the same cation. Indeed it does reason-
ably well except for the fiuorides. The cesium compounds
are all in the cesium-chloride structure so the calculation
involved the modified Vi and the modified overlap in-

teraction given after Eq. (10).
Perhaps a more interesting test is the direct application

to the divalent compounds, without further adjustment of
parameters, The results are given in Table II. The agree-
ment again is rather good though we have systematically
overestimated the equilibrium spacing by some 5%. The
agreement would suggest that the form for the overlap in-
teraction may be appropriate for other properties, such as
the other elastic properties or distortions near a defect. In
such estimates it would be preferable to adjust the i)o used
for each material such as to give the correct equilibrium
spacing for that material, as we shall do in treating other
properties of the compounds.

In a recent paper we discussed corrections to the theory
from Coulomb interactions between the electrons. ' We
shall discuss their role in cohesion in the following subsec-
tion. To a first approximation these add a constant term
to the energy which would not affect the estimate of inter-
nuclear distances, but they do change the V& and do have
a weak dependence upon bond length. It is not clear just
how to include them in the theory of internuclear dis-
tances and to some extent their effect would simply modi-
fy the four values of iso which we have obtained here. We
have not yet attempted it.

TABLE I. Internuclear distances d in A predicted for alkali

halides by Eq. (11) (with a modified form for the Cs compounds,
all in the CsCl structure) compared with experimental va1ues in

parentheses.

The left side is proportional to d and the right side indi-
cates how it depends upon the parameters of the system.
V2 is ordinarily much less than V3 so neglecting V2 on
the right gives a direct simple prediction for the bond
length with explicit dependence upon the parameters of
the system.

Here we proceed with greater precision and use Eq. (11)
as a rapidly converging iterative procedure for obtaining

2.36
(2.32)

fit
(2.67)
2.79

(2.82)
2.97

2.79
(2.82)

fit
(3.15)
3.29

(3.29}
3.52

(3.57)

2.93
(2.99}

fit
(3.30)
3.44

(3.45)
3.70

(3.71)

3.15
(3.24)

fit
(3.53)
3.70

(3.67)
3.98

(3.95)
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Ba

2.27
(2.10)
2.55

(2.41)
2.66

(2.58)
2.80
(2.76)

2.69
(2.60)
3.00

(2.85)
3.12

(3.10}
3.28

(3.19}

2.82
(2.73)
3.15

(2.96)
3.28

(3.12}
3.44

(3.30)

3.04

3.37
(3.18)
3.51

(3.24)
3.70

(3.49)

B. Cohesion

Our formalism gives directly a prediction of the
cohesive energy, the energy gained in forming the solid
from free atoms. Equation (8) gave the electronic energy
gain per atom pair in forming the rocksalt structure. To
this is added the overlap interaction energy of Eq. (10),
this being given by a constant of the material times Vz.
We may use the minimum condition, that the derivative
of the total with respect to V2 (or equivalently with
respect to d) be equal to zero, to show that at equilibrium
the overlap interaction is V2/2(V2+ V3)' (correspond-
ing to adjusting go for each material to give the correct
equilibrium spacing). Then the cohesive energy per atom
pair for alkali halides in the rocksalt structure is

E„„=2( V', + V32 )
'~' —V,'/2( V', + V', )

'~' . (12)

Divalent compounds have an additional term, 2 V3',

trivalent compounds have a 2V3+cd —cz added to Eq.
(12). These estimates for the cohesion appear as the
second entry in Table III for alkali halides and in Table
IV for alkaline earth chalcogenides; the corresponding ex-
perimental values are listed in parentheses.

Because V2 is considerably smaller than V3, this esti-
mate is approximately 2 V& ——c,, —sz for the alkali halides.
This is just the energy gain in dropping an electron from
the alkali-metal s state to the chlorine p state. For the di-
valent compounds the estimate becomes the energy gained
in dropping two electrons from the alkaline earth s state
to the chalcogenide p state. These are listed as the first
entry in Tables III and IV.

