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Thermal quenching of chromium photoluminescence in ordered perovskites. II.
Theoretical models
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Several theoretical models for thermal quenching of chromium photoluminescence in ordered

perovskites, whose parameters are severely constrained by empirical spectral information, are com-

pared. Models based on linear coupling to modes of alg symmetry fail by 6—8 orders of magnitude

to explain the observed radiationless-transition rate. A new model, which combines linear coupling
to an alg mode with quadratic coupling to a t2g mode, is in order-of-magnitude agreement with ex-

periment.

I. INTRODUCTION

The data on T2s~ "22s fluorescence of low-fiel
chromium complexes, reported in the preceding paper'
(henceforth designated I), present a singular theoretical
challenge. Interest in the theory of radiationless transi-
tions has accelerated rapidly in recent years. Much of the
formalism was developed initially for color centers in ion-
ic crystals, and subsequently applied to a wide range of
phenomena, incluchng internal conversion and intersystem
crossing in molecules, thermal ionization and recombina-
tion, energy transfer, paramagnetic relaxation, diffusion,
recombination-enhanced defect reactions and intrinsic de-
fect formation. The present discussion focuses on radi-
ationless deactivation of ions in solids. Although the
theory has been eminently successful in elucidating
trends, ' absolute quantitative tests have been relatively
rare. The present investigation provides an opportunity
for such a test, in a context of some technological signif-
icanc.

Radiationless processes in transition-metal complexes
have been relatively neglected, with some notable excep-
tions. Englman and Barnett and Struck and Fonger
have investigated high-field chromium complexes (ruby
and emerald}. The latter employed a single-
configuration-coordinate model with combined linear and
quadratic coupling which incorporated a number of ad-
justable parameters including the phonon frequency.
They found that the adjusted phonon frequency required
to flt radiationless transition rates was substantially larger
than that required to flt optical line shapes. Tamimura
et al. have applied a similar model to Cu+ in RbMgF3.
Sturge' employed the multimode, linear-coupling theory
of Pryce" to explain radiationless transition rates of Co +

ln KMgF3, a residual discrepancy was attributed to anhar-
monicity.

The object of the present investigation is to achieve a
quantitative understanding of the factors which govern
the quantum efficiency of fluorescence in low-field
chromium complexes. To that end, several theoretical

models are examined in which the parameters are severely
constrained by experimental data on the temperature
dependence of photoluminescence spectra and lifetimes,
presented in I. A preliminary account of this work has
been published in a conference proceedings. '2 The theory
of radiationless transitions is reviewed concisely in Sec. II.
The promoting interaction is considered in Sec. III,
with particular emphasis on the conjectured role of
promoting-mode selection rules. '3 A single-
configuration-coordinate, linear-coupling model is
presented in Sec. IV, and is generalized to a multimode,
linear-coupling model in Sec. V. The combined effects of
linear coupling to a symmetric (ais) mode and quadratic
coupling to an asymmetric ( t2s) mode are explored in Sec.
VI. Finally, the various models are compared and
evaluated in Sec. VII.

II. THEORY OF RADIATIONLESS TRANSITIONS

Radiationless transitions can only occur between non-
stationary states of a system; thus the radiationless transi-
tion rate depends critically on the sort of nonstationary
state which is prepared in a given experiment. ' In the
adiabatic-coupling scheme, radiationless transitions are
presumed to occur between Born-Oppenheimer states
0'„„(r,g},given by

qt„„(r,g}=P„(r,g)g„„(g},
where P„(r,Q) is an eigenfunction of the electronic Hamil-
tonian H, (Q) for fixed nuclear coordinates Q,

H, (Q)=Tx+ V(r, g),
~,(Q)P„(r,Q) = U„(Q)P, (», Q) .

The electronic eigenvalue U„(Q) then serves as the poten-
tial energy of interaction of the nuclei;

[Ttv + U„(Q)]8„„(Q)=E„P„„(Q).

In these equations, r and Q denote, respectively, all elec-
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tronic coordinates and all symmetry-adapted combina-
tions of nuclear coordinates, and TE and TN are the
respective electronic- and nuclear-kinetic-energy opera-
tors.

