
PHYSICAL REVIE%' 8 &GLUME 34, NUMBER 4 15 AUGUST 1986

Electronic structure and positron states at vacancies in Si and GaAs
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The self-consistent electron structures of the perfect Si and GaAs lattices are calculated by the
linear-muffin-tin-orbital (LMTO) band-structure method within the atomic-sphere approximation
(ASA). Monovacancies in different charge states are treated by the self-consistent LMTO-ASA
Green's-function method. The corresponding positron states are determined by the same methods
and positron annihilation characteristics are calculated. The results are compared with recent exper-
iments.

I. INTRODUCTION

Although there exist several experimental methods (e.g.,
optical, transient capacitance, electron-spin-resonance,
etc.) for measuring defect-induced properties in semicon-
ductors, the identification of the different types of defects,
especially in compound semiconductors, is still on a rather
unsatisfactory level. ' Recently, the positron annihilation
technique, ' long established as a major tool for studying
'atomic defects in metals, has emerged as a potentially
powerful tool for identification of point defects in semi-
conductors. However, the interpretation of, e.g., posi-
tron lifetime data is made difficult by ambiguities. For
example, certain lifetime components corresponding to
trapped positrons in GaAs are associated with different
types of defo:ts in different works ' and there is an ap-
preciable scatter even in the extracted positron lifetimes
for the perfect crystal. The reason for these difficulties
lies in the large number of different defects (vacancies,
self-interstitials, impurities, antisites, and complexes of
them) which can in addition exist in several charge states.
The lack of reliable calculations for positron states and
predictions for annihilation characteristics at different de-
fects has hampered an understanding. This paper is
meant to remedy the need for theoretical work by
representing results from detailed calculations of electron-
ic structure, positron states, and annihilation characteris-
tics in perfect Si and GaAs and at monovacancies in these
crystals.

The positron lifetime technique is a well-established
method for monitoring the development of vacancy-type
defects (i.e., vacancies, vacancy clusters, vacancy-impurity
complexes). ' These defects can trap a positron and, due
to the change of the electronic environment, the positron
hfetime changes from the perfect lattice value. For the
interpretation of the experimental results a comparison
~ith theoretical calculations has turned out to be very
fruitful. ' In order to calculate the positron wave-
function and annihilation characteristics, the electronic
structure of the perfect and defected lattice is needed. In
metals the simple construction of the charge density by

superposition of free atomic densities is a reasonable first
approximation in an efficient and practical calculational
method, in which the positron wave function is calculat-
ed for the full three-dimensional potential. The potential
can be constructed from the charge densities of the host
metal (and possible impurity) atoms, placed at appropriate
positrons. The non-self-consistency of the electron densi-

ty has been found to play a minor role in the determina-
tion of the positron lifetime. This is because the lifetime
is related to an overlap integral of the positron and elec-
tron densities: when the electron density relaxes towards
self-consistency the positron density follows, so that the
change in the overlap is small. On the other hand, the
positron energy eigenvalue can be rather sensitive to the
detailed shape of the electronic density.

In coualent semiconductors with directed bonds the elec-
tronic density constructed by superposing atomic densities
is doubtful, especially for a reliable estimation of positron
energy levels. In this work we use the linear-muffin-tin-
orbital method (LMTO) to calculate the self-consistent
electronic structures. ' ' The atomic-sphere approxima-
tion (ASA) is used, i.e., potentials and charge densities are
spherical averages within spheres, centered both at host
nuclei and (in semiconductors) at interstitial sites. The
spheres overlap and fill up the whole lattice space. The
electron structure is calculated self-consistently within the
local-density approximation for electronic exchange and
correlation. The electronic structure of the perturbed crys-
ta/ is calculated by the LMTO Green's-function method, '

in which one or several perfect-lattice atoms are substitut-
ed by defect atoms and the resulting electronic structure is
calculated self-consistently inside a region around the de-
fects and their nearest neighbors. The same methods are
used to calculate positron states. In the present calcula-
tions the ASA is used both for the perfect crystal and for
the defected one. The geometry violation due to the ASA
in the interstitial region is not severe for the electron
states, ' and this holds also for the positron states as dis-
cussed below. More important, especially for the energet-
ics, is that the electron charge density is determined self-
consistently.
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The LMTO-ASA method has previously been used for
the calculation of positron states in bulk metals by Singh
and Jarlborg. ' They showed that the ASA describes well
the momentum distribution of the annihilating electron-
positron pair in the first BriBouin zone. For the Umklapp
processes a simple correction beyond the ASA is needed.

The LMTO-ASA Green's-function method has previ-
ously been successfully applied in predicting the proper-
ties of chalcogen and transition-metal ' impurities in sil-
icon. In this paper we present results of LMTO-ASA
Greens-function calculations for vacancies in Si and
GaAs. In the calculations the ions around the vacancies
are not allowed to relax from their perfect-lattice posi-
trons, i.e., calculations are made for "ideal"' vacancies. In
Sec. II we briefly describe the LMTO-ASA method and
the corresponding Green's-function method. Moreover, in
Sec. II the construction of the positron potential and the
calculation of the positron lifetime are discussed. The re-
sulting electronic structures of the vacancy defects are
described rather carefully in the beginning of Sec. III, in
order to understand the response of positrons to vacancies
in semiconductors. Thereafter, the results for the positron
annihilation characteristics at vacancies in Si and GaAs
are presented and compared with experimental results. In
Sec. IV we summarize our results.

II. THEORY

A. Electronic structure calculations

The LMTO method for self-consistent calculation of
the electronic structure of perfect crystals, as well as its
Green's-function extension to treat defects in solids, have
been discussed in detail in Refs. 14 to 17. We shall there-
fore comment only on those aspects which are particularly
relevant to this calculation.