(For the trivalent compounds, which we have not in-
cluded here, it is the energy to drop two electrons from
the metallic s state and one from the metallic d state into
the pnictide p state. ) %'e see that these simplest estimates
are already in rough accord with experiment, though
slightly too large. Adding the bonding terms [by replac-
ing V3 by (V2+ V3)' ] and the smaller overlap interac-
tion energy makes the estimate even larger, and in poorer
accord with experiment.

There are, however, Coulomb corrections to the energy
which should be included. ' The point is that by using
free-atom term values we have tacitly assumed that the in-
crease, denoted by U, in the energy c& on the nonmetallic

TABLE II. Internuclear distances d in A predicted for di-
valent compounds in the NaCl structure by Fq. (11) (~ith qo fit
to the potassium halides) compared saith experimental values in

parentheses.

Te

TABLE III. Cohesive energies in electron volts per atom
pair, predicted for monovalent compounds in the rocksalt struc-
ture. The first entry is 2 V3, the second is the more accurate Eq.
(12}. In the third entry, the Coulomb correction U* is subtract-
ed from the second entry. Experimental values are in
parentheses.

14.91
17.16
12.3
(7.9}
15.85
16.72
10.3
(7.6}
16.11
16.80
10.0
(7.4)

8.83
10.08
8.8

(6.8)
9.77
10.50
8.2

(6.9)
10.03
10.63
8.0

(6.7)

7.49
8.63
7.2

(6.1)
8.43
9.13
7.0

(6.2)
8.69
9.26
5.8

(6.1)

6.02
7.05
5.7

(5.2)
6.96
7.6
5.5

(5.4}
7.22
7.75
5.5

(5.4)

atom due to the addition of an electron is canceled by the
lowering in that ez by the Coulomb potential, the
Madelung potential —ue /d, from the other ions. The
difference, U'=U —1.75e /d for rocksalt and cesium
chloride structures, is in fact small but not negligible.
The effect of U' on the cohesive energy of alkali halides,
in the approximation that the coupling V2 is negligible, is
a reduction by U' for each atom pair; it is by a reduction
of 3U' for divalent compounds, and 6U" for trivalent
compounds. These U"'s were evaluated for the mono-
valent and divalent compounds in Ref. 12. They are sub-
tracted from the second entry in Tables III and IV to give

Ba

O

19.68
23.05
15.6

(10.4)
22.80
24.58
12.6

(11.0)
23.74
25.06
11.0

(10.4)
24.86
25.83
9.9

(10.3)

9.44
12.20
12.2
(8.0}
12.56
14.16
12.4
(9.7)
13.50
14.60
10.7
(9.3}
14.62
15.53
10.7
(9.4)

Se

7.6
10.30
10.3

10.72
12.31
10.8
(7.3)
11.66
12.88
9.9

12.78
13.69
9.5

(10.3)

Te

8.44
9.93
8.1

9.38
10.66
8.3

10.50
11.38
7.5

TABLE IV. Cohesive energies in electron volts per atom
pair, predicted for divalent compounds in the rocksalt structure.
The first entry is 4 V3. The second is the more accurate Eq. (12).
In the third entry, the Coulomb correction 3U is subtracted
from the second entry. Experimental values are in parentheses.
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the third, which is the tight-binding estimate of the
cohesion. The effect of U' is rather small, as was the ef-
fect of V2, and the cross term depending upon both
should be even smaller; we neglect it here.

%e see that these corrections more than cancel the
bonding terms and give an estimate even closer to experi-
ment than the simple 2 V3 and 4 V3 estimates, particularly
for the fiuorides and oxides where the U values are very
large. This is probably as accurate a theory as we could
hope for from tight-binding theory. Except for the
fiuorides and oxides, it may even be that the simplest
theory, given by the first entry in Tables III and IV, is of
more interest.