Radiationless transitions between Born-Oppenheimer
states of the same multiplicity (internal conversion} are
mediated by the nonadiabaticity operator, defmed by

HN~+. =(& E..—)+-=[To 0.]~.
The radiationless transition rate, O'NR, between electronic
states i and f is obtained in first-order, time-dependent
perturbation theory by summing over final vibrational
states and thermally averaging over imtial vibrational
states. It is convenient to distinguish between promoting
modes which mix the initial and final electronic states,
and accepting modes which absorb the difference in elec-
tronic energy. ' In systems of high symmetry, such as oc-
tahedral chromium complexes, promoting and accepting
modes are distinct and one can write the vibrational wave
function in the form

8„„(Q)= g X„„(Q~) g X„„(Q,)

where Q, and Q& are symmetry-adapted normal coordi-
nates for accepting and promoting modes, respectively.
Bartram and Stoneham'6 have obtained the following con-
venient approximation for WNR, applicable to this case:

&Na=(2~/&} 2 1&&f«o} I
~H. /~gp I & (Qo) & I

'

where co& is the angular frequency of promoting mode p,
n~ is its phonon occupation number,

The normalized line-shape function G(Q) is given in
terms of accepting-mode vibrational overlap integrals by

«Q}=IIX&~.1&&fp. I&..& I

a a. Pb

x 5(Qfp
—Q +Qo —Q), (12)

where E =A'(Qo+Q). The function G(Q) also occurs in
spectral line shapes for radiative transitions; however, it is
evident from Eq. (9) that the radiationless-transition rate
involves this function for values of its argument very far
from the range of values accessible to direct observation.
Reliable evaluation of this line-shape function is the cen-
tral problem in application of the theory of radiationless
transitions. Its exact form depends on the model assumed
for accepting-mode interactions; an exploration of alterna-
tive models is the agenda of subsequent sections. For a
center of sufficiently high symmetry that promoting and
accepting modes are distinct, evaluation of the
promoting-mode factors v~ can be considered indepen-
dently of the line-shape function.

nz
——[exp(fico~ /ks T) —1]

fiQO is the energy gap between electronic states in their
respective equilibrium configurations, and the factor v~
incorporates the promoting interaction,

,=( /~,') ) &y,(g. )
~
aH, /ag, (g. )

~ y, (g. ) & )
'.

x5(Efp E)—
P~ =exp( —E;~/ks T)/ g exp( E;r/ktt T), —

where Qo denotes the equilibrium lattice configuration.
Within the harmonic approximation, this expression for
O'NR in the adiabatic-coupling scheme is formally identi-
cal with that appropriate to the static-coupling
scheme, ' ' in which the electronic wave functions are in-
dependent of Q and radiationless transitions are mediated
by off-diagonal elements of the potential-energy operator;
this equivalence was demonstrated previously for more
idealized inodels. ' ' Equation (7) avoids the recently
discredited "Condon" approximation for radiationless
transitions, first introduced by Huang and Rhys, which
has now been shown by Huang to underestimate transition
rates by three orders of magnitude. ' Further simplifica-
tion of Eq. (7) can be achieved by exploiting well-known
properties of harmonic-oscillator wave functions, with the
result

8'NR ——g vpcoq[(nq+1)G(QO —cop)+KG(QO+cop}],

III. PROMOTING INTERACTION

The promoting interaction which mixes initial and final
electronic states is incorporated in the factors v~, defined
by Eq. (11), which are treated as constants. Only promot-
ing modes of tis symmetry can mix A2g and T2g elec-
tronic states. The absence of possible t,s distortions of
the seven-atom octahedron comprising the chromium ion
and its immediate ligands has inspired the speculation
that promoting-mode selection rules" are operative in
these complexes. However, normal modes of elpasolite
have been derived by Lentz i in the zero-wave-vector ap-
proximation in terms of symmetry-adapted displacements
within the ten-atom primitive unit cell. These include de-
generate normal modes of t is symmetry involving
counter-rotating displacements of anion octahedra about
trivalent and monovalent cations, as shown in Fig. 1,
which are fully effective in promoting radiationless transi-
tions. %e will also adopt the same zero-wave-vector ap-
proximation, and assume a single set of degenerate pro-
moting modes; accordingly, we will drop the summation
in Eq. (9).

Spin-orbit interaction splits the Tz term into four
fine-structure levels E'(I z), E"(I 6), and 2 U'(I s), and the
A2s term transforms as U'(I 8).~i Matrix elements of

components of the promoting-mode crystal potential
V;(tis) [=c)H, /c)Q(tis)] in the coupled representation
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are expressed in terms of reduced matrix elements in the
uncoupled representation by exploiting the point-group
analogue of the signer-Eckart theorem:

TABLE I. Values of the promoting-mode factor v calculated
from Eqs. (15} and (20), with the assumptions ro=ao/4 and

CO& =Q)o.