In the LMTO method' ' the crystal space is divided
into spheres and an interstitial region and in the ASA the
spheres are expanded so that they fill the space. In the
case of close-packed structures all spheres are centered
around atomic nuclei and the radius of the spheres is
equal to the Wigner-Seitz radius. For the semiconductors
with diamond or zinc-blende structures considered in this
work, half of the spheres are centered at nuclei and half at
interstitial sites.

The valence electron density n(r) is calculated, in ac-
cordance with the density-functional theory, as a sum
over occupied single-particle states belonging to the
valence bands:

'(('J(r) = g Par. (E rR)i/Rr. , /

where rR ——r —R, L is a compact notation for angular
momentum quantum numbers I and /n, pitL(E, ra) is the
solution of the scalar relativistic Schrodinger equation at
energy E, and uRL J are the eigenvectors. In the LMTO
method the basis function P's are linearized around the
fixed but arbitrary energy E R/

4RL(E rR) (( RL(E R/ rR)+(t RL(E R/ rR)(E E R/)

where the dot denotes the derivative with respect to ener-

gy. PitL and P RL, are orthogonal and they vanish outside
the sphere centered at the site R by definition.

The exact (not linearized) wave functions may on the
other hand also be expressed as a multicenter expansion of
energy-dependent functions, the so-called muffin-tin orbi-
tals (X ), which extend over all space:

4'(E, r)= gxRr. (E,r )u J(E) . (4)

4

where P
~ is a linear combination of the orthogonal P and

P corresponding to a certain set (a) of muffin-tin orbitals
obtained by using a certain multipole field as an envelope
function. '6'22 In (5) the expansion matrix h (E) has the
form'6

I a(E) (pa(E)) —l/2[ pa(E)+Sa][ps(E)]—i/2

Above, p, the so-called potential function, is a diagonal
matrix which depends on the potential inside the sphere at
R via the logarithmic derivative at the sphere radius, but
not on the atomic positions. The information about the
atomic positions is contained in the structure constant
matrix S . It depends on the chosen muffin-tin-orbital
(MTO) representation a but not on the potential or the
scale of the structure. S can be expressed in terms of the
familiar canonical structure constant matrix S as' '

In the ASA, where the interstitial region is neglected, X
has the form'6

~RL(E rR) 4RL(E rR)+ y '(R'r. '(E rR')~R'L', Ri(E)
R', L'

n(r)= g (Pr(r) ~'.

For the core electrons, frozen atomic orbitals are used. In
the LMTO-ASA method the wave functions g/ may be
cxpIessed as one-center expansions:

S =S(1—aS)
Here, a is a diagonal matrix determining the MTO repre-
sentation.

Inserting Eqs. (6) and (7) into Eq. (5) we obtain the fol-
lowing multicenter expansion:

f&(E,r) = g QitL(E, rR)uRL /(E)

+ X g 4'itr. «ra)lpRL«)l '"[—pRL «)6ait~rr. +SRL aLj[pkr«)] '"Micr, ,«) .
R,I. R', L'



ELECTRONIC STRUCTURE AND POSITRON STATES AT. . .

This expression is equivalent to the one-center expansion
(2) if the second term on the right-hand side vanishes.
This condition gives the Korringa-Kohn-Rostoker equa-
tions

g [ P—as. (E@aa&s.s. +~a's. ', aL]
R,I.

X[PaL(E)] ' 'uaL s(E)=0, (9)

in the ASA, if the potential function is calculated exactly
for every energy. In the linearized method the following
parametrization is used for the potential function

E—CRI
PaL«) =

Ca/)( ya/ +a/)+~a/
(10)

+g1/2g &Op 1 /2

where CRI, ARI, and yR~ are potential parameters and uR~
is the above-mentioned matrix determining the MTO rep-
resentation. The potential parameters are determined at
the energy E„RI and depend on the potential inside the
sphere R but not on the lattice structure. Using this pa-
rametrization the tail-cancellation condition reduces to an
eigenvalue problem.

For a perfect crystal we use the Bloch symmetry and
solve for the energy eigenvalues E,(k) and the eigenvec-
tors urs, (k), where k is the Bloch vector and T labels
the atom in the unit cell. The eigenvectors are then used
in a one-center expansion similar to (2) in order to calcu-
late the spherical charge densities.

For the defect calculations, the perfect-lattice Green's
function has first to be constructed. The effective Hamil-
tonian corresponding to the secular equation (9) reads as'
(in the following we drop the indices R and I. )

ImGo'(E) =~No'(E), (13)

and the complete Green's function can be calculated in a
general point z of the complex energy plane by the Hilbert
transform

y, ~ No (E')
Go'(z)=i, dE' . (14)

In practice, we calculate the Hilbert transform using the

projected integrated DOS, no'(E), so that

no (E2) s'2 no (E')~0

Go'(z ) = — dE',
z E, —Ei (z E')'

where Ei and E2 are the bottom of the lowest LMTO
band and the top of the highest LMTO band, respectively.
In the LMTO Green's-function method, contrary to many
other Green's-function methods, there is a natural cutoff
for the energy integral in the Hilbert transform. The use
of the integrated DOS instead of the DOS reduces consid-
erably the number of energy points needed in the Hilbert
transform. The projected integrated DOS is calculated
using the tetrahedron method as '

where we have chosen a =y, because this MTO represen-
tation is used to calculate the band structure. The sub-
script 0 refers to the unperturbed system. The corre-
sponding Green's function is defined formally as

Go'«) =« —io+ —Ho') ' .