C. Bulk modulus

We may similarly predict the bulk modulus for each

system. It is given by

Qpeir~ (Ebonri+Eover)8=
BQpe jr

1 (~'/Qpar)~'«s os+En. er )

Bd'

where Qp„, is the volume per pair. The quantity

Eb,„z+E,„„

is the total energy per pair. Note that we
cannot use Eq. (12) for this purpose since it was explicitly
evaluated at equilibrium, Instead we may write

Eb,„q+E,„„=—2( Vi+ Vi )' +CVp

(also for divalent compounds since the difference is in-

dependent of d). We set the first derivative with respect
to V2 equal to zero to obtain a value for the constant C,
and substitute it in the second derivative with respect to
V, . Then r3 (Eb,„&+E,„„)/Bdis simply ( —2V, /d)'
times this second derivative. Noting that Qp, =2d, we
obtain

8= 9 (Viln )(1—ap)'i (3—ap),

where we have written the result in terms of the polarity,

a, = V, /(V', + V', )'"

TABLE V. The bulk modulus in eV/A' predicted for alkali
halides in the rocksalt structure by Eq. (13), compared saith ex-
perimental values in parentheses. (More usual units are
erg/cm3. )

in order to more clearly display the dependences.
These values of the bulk modulus are compared with

experiment for the alkali halides in Table V. They are not
numerically very accurate, generally too small by a factor
of two, but have the correct general magnitude and
display rather well the trends from one material to anoth-
er. An earlier analysis (unpublished) using the exponential
form of the overlap interaction, Eq. (2) with adjusted
coefficient, gave somewhat better agreement, but perhaps
not significantly so.

The same formula, Eq. (13), applies to the divalent
compounds but we only found experimental values for
MgO and CaO. The predictions and experimental values
(in parentheses) are 0.580 (0.955) eV/A for MgO and
0.216 (0.668) eV/A for CaO. The agreement with exper-
iment for the polyvalent systems appears to be compar-
able to that for the alkali halides. The predicted values
are larger both because of the reduced polarity and the
smaller internuclear distance.

We have not yet incorporated the Coulomb interactions
in these predictions. This would include two steps:: first
is the addition of U' to the energy as in the cohesion, in-
cluding its dependence upon d. This neglects coupling be-
tween the s and the p states, if we also use the 2 V& ap-
proximation to the cohesion, and thus treats the effective
ionic charges for the alkali halides as unity. Second is the
inclusion of U' in the calculation of the effects of the
coupling„Vi. Then the energy difference between levels,
2 V3 should be calculated self-consistently to obtain the
energy gain which replaces the simple 2 Vi. This will re-
quire numerical calculation, in contrast to the formulas
such as Eq. (13) into which we could directly substitute
Vi and V& obtained from free-atom term values and ob-
served internuclear distances.

We have also not yet calculated the shear elastic con-
stants. These cannot be written in such simple terms
since the first- and second-neighbor repulsions enter dif-
ferently and cannot be as simply written as in the CVz
term we used for cohesion and the bulk modulus. It
would also seem necessary to include the Coulomb effects
in the theory since ae2/d in U' varies significantly, and
in a well-known way, with shear. '

D. Griineisen constant

Finally we might evaluate the Gruneisen constant y
which is proportional to the derivative of the bulk
modulus with respect to volume, y= —(Q/28)r)B/BQ;
the factor of —, arises since the definition is related to the
logarithmic derivative of the vibrational frequencies, pro-
portional to the square root of the elastic constants, with
respect to volume. This can also be written in terms of
the variation of the total bond energy with respect to bond
length. Using also the equilibrium conditions, we obtain

0.394
(0.290)
0.080
(0.190)
0.054

(0.164)

0.080
{0.150)
0.041
(0.109)
0.029
(0.097)

0.073
(0.124)
0.034
{0.092)
0.024

(0.081)

0.065
(0.094)
0.025
(0.073)
0.019

(0.066)

1 1 d BE/r)d
g2g2E ygy 2 (15)

Proceeding again with the bond energy E= —2( V2

+ V32)'~i+CV4, we may evaluate y and use the equilibri-
um condition to eliminate C. After some algebra we find
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y 3—
(V2+ Vs)(3Vz+2Vi)

(16) to expect on a third derivative. We note that there was
also error of the order of a factor of 2 for the bulk
modulus.

This is slightly less than three for the alkali halides. The
only experimental value we have found is the value
y=1.60 for sodium chloride, given by Fritz et al. ' The
agreement is not so close, but it is difficult to know what
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