Host crystal ( $015 sec —1
)

&
U'~

I
V«i ) I 1 &~&= ++&~2 IIV«ig)IIT2g&

X(T,T,ib ~A, &

x(U'x, a
i

U'a&

x(U'T, ab ~1 p~&,

& ~211 V(tig)
I I T2 &

=v 3&0
I

V, (tig) I
u &, (14)

where t2g orbitals are designated as g, g, g and eg orbitals
as u, u. It then follows from Eqs. (11), (13), and (14) that
the promoting-mode factor v is given by

v=(n/Mfico ) i (g i V,(t, )
i

u & i (15)

where the factor M, the mass of one halogen ion, arises
from the conversion of mass-weighted coordinates.

In order to obtain a crude estimate of the promoting-
mode factor v, the matrix element in Eq. (15) was evaluat-
ed with free-atom d orbitals expanded in a Gaussian basis,

(=2xy f(r),

u =(x' y')f (r), —

4

f(r)= g C»[(2$» )'/n. 3]'~sexp( —g»r2),

(17)

where C» and g» are tabulated. Bartram and Stone-
ham' have emphasized the importance of employing the

where i =x,y, g labels rows of the t~g representation. The
last three factors on the right-hand side of Eq. (13) are
tabulated point-group equivalents of Clebsch-Gordon
coefflcleilts.

Squares of matrix elements were averaged over magnet-
ic substates of initial fine-structure levels and summed
over final substates. In this manner, it was established
that the radiationless-transition rate is independent of
fine-structure level, with the consequence that no addi-
tional temperature dependence is introduced by spin-orbit
splitting. The reduced matrix element in Eq. (13) was
evaluated for a special case, with the result

Cs2Na YCl6
K2NaScF6
K2NaGaF6

0.33
1.04
1.49

(20)

Values or v calculated from Eqs. (15) and (20) are listed in
Table I. For want of better information, we have assumed
that the chromium-ligand distance is one-quarter of the
lattice parameter (ro ao/4) and tha——t the frequency of
the tig promoting mode is the same as that of the a&g ac-
cepting mode listed in Table III of I; the latter assumption
is probably an overestimate. Bartram and Stoneham'
have further emphasized the importance of orthogonaliz-
ing the pseudo-wave-function to occupied ligand core or-
bitals. This step has not been implemented in the present
instance, and thus the calculated values of v listed in
Table I should be regarded as preliminary. However, it is
evident that a value of v of the order of 10' sec ' is a
reasonable estimate for all three host crystals.

IV. SINGLE-CONFIGURATION-COORDINATE,
LINEAR-COUPLING MODEL

The special case of linear coupling to a single accepting
mode (or, equivalently, to a set of degenerate modes) was
investigated by Huang and Rhys. In that case, the line-
shape function G(Q) in Eq. (12) can be evaluated in
closed form,

6 (0)=exp[ —(2n + 1)So]

exact potential in Eq. (11) rather than a pseudopotential
such as the point-ion potential. The potential corre-
sponding to a unit azimuthal displacement of four ligand
nuclei (each nucleus displaced by —,

' Bohr) is

V, ( t &g )=(35Z/2r o )xy (x —y ),
where ro is the chromium-ligand distance and Z is the
nuclear charge. The required matrix element is then given
by

(g i V, (tig) i
u & =(210v 2Z/ro)

[(n + 1 ) /n ]Ill/2

Cr" XI
( ~

(2So[n(n+ I)]'~ )5(Q—mero),

FIG. 1. Promoting mode of tIg symmetry in ordered
perovskite A28MX6.Cr +. n = [exp(ir»nn/kg T)—1] (22)
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too is the accepting-mode angular frequency and So is the
zero-temperature Huang-Rhys factor, illustrated schemat-
ically in Fig. 7 of I.

Several limiting cases are of interest. In weak coupling,
So &&I, typical of rare-earth impurities, the energy-gap
law applies: CsNa YC16' K2NaScF6b K2NaoaF6'

TABLE II. Values of the promoting-mode factor v (sec ')

determined by fitting values of ln(v. NR) calculated on the single-
configuration, linear-coupling model (5=0) and the multimode,
linear-coupling model (5p 0) to experimental values at the tem-
peratures indicated.