The imaginary part of the Green s function is proportion-
al to the unperturbed projected density of states (DOS),
1.e.,

bands

noTs„, /T~ag (E)=( Vaz) ' dE' g d'k exp(ik R)u Ts. ,(k)uTs, J(k)5(E—E,(k)),
El V~2

where R is a Bravais-lattice vector and Vaz is the volume
of the Brillouin zone.

Instead of using Go as the starting point in the
Dyson's equation for the defect problem, it is more con-
venient to use the Green's-function matrix go correspond-
ing directly to the secular equation (9). The matrix go is
defined as"

go(E)=(Po i0+ —S )—
where 0 denotes the unperturbed system and a refers to a
chosen MTO representation. The Green's function g is
related to Gr defined above by the transformations

g (E)=(u y) + —g "(E) . (19)
P (E) P (E) P (E)

These equations hold for the unperturbed system as well
as for the perturbed one. Moreover, Eq. (19) gives the

general transformation between any two MTO representa-
tions.

The Green's function for the perturbed system is ob-
tained by solving the Dyson's equation'

I 1+go(E)[P (E)—Po(E)) )g (E)=go(E), (20)

which is essentially a finite set of linear equations. The
Dyson's equation for the perturbed Green's function g is
used instead of the Dyson's equation for the Hamiltonian
Green's function G, because the perturbation is then
more localized. Furthermore, it is diagonal in R and I..

The Dyson's equation is solved iteratively. In the first
iteration the perturbation hP (E) is determined from a
starting potential, the perturbed electron density is calcu-
lated, and the potential for the next iteration is obtained in
the local-density approximation. In the actual calcula-
tions the Dyson's equation (20) is solved in the a=y' rep-
resentation, where yRI are the potential parameters corre-
sponding to thc potential Qf thc I th iteration. In this way
numerical inaccuracies due to the poles of P are avoided,
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since the transformation (18) takes this simple form only
in the y representation. The perturbed Green's function is
then transformed back to gr via (19) and G" is obtained
from (18). The calculation of the electron density is per-
formed by integrating 6"(E) along a rectangular path in
the complex energy plane. This path starts on the real
axis below the valence bands and it ends on the real axis
at the top of the valence band or at the Fermi level for
semiconductors and metals, respectively. The deforma-
tion of the integration path from the real axis into the
complex plane smooths the structure in the Green's func-
tion and makes an accurate density calculation with few
energy points possible. 2

The positions of the bound states are determined by
searching for the solutions of the equation

the positron. 4'e treat V„ in the local-density approxi-
mation and use the parametrization

V„(n)= V'~„,(n )[f(n, cs )]'

where V~~(n ) is the correlation energy for a positron in a
homogeneous electron gas with density n . In Eq. (24),
f(n, es) is a reduction factor, which accounts for the di-
minished response (screening) of semiconductors to
charged particles, in comparison with (simple) metals
where f=1. This has been discussed by Brandt and
Reinheimer, ' and we use the following interpolation for-
mula to fit their numerical data, obtained from screening
calculations for point charges in a model semiconductor:

1/30.37es
(25)

det[1+gt'(E)M '] =0 (21) .

below the valence bands and in the band gaps. The con-
tribution to the electron density from bound states below
the valence bands is taken into account by starting the
complex energy path on the real axis below the lowest
bound states. For the bound states within a band gap a
separate complex path is introduced to allow for a dif-
ferent occupancy of these.

The unperturbed Green's function is correct to second
order in E E„. In o—rder to improve the description in
the perturbed region we have used the following third-
order pyrametrization for the potential function

~Ri' «)=~R' «+uRI« E.RI)'»— (22)

where pqi —J($Ri(—r)) r dr and P'2"(E) is the
second-order function (10).

B. Calculation of positron states

The complete solution of the problem of a localized
positron interacting with the electrons around a defect re-
quires the simultaneous self-consistent calculation of the
electronic structure and the positron state. This is possi-
ble in the two-component density-functional theory, 2

but the application of the theory beyond simple model
systems such as the jellium vacancy ' is very time-
consuming. We therefore follow the conventional route
and first solve for the electron structure problem without
the positron present. Thereafter the positron state is cal-
culated modeling the electron-positron correlation by an
electron-density-dependent correlation term in the posi-
tron potential. The model calculations ' employing the
full two-component theory have shown that this approxi-
mation is a good one, in particular, for the positron life-
time, which is central in defect spectroscopy.

We have used the same techniques (described in Sec.
II A) for the positron calculations as for the electron-state
calculations. After the electron density is known, the po-
tential sensed by the positron in all space is constructed as

(r) = Vcouiomb(r)+ Vcorr(n(r)) ~

where Vc z,mb is the electronic Hartree (Coulomb) poten-
tial and V„ is the correlation potential, which describes
the effects due to the short-range pileup of electrons near

Above, c is a "gap" parameter, which was determined in
Ref. 31 in terms of the high-frequency dielectric constant
of the semiconductor in question. In the present work es
is determined so that the calculation gives the experimen-
tal annihilation rates (see below) for delocalized positron
states in perfect semiconductors. These parameter values
are then used in the defect calculations. The cube root in

Eq. (24) follows from the scaling argument between the
correlation potential and the contact density (annihilation
rate). '2

After the positron potential is constructed in all space
of the perfect lattice, we solve for the positron wave func-
tion at k=0 and corresponding to the lowest energy band
using the I.MTO-ASA method. In the case of a cubic
(metal) lattice, where all atomic spheres are equivalent,
this calculation corresponds to finding the lowest-energy s
function, with a vanishing (logarithmic) derivative at the
surface of the sphere. When there is more than one type
of sphere, the method gives the distribution of the posi-
tron in the different spheres. In order to calculate posi-
tron states in lattice defects, we first solve for the whole
positron band structure and determine the unperturbed
Green's function for the positron. The positron potential
is constructed for the perturbed spheres in the defected
lattice using the electron density and Coulomb potential
from the self-consistent defect calculation. Then the posi-
tion of a possible bound positron state at the defect is
determined by searching for a solution to Eq. (21). If a
bound state is found, the corresponding positron density is
determined from the perturbed Green's function.