8'NR-v exp( —ap)(n + 1)t'/(2~@)'~~,

a =ln(p/So ) —1,
(23)

(24)

where p( =Qoltoo) is the number of accepting-mode pho-
nons required to bridge the energy gap between electronic
states. In strong coupling, So »1, typical of I' centers,
therllially activated be11avlor is pi'edlcted:

O'NR-v[(2n+ 1)/2@So]'i exp( Eg /k—tt T'), (25)

0.0
0.1

0.2
0.3

'300 K
b550 K.
'650 K.

1.1X10"
1.7X 1022

'7.6g 102

3.3x10"

6.5X10 '

6 3 ~ 1020

1.1 X 10"
1.3 y 1022

1.8x10"
2.2 )& 1020

4 7)( 1020

6 3y 1021

W„R——vexp( —So)S( '/(p —1)) . (27)

Unfortunately, none of these limiting cases is appropri-

where

ktt T' =(@coo/2) cot h( (rcto o/2ktt T),
and where Eq is the curve-crossing energy with respect to
the excited-state minimum, as shown in Fig. 7 of I. Equa-
tions (25) and (26) reduce approximately to the Mott for-
mula in the limit ktt T »%coo. (See the discussion in I.)
Finally, in the limit T=O, the expression for WzR simpli-
fies to

ate for transition-metal complexes where the coupling is
intermediate, So-l, and where radiationless transitions
are important at intermediate temperatures, kttT=Amo.
Accordingly, we have employed a smoothed approxima-
tion of Eq. (21) in Eq. (9), with parameters So, too, and Qo
determined for low-field chromium complexes in ordered
perovskites by moments analysis of fluorescence spectra.
(See Table III of I.) The promoting-mode factor v was
adjusted to fit the experimental value of
ln(rNR)[= —ln(WNR)], inferred from lifetime data re-
ported in I, at a single temperature for each host crystal.
It can be seen from Fig. 2 that the predicted temperature
dependence of ln(~NR) is in reasonable agreement with ex-
periment. However, the adjusted values of v listed in
Table II are too large by a factor of 6—8 orders of magni-
tude, and are physically unreasonable. Put differently, the
radiationless-transition rates predicted with the calculated
value of v are from 6—8 orders of magnitude smaller than
the observed rates. Thus the failure of the single-
configuration coordinate, linear-coupling model tran-
scends the limitations of the Mott formula and compels a
search for a more realistic model.

V. MULTIMODE LINEAR-COUPLING MODEL

t
r \ I

FIG. 2. Temperature dependence of the lifetimes of radia-
tionless transitions in Cs2NaYC16. Cr3+. The sohd line was ob-
tained from the measured lifetime reported in I by subtracting
the extrapolated radiative transition rate from ~ '. Long-
dashed and short dashed lines -are calculated from Eq. (9) with
G(0) given, respectively, by Eq. (21) (single-configuration-
coordinate, linear-coupling model) aud Eq. (34) (multimode,
linear-coupling model) for 5=0.3. The promoting-mode factor
was adjusted as indicated in Table II.

The extremely slav radiationless-transition rate predict-
ed for low-field chromium complexes by the single-
configuration-coordinate, linear-coupling model is partly
a consequence of the very large number of phonons re-
quired to bridge the energy gap in these systems. Accord-
ingly, a modd which takes account of the range of vibra-
tion frequencies would appear to be more promising.
Such a model has been developed for the case of linear
coupling" and has been applied with some success to a
transition-metal complex. '

Since a closed-form expression for the normalized line-
shape function G(Q) is no longer available in the case of
linear coupling to many modes with a range of frequen-
cies, it is necessary to develop suitable approximations.
The multimode problem was first considered by
O' Rourke, who showed that the Fourier transform of
the line-shape function G (Q) has the forin

I (t)= J dQ exp(iQt)G(Q) =exp[ —S +g (t)], (28)



THERMAL QUENCHING OF CHROMIUM. . . . II.

g {t)=f dcoI [n(co)+1]exp(icot)

+n(co)exp( —i cot)) A (co),

S=N2PlM+1AN
(29)

(30)

n (co) = [exp(Ace/kii T)—1] (31)

The function A (co) is the coupling constant per unit vi-

brational frequency range, and S is the temperature-
dependent Huang-Rhys factor. Equations (28)—(31) pro-
vide the point of departure for the approximations of
Pryce" and of Weissman and Jortner.

Pryce" developed an expression for G(Q} from the
series expansion of exp[g (t)] in the inverse Fourier
transform,

8i(Q) =(S '/2m) f dt exp( iQt)g (t) .— (33)

He then invoked the central-limit theorem to obtain an
approximate expression for 8„(Q) which exploits the
smoothing effect of the n-fold convolution for large n A.
difficulty with this approximation is that 8i(Q) is bimo-
dal at finite temperature, since it includes both absorption
and emission of phonons; consequently, the approxima-
tion is adequate only for inconveniently large values of n

The refinement of Weissman and Jortner ' proceeds
from an alternative expansion of the line-shape function
which emphasizes the net number of phonons emitted. A
major further simplification is achieved by replacing co by
its average value coo in Eq. (31); this "narrow-coupling"
approximation, which is justified for a relatively sharply
peaked distribution A (co), yields the approximate expres-
sion

G (Q)=exp[ (2n + 1—)SO]

X g [(n+1)/n] I!~
~

2SO[n(n+1)]' )

XF(m+ko ko Q) (34)

where

+(m +ko, ko, Q}=[2~(m +ko }cro]

Xexp[ (Q mcoo)i—/2(m —+2ko}cro],

(35)

G(Q) =exp( —S) 5(Q)+ g (S"/n!)8„(Q), (32)
E

where 8„(Q) is the n-fold convolution of a normalized
single-phonon side band given by

and n is defined by Eq. (22}. This expression for the line-
shape function is essentially identical to that for the
single-configuration-coordinate, linear-coupling model ex-
cept that the 5 function in Eq. (21) has been replaced by a
normalized Gaussian function in Eq. (34) whose width in-
creases with the net number of emitted phonons.

In principle, one can recover the distribution function
A (co) by deconvolution of resolved fluorescence spectra at
low temperature. ' However, the narrow-coupling ap-
proximation has the advantage that it involves only the
zeroth, first, and second moments of A (co); i.e., So, coo,

and crL respectively. These quantities in turn can be relat-
ed to the second moment N2[((iilQ)i) —(A'Q) ] of the
complete line-shape function, as follows: The quantities
(Q") can be derived from the Fourier-transformed line-
shape function r{t)by series expansion of exp(i Qt) in Eq.
(28),

(Q")=[c}"r(t}/c}(it)"], ,
The right-hand side of Eq. (40}can then be evaluated with
the help of Eq. (29) to yield the relation

1Vz ——Soli {coo+cto)coth(i)icoo/2ka T) . (41)

Comparison with Eq. (8) of I reveals that the empirical
quantities So and coo listed in Table III of I can be reinter-
preted as So(1+5),where

5=c 0'/~0'

and the mean phonon frequency coo defined by Eq. (38),
respectively.

Radiationless-transition rates were calculated as a func-
tion of temperature by incorporating Eqs. (34)—(39) in Eq.
(9). The parameters So(1+5) and coo were determined
from Table III of I. Calculations were performed for a
range of values of 5, and for each value the promoting-
mode factor v was adjusted to fit the experimental value
of ln(rNR) at a single temperature for each host crystal. It
is evident from Table II that no significant improvement
in v was achieved relative to the single-configuration-
coordinate, linear-coupling model (5=0) presented in Sec.
V; the advantage provided by a range of phonon frequen-
cies was offset by the reduction of So. Furthermore, the
slope of ln(rNa) versus T was diminished, as illustrated
in Fig. 2 for Cs2NaYC16. Cri+; essentially similar curves
were obtained for the other two host crystals, and in each
case, 5=0 corresponds best with the experimentally deter-
mined activation energy. Thus we are forced to conclude
that the multimode linear-coupling model also fails to ex-
plain the observed high radiationless-transition rate of
low-field chromium complexes in ordered perovskites.

VI.

TYCHO-COORDINATE,

QUADRATIC-COUPLING MODEL

ko ——[—m+(m +ct )' ]/2,
So ——f dco A (co),

~,=S f d~a(~),
0'O=SO dco co A {co)—coo,

2 —1 2

Q

(38)

(39)

The preceding sections attest the failure of models
based on linear coupling to modes of aig symmetry to ex-
plain radiationless transitions in low-field chromium com-
plexes, even when extended to include a range of vibration
frequencies. Such a linear-coupling model was applied
%ith some success to Co in KMgF3 by Sturge %ho
attributed a residual discrepancy to anharmonicity. A1-
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though anharmonicity could be entertained as an ttd-hoc

hypothesis to explain the much larger discrepancy in the
present case as well, we have sought an alternative ex-
planation within the harmonic approximation.