The positron annihilation rate A, depends on the overlap
between the positron and electron densities through

A=@roc I, 1 r
~
g+(r) ( n(r)y(n(r)), (26)

where ro is the classical electron radius, c the speed of
light,

~
f+(r)

~
the positron density, and y the short-

range enhancement factor. The electron density can be
decomposed into a valence (n„) and a core electron (n, )

part, with the respective enhancement factors y„and y, .
For the core electrons we use the independent-particle an-
nihilation rate with a constant (density-independent)
enhancement factor



34 ELECTRONIC STRUCTURE AND POSITRON STATES AT. . . 2699

III. RESULTS AND DISCUSSION

A. Comparison with previous positron-state calculations

Before the presentation of our results for Si and GaAs
we briefly discuss the effects of the approximations made
in the present calculations. The perfect Al fcc lattice and
an Al vacancy are used here as examples, because for
these there exist several calculations with different
methods, making a detailed comparison possible.

The results for perfect Al are collected in Table I. E„„
is the electron-positron contribution to the total energy
defined as

E~„=J d r (it+(r)
~

V„(r) . (30)

Eo is the electrostatic and kinetic energy contribution, i.e.,
the so-called zero-point energy. Eo is given relative to the

average electrostatic potential Vc,„), b on the surface of
the Wigner-Seitz cell and is defined as

Z, = 'r + r ——,'V'+V~~, b r + r

V Coulomb . (31)

Results from three different calculations are shown in
Table I. Self-consistent (SO ASA and non-self-consistent
(NSC) ASA refer to calculations which use spherical po-
tentials and densities inside the Al %igner-Seitz sphere.
In SC ASA the self-consistent electron density and
Coulomb potential from the LMTO-ASA calculation are
used. In NSC ASA the electron density and Coulomb po-
tential are obtained by superimposing free Al atoms and
taking the spherical averages. In both cases the spherical
positron potential is constructed [Eq. (23)] and the posi-

The annihilation rate with valence electrons is associated
with the enhancement

y„=1 +f(ii„,es )~(~,),
where the reduction factor f(n„,eg) is given by Eq. (25).
bg(n„) describes the density enhancement in the electron
gas:

r, +10
hg(n, ) =1+

6

where r, =(3/urn„)' is the usual density parameter in
atomic units.

tron wave function is determined by solving the spherical
Schrodinger equation with the proper boundary condition.
The last row (NSC 3D) shows the results from Ref. 9.
They are also obtained using the superposition of free
atoms, but the spherical averaging is not made. Instead,
the full three-dimensional Schrodinger equation for the
positron is solved and all integrals are performed in three
dimensions. %'hen the results are compared, it is impor-
tant to note that all three calculations use the same
prescription [Eqs. (23)—(29) with ss =0] for the total pos-
itron potential and the annihilation rates.

The results from the two NSC calculations show that
the effects due to the approximations in the interstitial re-
gions in the ASA are rather small. On the other hand, the
use of the self-consistent electron density raises the posi-
tron zero-point energy substantially. This can be under-
stood as follows. When the free atoms form a metal lat-
tice, charge transfer occurs from the ion core regions to
the interstitial regions in order to constitute the metallic
bonding. The charge transfer lowers the positron poten-
tial in the interstitial regions relative to the potential ob-
tained by simple superposition of free atoms. On the oth-
er hand, the ion cores are less screened after the charge
transfer. The net effect is that the potential sensed by the
positron becomes steeper and the "allowed volume" for
the positron decreases. This increases the positron zero-
point energy, which then has an important bearing on the
positron binding energy at lattice defects. The effects due
to the charge transfer are seen also in the annihilation
rates, i.e., the core contribution reduces when the self-
consistent electron density is used instead of the non-self-
consistent one. This reduction is compensated by an in-

crease in the valence rate. The positron density has re-
laxed following the electron density and the net effe:t in
the total annihilation rate is small. As a consequence, all

~b values are in a good agreement with the experimental
value of 166 ps.

Table II presents results for the positron annihilation
characteristics in an Al vacancy. Values from the present
LMTO-ASA Green's-function calculations and from the
three-dimensional calculation using atomic superposition
are shown. In the Green's-function calculations the per-
turbed region contains the vacancy site and its 12
nearest-neighbor Al sites. The positron binding energy to
the vacancy is 0.6 eV larger than the value obtained in the
old calculation. This reflects the effects due to the self-
consistency of the electron structure. The total annihila-

TABLE I. Positron properties in a perfect Al lattice. F. „and Eo are the correlation and zero-point
energy contributions defmed m Eqs. (30) and (31), respectively. A.„and A,, are the annihilation rates
with valence and core electrons, respectively. vq is the positron bulk lifetime [~b ——1/(A.„+)(,,)]. SC
ASA and NSC ASA refer to the LMTO-ASA calculations, which use self-consistent and non-self-
consistent charge densities, respectively. NSC 30 denotes the three-dimensional calculation in Ref. 9
which uses a non-self-consistent electron density.

Calculation
method

SC ASA
NSC ASA
NSC 30

+corr
I,e&)

—8.40
—8.41
—8.35

(e&)

5.03
4.51
4.41

(ns ')

5.63
5.59
5.45

(ns ')

0.32
0.44
0.42

168
166
170



PUSKA, JEPSEN, GUNNARSSON, AND NIEMINEN

TABLE II. Positron properties at an Al vacancy. A,„and A,,
are the annihilation rates with valence and core electrons,
respectively. ~„and Eb are the positron lifetime and binding en-

ergy to the vacancy„respectively. SC ASA refers to the
LMTO-ASA Green's-function calculation, which uses a self-
consistent electron density. NSC 30 refers to the three-
dimensional calculation of Ref. 9, which uses a non-self-

consistent electron density. For comparison, the results from
two calculations using a supercell-AP% approach are also given.

Calculation
method

SC ASA
NSC 30
Ref. 25
Ref. 32

(ns ')

3.87
3.87

3.87
4.24

(ns-')

0.067
0.081

0.129
0.090

254
253

250
231

2.9
2.3

2.2
3.4

tion rate, on the other hand, is again seen to be insensitive
to the charge self-consistency. The feedback effects in the
calculation of the total annihilation rate are in fact re-
markable in that the difference between the superimposed
free-atom and self-consistent densities is considerable.
For example, the self-consistent electron density at the
center of the vacancy is 0.0018ao, whereas the corre-
sponding superimposed density is about twice as large,
0.004Gap

Table II shows also results from two super cell
augmented-plane-wave calculations. ' A comparison
with the present results is not straightforward because dif-
ferent methods were used to calculate the total positron
potential and the annihilation rates. Moreover, in the cal-
culations of Ref. 27 attempts were made to perform the
two-component self-consistency of the electron and posi-
tron densities, whereas both densities are non-self-
consistent in Ref. 34. However, the comparison shows
again the sensitivity of the positron binding energy and
the insensitivity of the positron lifetime to the approxima-
tions made.

The theoretical values for the positron lifetime at an Al
vacancy given in Table II are slightly larger than the ex-
perimental value of 240 ps. According to Table II, this
result is insensitive to the improvements in the electron
structure calculations. On the other hand, in Refs. 11 and
12 it is shown that the positron lifetime is sensitive to the
relaxation of ionic positions around the vacancy. This re-
laxation is omitted in all calculations in Table II. A small
inward relaxation of the ions surrounding the vacant site
would bring theory and experiment into perfect agree-
rnent.

spheres. The electronic structures were calculated using
the spin-compensated density-functional formalism in the
local-density approximation for exchange and correla-
tion. Before calculating the unperturbed Green's func-
tions, the too-small band gaps predicted by the local-
density approximation were corrected to coincide with the
experimental ones (1.12 eV for Si and 1.5 eV for GaAs) by
a rigid shift of all conduction bands relative to the valence
bands (the so-called "scissors operator" ).

The calculated change in the density of states due to the
vacancy in Si ( Vs; ) and due to the As ( VA, ) or Ga vacan-
cies ( Vo, ) in GaAs are shown in Figs. 1—3. These figures
correspond to neutral vacancies and only the components
belonging to the Ai and T2 representations of the five
representations of the Tq point group are given. The A

~

and Ti representations can be thought to arise from the
dangling sp' bonds, a, b, c, and d, as a totally symmetric
a+b+c+d combination (Ai) and as threefold degen-
erate combinations of the type a+& —c —d (T2). States
belonging to the Ai and Ti representations have s char-
acter and p character at the vacancy site, respectively.
Other representations, involving only back bonds, have a
small contribution to the total change in the DOS.

The change in the DOS induced by a vacancy in Si is
shown in Fig. 1. The tendency of the repulsive perturba-
tion to shift the states to higher energies is clear. In the
case of A

~
states, the two resonances at the middle (bond-

ing combination of s-like states) and at the top (bonding
combinations of mainly p-like states) of the valence band
compensate the negative regions so that the change in the
partial DOS for the valence band integrates to zero. In
the T2-induced DOS the negative antiresonances dom-

4
4P

rA
C3~ 2-
C

c 0

I l

-14 -1 2 -10 -8 -6 -4
Energy (eV)

0
07

V)
C)~ o

B. Electronic properties of vacancies in Si and GaAs

We have calculated the self-consistent electronic struc-
tures for ideal (i.e., lattice relaxations are ignored) vacan-
cies in Si and GaAs. Calculations were performed for dif-
ferent charge states, and in the case of GaAs, vacancies in
both sublattices were considered. The perturbed regions
consist of the vacancy sphere and four atomic spheres and
four interstitial spheres adjacent to the vacancy sphere.
We have chosen the sphere radii to be the same for all

Vs T

FIG. 1. Changes in the density of states of A& and T2 sym-
metries induced by a vacancy in Si. The energy zero is the top
of valence band.
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FIG. 2. Changes in the density of states of A~ and T~ sym-
metries induced by an As vacancy in GaAs. The energy zero is
the top of valence band.

FIG. 3. Changes in the density of states of AI and T2 sym-
metries induced by a Ga vacancy in GaAs. The energy zero is
the top of valence band.

inate so that the integral over the valence band shows a
disappearance of six (including the spin degeneracy) elec-
tron states. In the creation of a vacancy, four electrons
are removed from the valence band. Thus, in the case of a
neutral Si vacancy, two electrons have to be filled in states
above the valence band. Our calculation for the neutral
vacancy gives a T2-symmetry bound state in the band gap
0.66 eV above the valence-band edge. This sixfold degen-
erate bound state has in the neutral case one-third occu-
pancy. The change in the DOS and the position of the
bound state calculated here by the LMTO-ASA Green's-
function method for the ideal Si vacancy is in good agree-
ment with the pseudopotential Green's-function calcula-
tions. ' For example, in these calculations the position
of the bound state in the gap is 0.7 eV (Ref. 37) or 0.8 eV
(Ref. 38). In the real vacancy the position of the bound-
state level is strongly affected by the lattice relaxation (a
symmetric breathing distortion and/or a symmetry-
lowering Jahn-Teller distortion). The relaxation would
lower the level from the ideal vacancy position.