An obvious extension of the single-configuration-
coordinate model is the inclusion of quadratic couphng;
i.e., the assumption of different vibration frequencies in
different electronic states. Line shapes corresponding to
pure quadratic coupling have been discussed by Keil,
and the method of Struck and Fonger, ' in which vibra-
tional overlap integrals are evaluated numerically, permits
computation of line shapes for combined linear and quad-
ratic coupling. However, quadratic coupling to a ts modes
is expected to be relatively weak for chromium complexes,
on the basis both of the Tanabe-Sugano diagram~4 and of
the observed symmetry of absorption and emission lines.
(The transformation from the Tanabe-Sugano diagram to
a configuration-coordinate diagram necessarily introduces
both quadratic coupling and anharmonicity, which were
neglected in I. However, these effects are much too small
to account for the observed radiationless-transition rates. )

The degree of quadratic couphng to the a~s mode in
K2NaGaF6. Cr + is known from the resolved vibronic
structure of low-temperature absorption and fluorescence
spectra; the a,s-mode frequencies in the Tis and "Ats
states are, respectively, 556 cm ' and 568 cm '. It was
established by numerical line-shape simulation that an
enhancement of the radiationless-transition rate by less
than 2 orders of magnitude can be expected from this de-
gree of quadratic couphng.

The model can be further extended to include coupling
to accepting modes of lower symmetry. Distortions of the
seven-atom octahedron which are even under inversion in-
clude symmetry-adapted displacements of a ts, eg, and t2g
symmetry. Optical absorption and emission spectra with
resolved vibronic structure, together with Raman spectra,
provide evidence for appreciable coupling to es and t2g
modes as well as to a is modes. ' Both linear coupling
(Jahn- Teller effect) and quadratic coupling to low-
symmetry modes are expected. The Tanabe-Sugano dia-
gram no longer suffices to characterize the system; when
spin-orbit couplin~ is neglected, a complete description of
the A ts and T2 electronic states involves four
adiabatic-potential-energy surfaces in a six-dimensional
configuration-coordinate space.

The additional degrees of freedom in this extended
model provide alternative possibilities for radiationless-
transition mechanisms. In particular, it is found that a
tzs distortion effects a profound reduction in crystal-field
splitting, which is manifest as strong quadratic coupling.
The reason for this reduction is apparent from a quahta-
tive comparison of the electronic wave functions for max-
imum spin projection,

only one orbital, t2g(g) in the ground state, and eg(U) in
the excited state. These two orbitals are illustrated in Fig.
3, where it can be seen that the lobes of the t2s(g) orbital
in the His state avoid the ligands, whereas those of the
es(v) orbital in the T2s state are directed toward the
ligands. This difference is the source of the crystal-field
splitting, and it is evident from Fig. 3 that a tax(g) dis-
placement enhances the energy of the g orbital and dimin-
ishes that of the U orbital, independent of its sign. Thus
the elastic constant is enhanced in the ground state and
diminished in the excited state, with consequent quadratic
coupling. The t2s(g) distortion is linearly coupled to the g
and t) orbital components of the T2g state, as well, but
that (Jahn-Teller) coupling is estimated to be weaker than
hnear coupling to the a ts displacement.

In order to render the model more tractable and to iso-
late its essential features, we have adopted a simplified
version in which we have restricted consideration to the
a is coordinate plus one tz (g} coordinate, and to the Atg
electronic state plus the g-orbital component of the ~T2g

state; i.e., to two adiabatic-potential-energy surfaces in a
two-dimensional configuration-coordinate space. The
simplified model is illustrated in Fig. 4.