The change in the DOS induced by the neutral As and
Ga vacancies in GaAs is qualitatively similar to the case
of a vacancy in Si, as can be seen by comparing Figs. 2
and 3 with Fig. 1. The lower A

&
resonance for the As va-

cancy is in fact located in the band gap near the bottom of
the valence band and is thus actually a bound state, In
Fig. 2 it has a finite width because we have made the plot

for the complex energy path slightly below the real axis.
%%ether this structure is a bound state or a resonance in
the band region is not important for our calculations
which use the complex energy integration. The same is
true for the A i and Ti bound states (or resonances) at the
bottom ( ——10 eV) of the lower energy gap in the case of
the Ga vacancy. As in the case of the Si vacancy, the to-
tal number of induced A, states in the valence bands is
zero for both As and Ga vacancies. The repulsive poten-
tial due to the As or Ga vacancy pushes a sixfold degen-
erate T2 state out of the valence band. For the neutral As
vacancy it is placed 1.13 eV above the top of the valence
band and it is occupied by one electron, because the num-
ber of reinoved valence electrons is S. For the neutral Ga
vacancy it is situated 0.06 eV above the valence-band edge
and it is filled with three electrons, because three valence
electrons are removed when the Ga vacancy is created.
Lattice relaxation would lower these levels and the bound
state of the Ga vacancy might appear as a resonance in
the valence band, and only the As-vacancy state would
remain as a deep level.

Our results for the changes in the DOS and the bound-
state positions agree well with the pseudopotential-
Green's-function calculations by Bachelet et aI. For ex-
ample, they found the bound-state levels at 0.06 and 1.08
eV above the top of the valence band for the Ga and As
vacancies, respectively. The large-cluster recursion ap-
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proach applied by Lin-Chung and Reinecke gives the
bound-state level in the As vacancy at 1.21 eV, which is in

good agreement anth our results. However, their corre-
sponding value for the Ga vacancy, 0.44 eV above the
valence band, is considerably larger than ours.

%e have also considered charged vacancies in Si and
GaAs. In these calculations the effects of the long-range
Coulomb potential were taken into account by shifting the
electron potential in the perturbed region by the amount
of q XO. 1 eV, where q is the net charge of the defect. 4'

The energy levels of the T2 bound states induced by the
vacancies in Si and GaAs are collected in Table III. The
spatial localization of the bound state given in Table III is
obtained by integrating the bound electron density over
the perturbed region (the vacancy sphere and four atom
and four interstitial spheres). These quantities are shown
for different charge states. The bound states are seen to
be rather delocahzed, only about 30—40% of the bound
electron resides in the perturbed region. Adding more
electrons to the bound level raises the level of energy, but
the change in the localization is rather small. Although
the bound states are rather delocalized, the total charge
inside the perturbed region around a neutral vacancy is
close to its asymptotic value. For example, in the case of
the neutral Si vacancy there is a total charge transfer of
only 0.07 electrons out from the perturbed region, al-
though 1.28 electrons of the two bound electrons are out-
side the perturbed region. This means that the electrons
belonging to the bound states, to the resonances, and to
the antiresonances can screen each other very efficiently.
As a consequence, the potential perturbation due to a de-
fect is well localized. The power of the Green's-function
method is based on this localization, because only the
rather localized perturbation in the potential enters the
Dyson's equation, while the wave functions may extend
beyond the perturbed region. On the other hand, in the
popular cluster methods the size of the cluster must be so
large that the effect of the cluster boundaries on the wave
functions near the defect is small. This means that most
of the bound state should be confined inside the cluster.
The too-small size seems to be the most severe source of
errors in the cluster calculations.

C. Positron states and annihilation characteristics
in Si and GaAs

The parameter eg describing the effect of the band gap
on the electron-positron correlation, appearing in the for-
mulas for the positron correlation potential [Eq. (24}]and
annihilation rate [Eq. (28)] via the reduction factor [Eq.
(25)] was determined for Si and GaAs so that the perfect-
lattice calculations reproduce the experimental positron
lifetime of 221 ps for bulk Si (Ref. 42) and 235 ps for bulk
GaAs (Ref. 6). The same value, eg ——0.2, was found to
fulfill this requirement for both semiconductors. The ex-
perimental bulk lifetime of 220 ps for GaAs suggested in
Ref. 5 cannot be reached by adjusting the es parameter.
Even the metal hmit, i.e., es ——0, gives a longer lifetime
than 220 ps.

The resulting positron distributions and the core and

TABLE III. Energies and spatial localization of the bound
electronic 4;T2) states due to ideal vacancies in Si and GaAs.
Energies are measured from the top of the valence band. The
relative localization gives the fraction of the bound electron con-
tained in the perturbed region consisting of the vacancy sphere
and the adjacent four atomic and four interstitial spheres.

Vacancy
type

y 0

V 2—
si

~A.
~A.

2—
As

y 0

2—

(eV}

0.66
0.93
1.13
1.22
1.31
0.06
0.23

Localization
(%)

41
39
30
29
28
34.

39

Number of bound
electrons

valence annihilation rates in different types of spheres in
perfect Si and GaAs lattices are shown in Table IV. The
distribution is normalized so that the sum over all dif-
ferent types of spheres gives one positron. In both semi-
conductors about 75% of the positron density is in the in-
terstitial spheres and 25% in the atom spheres. No prom-
inent preference (a larger affinity) for either of the ele-
ments in GaAs can be seen (a larger affinity to As atoms
was suggested in Ref. 5). Both in Si and GaAs about
55% of the annihilation takes place in the interstitial
spheres. The core annihilation rate is small in comparison
to the valence rate: it is only 2% of the total annihilation
rate in Si and 7% in GaAs.

We used the self-consistent electron structures of ideal
Si and GaAs vacancies to calculate the vacancy-induced
perturbation in the positron potential. Bound positron
states at vacancies were then searched for below the
perfect-lattice positron bands by determining the solutions
to Eq. (21). For all vacancies studied in this work, one
A i-type bound state was found. Table V lists the positron
binding energies (i.e., the difference between the lowest
k=O energy level in the perfect lattice and the energy
eigenvalue for the bound state) to vacancies in Si and to
Ga vacancies or As vacancies in GaAs for different
charge states. The degree of localization of the positron
state into the perturbed region is also shown in Table V.
The binding energies vary betwrx:n 0.5—1.7 eV and they
are thus somewhat smaller than the binding energies
found for positrons at metal vacancies (see, e.g., Table II).
This is because the more open structure lowers the
perfect-lattice zero-point energy in the semiconductors
relative to that in the close-packed metals. It is interest-
ing to note that the binding energy increases nearly linear-
ly as a function of the number of bound electrons in the
vacancy. Moreover, this dependence is nearly the same
for both kinds of vacancies in GaAs and even between Si
and GaAs.

The fraction of the bound positron in the perturbed re-
gion is about 70%. This is considerably more than the
corresponding localization of -30% found for bound
electrons in the band gap, but it is less than the 100% lo-
cahzation of a positron at the Al vacancy (Table II}. Thus
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TABLE IV. Positron distributions and annihilation rates in perfect Si and GaAs lattices. The sum

of distribution over the different spheres is normalized to give one positron. The sum of annihilation

rates over the different spheres gives the total annihilation rate in the bulk lattice. E refers to the inter-

stitial sphere in the Si lattice. El and E2 denote interstitial spheres in GaAs adjacent to Ga and As

spheres, respectively. A,„and A,, are the positron annihilation rates with valence and core electrons,

respectively. ~& is the experimental bulk lifetime used to fit the parameter eg in Eqs. (24) and (28).

Si

Total

Distribution
(e+ /sphere)

0.248
0.753

1.000

(ns-')

1.93
2.51

(ns ')

0.10

0.10

7$

(ps)

221'

0.119
0.123
0.388
0.370

0.70
0.98
1.21
1,09

3.97

0.18
0.10

'Reference 42.
Reference 6.

in these semiconductors a positron spills out„ to some ex-

tent, from the immediate vicinity of the vacancy to the
rather open interstitial regions.

The valence and core annihilation rates and the result-

ing lifetimes for positrons trapped by different types of
vacancies are given in Table V. In the calculations the an-

nihilation rate outside the perturbed region is approximat-
ed to be the s;one as in the atom and interstitial spheres
adjacent to the vacancy. This is not a severe approxima-
tion: for example, if the annihilation rate corresponding
to the perfect crystal is used for the contribution from the
unperturbed region, the lifetime of the trapped positron
changes by less than 1%. According to Table V the posi-
tron lifetime is rather insensitive to the charge state of the
vacancy, although the positron binding energy changes
considerably. This reflects again the ability of the posi-
tron to follow the electron charge transfer. In this case,

the introduction of a relatively delocalized bound electron
locally changes the electron density only slightly relative
to the total electron density. Also, the screening effects
work in this direction. However, an evident trend is a
small increase in the lifetime as a function of the number
of bound electrons. The increase in the lifetime is a
consequence of the higher localization of the positron
wave function to the perturbed region where the electron
density and thus the annihilation rate are smaller than
those farther away from the vacancy. However, the
predicted changes in the positron lifetime due to changes
in the charge of the state are small and hard to distinguish
in the experimental positron lifetime spectra.

The calculated lifetime of 259 ps for the positron
trapped at the Si vacancy agrees rather well with the gen-
erally accepted experimental value of 266 ps. The
slightly smaller theoretical number could be brought into

TABLE V. Properties of positrons trapped at vacancies in Si and GaAs. A,„and k, are the positron
annihilation rates with valence and core electrons, respectively. ~„and EI, are the positron lifetime and
binding energy at the vacancy, respectively. The relative localization gives the fraction of the bound
positron contained in the perturbed region.

Vacancy
type

2+

v 0

p' 2—

VA.
'

VA.
2—

As

y 0

V 2—

3.87
3.79
3.77

3.36
3.34
3.32
3.30

3.59
3.55

(ns ')

0.069
0.063
0.057

0.26
0.25
0.25
0.24

0.15
0.15

0.5
1.0
1.6

0.6
0.8
1.0
1.2

1.3
1.7

Localization
(%)

63
71
76

65
68
71
73
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perfect agreement with the experimental one by allowing a
small outward relaxation of the nearest atoms of the va-

cancy. The outward relaxation decreases positron-
electron overlap and thus increases the positron lifetime.
Indeed, it is theoretically predicted that the vacancy-
site —nearest-neighbor distance is about 5% larger than
the bond length in the perfect lattice. In our present self-
consistent calculations this relaxation has been omitted.
In the model based on the atomic superposition and on
the fully three-dimensional solution of the positron wave
function, it is easy to take the lattice relaxation into ac-
count, and from this kind of calculation" ' it is conclud-
ed that the lattice relaxation is an important factor affect-
ing the lifetime value. As a matter of fact, the lattice re-
laxation seems to be more important for the lifetime value
than the self-consistency of the electron density. It is also
gratifying to note that for metal vacancies, for which an
inward relaxation is expected, our present model (see
Table II for Al) and the previous calculations '" always
give longer positron lifetime values than the measured
ones.