The adiabatic potential energies in a point-ion approxi-
mation are given by

E( A2g)= —12Dq+5Dq[1 —cos(4$))+Mrogg~/2,

(45)

E(~T2sg) = 2Dq —5Dq[1 —co—s(4$)]+Mco~ggi2,

(46)

where

f(t2( T))e T2,M = ~,g}=—
I g q U

I
(44)

The Slater determinants on the right-hand sides differ in

FIG. 3. (a) a ~~ and tax(g) displacements of ligands in an octa-
hedral chromium complex. (b) rig(g) orbital in Aqg state and

e~(U) orbital in T2~ state. It can be seen that the energy of the
former is increased and that of the 1atter is decreased by a t2g(g)
displacement.
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2—

0-
~ 1 ~ ~ I ~ ~ ~ 0 I I ~ ~ ~ ~ ~ ~ I ~

$
N I ~ ~ ~ ~ I ~

2

FIG. 4. Two-configuration-coordinate model with linear cou-

phng to an a~s mode and quadratic coupling to a tt {g) mode.
Only the g orbital component of the "T2 electronic state is re-

tained in the model.

T ' (10 K ')
FIG. 6. Temperature dependence of the lifetime of radiation-

less transitions in CsqNaYClq ((3), KqNaScF6 {Cl), and
K~NaGaF6 (6), calculated from Eq. (9) and from simulated line
shapes for the two-configuration-coordinate model with param-
eters adjusted for a least-squares fit. Solid lines were obtained
from the measured lifetimes reported in I by subtracting the ex-
trapolated radiative transition rate from ~ '.

1{=tan '(Q~/2rc ),
Dq= Dq[c1 +(Q { /r2)c]

(4'7) and

E( T2s, g) 2Dqc+M—cog Qr/2, (50)

E (4A2s }= 12Dqo+ Mrs—/Qr /2 (49)

8

the elastic potential energy has been added to the right-
hand side of Eqs. (45) and (46), M is the mass of one halo-
gen ion, Qg/2 is its displacement, and rc is the nearest-
neighbor distance. In the harmonic approximation, Eqs.
(45) and (46) reduce to

where

co/=co;+105Dqz/2Mrc .

Line shapes for quadratic coupling to the tzz mode and
linear coupling to the aIs mode were simulated numeri-
cally by the method of Struck and Fonger, ' which ex-
ploits the Manneback~ recursion relations for vibrational
overlap integrals. Contributions to G(Q) were accumu-
lated in frequency intervals of width roc, the frequency of
the a,s mode. It follows from Eq. (12}that the composite
line shape is a convolution of linear and quadratic com-

6— TABLE III. Adjusted parameters for the two-configuration-
coordinate, linear- and quadratic-coupling model. Values in-
ferred from resolved vibronic structure of low-temperature spec-
tra are shown in parentheses for comparison.

CsqNa YC4 KqNaScF6 K2NaGaF6

~ ~ ~ 0 \ I ~
I

0 r I r I 0 ~

50 400 750

TEMPERATURE (K)

So
RQO (cm ')
%coo (cm ')

Am~ (cm ')
v (10" sec ')

Ace; (cm ')

6.86
11 500

230 (300)'
120 (139)'

1.4

73

3.50
13750

369
243

0.9

161

3.12
13 950

393 (568)
297 (234)'
24.0

FIG. 5. Temperature dependence of the square of the full
width at half maximum of chromium fluorescence spectra in
Cs2NaYC16 {Q'), KqNaScF6 {0), and KqNaGaF6 {6). Sohd
lines are from simulated line shapes for the two-configuration-
coordinate model, with parameters adjusted for a least-squares
fit.

'R. %.Schwartz, Inorg. Chem. 15, 2817 (1976).
J. Ferguson, H. J. Guggenheim, and D. L. %ood, J. Chem.

Phys. 54, 504 (1971).
'H. V. Gudel and T. R. Snellgrove, Inorg. Chem. 17, 1617
(1978) (for Cs2NaInC16).
Calculated from Eq. {51);not independently adjusted.
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tity was employed rather than the second moment, be-
cause it could be determined more precisely from mea-
sured fluorescence spectra. The temperature dependence
of WNR from Eq. (9) was simultaneously fit to the mea-
sured values of rNR, reported in I, as shown in Fig. 6. The
adjusted values of the parameters are listed in Table III,
where they are compared with independently determined
values.

It is evident that the optimum values of the
promoting-mode factors v in Table III are in far better
agreement with the calculated values in Table I than are
those for the multimode linear-coupling model in Table
II. Optimum values of the ground-state t2s vibration fre-
quencies coy compare favorably with values derived from

I
I 0 I I I I I I I

J
I 1 l $ I i I I 1

f
E I I I I i I I I

i
t I I I l I I I

-2 0 2 4 6

ENERGY (1000 cm "
)

FIG. 7. Comparison of simulated fluorescence line shapes
of Cs2NaYC16..Cr + at 300 K for the single-configuration-
coordinate model and the two-configuration-coordinate model
with parameters optimized in each case. The line shapes are
virtually indistinguishable, and both agree equally well with ex-

periment.