The calculated positron lifetimes for As vacancies in
GaAs are slightly shorter than the lifetime component of
290—300 ps seen in the experiment with undoped
GaAs. ' Taking into account the effects of the possible
lattice relaxation, our calculation supports the assign-
ment of this lifetime component to the As vacancy.
Hautojarvi et a/. have also seen a shorter lifetime com-
ponent of 260—280 ps in GaAs samples electron irradiat-
ed at low temperatures. This component was connected
with the Ga vacancy. Also, according to our calculations
(Table V), the positron lifetime for the Ga vacancy is
shorter than for the As vacancy.

According to the experiments it is evident that positive
vacancies cannot trap positrons. For example, p-type
boron-doped Si has not revealed positron trapping at de-
fects after electron irradiation. 2 The irradiation creates
vacancies, but when the material remains p type, the Fer-
mi level is below the defect-induced bound states in the
band gap and the defects are positively charged. It is then
natural to assume that the repulsive Coulomb interaction
prohibits positron trapping and no long defect component
in the positron lifetime spectra can be seen. Furthermore,
positron lifetime measurements have shown that the aver-
age lifetime in n-type GaAs is substantially longer than in
p-type or semi-insulating GaAs. The As vacancy is a
donor-type defect with deep levels in the upper half of the
band gap (Table IV). In p-type or in semi-insulating
GaAs the Fermi level is below these donor levels and the
As vacancy is positively charged. If trapping at positive
As vacancies is prohibited, the positron lifetime spectra in
p-type or semi-insulating GRAs do not contain the long
lifetime component of 290—300 ps and the average life-
time decreases. The inability of positively charged vacan-
cies to trap a positron is necessary also in the above-
mentioned identification of Ga vacancies from the life-
time measurements. In this case electron irradiation
creates a large number of Ga and As vacancies. The
acceptor-type levels of the Ga vacancy are first occupied
1eaving the As vacancies positively charged. In this pro-
cess or1glnally Pl-type GRAs becomes semi-lnsulatlng.

%hen the positively charged As vacancies are not able to
trap positrons, the measured long-lifetime component has
to be connected with Ga vacancies.

However, according to our calculations (Table V), posi-
tive vacancies can bind positrons. This result can be qual-
itatively explained as follows. The case of one positron
and one hole bound to a vacancy is analogous to the dou-
bly negatively charged vacancy. In the latter case the in-
troduction of the second electron raises the bound-state
level by 0. 1—0.2 eV (Table V). In the former case the in-
troduction of the hole into the vacancy raises the positron
bound-state level by -0.2 CV, consistently with the elec-
tron case. The introduction of one hole in the vacancy
does not destroy the bound positron state. On the other
hand, the presence of the hole creates a long-range repul-
sive Coulomb potential for the positron, which results in a
wide wall with a height of around 0.1 eV. The thermal
energy of a delocalized (free) positron is about one order
of magnitude smaller. Thus the free positron is strongly
affected by this potential wall and its wave function is
strongly reduced at the vicinity of the positively charged
defect. The trapping rate of positrons is, via the Fermi
golden rule, proportional to the matrix element between
the initial free state and the final trapped state. Due to
the small overlap of these two states this matrix element
can become very small. Thus it is most conceivable that,
in agreement with experimental conclusions, positive va-
cancies do not trap positrons; while positively charged va-
cancies do support bound states, the trapping rate into
them is negligible.

The question of trapping mechanisms and their tem-
perature dependence in semiconductors is most interesting
and will be discussed separately. For example, in many
cases the binding energy to a vacancy is smaller than the
band gap (Table V). This implies that the electron-hole
pair excitation mechanism, dominating in metals, is for-
bidden. On the other hand, the vacancy defects can have
a large effect on the density of final electron-hole states
and simple estimates of the trapping rates are not very re-
liable. The important question is if (and how) the trap-
ping rate in semiconductors can be (as suggested by exper-
iments similar in magnitude to the ones in metals. The
phonon mechanism, either as a multiphonon or a cascade
process, seems to give much lower values for the trapping
rate. 4'

IV. CONCLUSIONS

This paper reports calculations of the electronic struc-
ture of point defects in Si and GaAs using state-of-the-art
LMTO-ASA Green's-function techniques. The results are
applied in a study of positron annihilation in these semi-
conductors to both the bulk and vacancy bound states,
with the aim of making feasible definitive interpretations
in positron defect spectroscopy. The main conclusions are
the following.

(1) The ab initio results for the electronic structure and
positron annihilation characteristics agree well with ex-
periment for bulk materials and for defects where an
unambiguous assignment is possible.
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(2) The positron binding energy to»acancy-typ«e-
fect is small, in many cases smaller than the band gap.

(3) The effect of the charge state of the vacancy on pos-
itron parameters is small. The experimentally seen
changes could be due to changes in the trapping rate.

(4) A positively charged vacancy can support a bound
positron state, but the trapping rate into such a state is ar-
gued to be strongly reduced.

(5) The calculations provide benchmarks for more ap-
proximate approaches (e.g., non-self-consistent electronic

structure), which presently are necessary for more compli-
cated defects with low symmetry. The relative insensitivi-
ty of the annihilation rates to reasonable approximations
in the electronic structure part of the calculation is en-
couraging for the development of such techniques.
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