-10-

-20-

ponents; the required convolution integral was performed
numerically. The parameters of this model include the
zero-temperature Huang-Rhys factor So and vibration
frequency a&0 of the a~s mode, the ground-state vibration
frequency co~ of the t2s mode, and the promoting-mode
factor v; the same number as for the multimode, linear-
coupling model. The temperature dependence of the
square of the full width at half maximum of the compos-
ite line shape was fit to empirical data from the fluores-
cence spectra reported in I, as shown in Fig. 5; this quan-

0

—10-

-20:

-30-

—10-

-35—

—45—

I I I s I 5 % l I 1 8 s 1 ~ % ~ 1 4
I

l ~ I ~ I I ~ ~ I

—
I 0 0 1 0 20

ENERGY (1000 cm ' )
FIG. 8. The simulated line shapes of Fig. 6 for (a) the single-

configuration-coordinate model and (b) the two-configuration-
coordinate model, compared on a- semi-log scale. Although the
line'shapes are virtually indistinguishable in the range of fre-
quencies accessible to direct observation, they differ by eight or-
ders of magnitude at the frequency Ao corresponding to the gap
energy.

Q-
r e v v ~ e r e e

~
~ e v s w ~ e ~ e I e ~ e s r w e

-10 0 10 20

ENERGY (1000 cm ' )

FIG. 9. Components of the simulated line-shape function for
the two-configuration-coordinate model. (a) Line-shape func-
tion for linear coupling to the a&~ mode. (b) Line-shape function
for quadratic coupling to the t2~ mode. (c) Composite line-shape
function obtained by numerical convolution of (a) and (b).
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vibronic structure of low-temperature spectra. The ais
vibration frequencies coo are considerably less than those
derived from vibronic structure, but are comparable with
the values determined for the single-configuration-
coordinate, linear-coupling model in I; as in that case, ~0
is an effective frequency which incorporates contributions
of both lattice modes and resonances of a is and es sym-
metry. Thus the two-coordinate, quadratic-coupling
model is in substantial quantitative agreement with all of
the available data.

VII. DISCUSSION AND CONCLUSIONS

The data presented in I on the temperature dependence
of fluorescence lifetimes and spectra of low-fiel chromi-
um complexes in ordered perovskites serve to characterize
both radiationless-transition rates and adiabatic-
potential-energy surfaces. We have investigated several
theoretical models in an effort to provide a consistent
quantitative explanation of these data. Models based on
linear coupling to ais modes were found to fail by many
orders of magnitude to explain observed transition rates
when constrained by empirical spectral information. The
success of the two-coordinate, linear- and quadratic-
coupling model within the harmonic approximation can
be understood from consideration of Figs. 7 and 8. The
simulated line shape of the single-configuration-
coordinate, linear-coupling model is compared with the
composite line shape for the two-coordinate, linear- and
quadratic-coupling model in Fig. 7. Parameters were ad-
justed in both cases to flt the temperature dependence of

the square of the full width at half maximum. The two
line shapes appear to be virtually indistinguishable over
that part of the energy range which is accessible to direct
observation, and either one is in satisfactory agreement
with the measured fluorescence spectrum. Comparison of
the same two line shapes on a semi-log scale over a wider
energy range, as shown in Fig. 8, is much more revealing.
The two line-shape functions differ by many orders of
magnitude at the gap energy, ih'Qo, far beyond the range of
measurable spectra, thus accounting for the differences in
predicted radiationless-transition rates. The origin of this
difference can be understood from a semiclassical model '

in which the line-shape function for linear coupling is ap-
proximately Gaussian, while that for quadratic coupling
is approximately exponential. The quantum-inechanical
line shapes are similar, and thus are approximately para-
bolic and linear, respectively, on a semi-log scale. It is
evident from Fig. 9 that the linear tail characteristic of
quadratic coupling is preserved in the convolution of
line-shape functions in the two-coordinate model, with
consequent enhancement of the radiationless-transition
rate. The sensitivity of thermal fluorescence quenching to
constituents beyond the immediate ligands now finds
qualitative explanation in the influence of those constitu-
ents on the t2s-mode frequency, cof.
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