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%'e have studied the combined effects of interaction and disorder on the entropy, the specific heat,
and the magnetization of a two-dimensional electron gas in a strong perpendicular magnetic field.

Explicit results have been obtained within the Hartree-Fock approximation which reflects only those

anomalies associated with the energy gap between Landau levels. Some qualitative remarks, based

on the hierarchy picture, are made concerning features expected in these thermodynamic properties

at fractional values of the Landau-level filling factor.

I. INTRODUCTION

The two-dimensional electron gas in a strong magnetic
field, 8, exhibits a number of interesting many-body ef-
fects including the quantum Hall effect (QHE). ' The
unique feature of this system responsible for its unusual
behavior is the quantization of the energy spectrum, in the
absence of interaction and disorder, into sharp Landau
levels. Many properties of these systems are controlled by
the degree to which the Landau levels have been
broadened by disorder and by the energy gap which
remains between the Landau levels. In principle, at least,
important information about the structure of the energy
spectrum can be extracted from measurements of thermo-
dynamic properties such as the entropy, the heat capacity,
and the magnetization. This possibility has attracted both
experimental and theoretical interest. Studies to
date have been carried out in the limit where the effect of
disorder dominates the effect of Coulomb interactions be-
tween the electrons. In this limit, the theoretical results
do account qualitatively for the measured magnetization
and specific heat. Provided the electronic contribution
dominates, the thermopower' ' provides a measure of
the entropy and again qualitative agreement with
theory ' ' seems to exist.

Our purpose in this paper is to make predictions re-
garding the influence of Coulomb interactions on these
equilibrium properties in the limit where many-body ef-
fects become significant. Our detailed results are based on
a semiphenomenological self-consistent Born-approxi-
mation treatment of disorder scattering and a Hartree-
Fock approximation (HFA) for interaction effects which
is detailed in Sec. II. %e discuss the entropy, the chemi-

l

cal potential, the heat capacity, and the magnetization re-
sulting from this approximation in Sec. III. The use of
the HFA to treat interaction effects can be justified only
when the Landau-level filling factor, v, is near an integer
[v=2trl n, where n is the areal density of electrons and
l = (AcleB—)'~ ]. Thus in using the HFA we focus on the
features in the thermodynamic properties which, like the
integer QHE, are associated with integral values of v.
The HFA completely misses the features in these thermo-
dynamic properties which are expire:ted near fractional
values of v and are associated with the fractional QHE.
In Sec. IV we discuss the behavior of thermodynamic
properties at fractional values of v. Our comments are
based on the correspondence between the excitations of
the incompressible fluid states occurring at fractional
values of v and those occurring for integral values of v
which are well described by the HFA. We close in Sec. V
with a brief summary of our results.

II. HARTREE-POCK APPROXIMATION
VfITH A DISORDER POTENTIAL

The results to be presented in Sec. III are based on the
temperature-dependent or thermal Hartree-Pock approxi-
mation (THFA). This approximation was originally
reached by a variational approach' ' but can also be ob-
tained from a decoupling approximation to the equation
of motion for the thermal Green's function'7 and by sum-
ming a subset of Feynman diagrams in the finite-
temperature perturbation theory. ' We use the language
of the last approach here. ' The Dyson equation for the
thermal Green's function may be written in the form

G (n, X;n', X',ito„)=G' '(n, X;n',X';ito„)+ g g G' '(n, X;m, F;ito„)X (m, I';m', I",ito„)G (m', F', n', X',ito„),
m, F m', F'

where we have used a representation in terms of Landau-
gauge kinetic-energy eigenstates for the one-particle
Green's function:

G~(n, X;n ',X',i to„)

= f dx f dx'P„'«(x)G (x,x';ito„)P„«(x'), (2a)

I

G (x,x';ito„)

= g g $„«(x)G (n, X;n',X',ito„)P„' «( ).x(2b)
n, X n', X'

In Eqs. (2),
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$,»(x)=L„' exp(iXL„/1 )P„(x—X), n =0, 1,2, . . . E= g g J IA[co'+co, (n+ —, +g*a/4)]
nX cr

Xl.y
2

=0, 1,2, . . . , &I
2ml

n', X'
x5„„5»»+(n'X

I VD I
n,X) I

Xp~(n, X;n ',X',co')nF (~ ) .
is a Landau-gauge kinetic-energy eigenstate w'th eigen-
value fico, (n + —, ) (co, =eB/m 'c), g„(x) is a one-
dimensional harmonic-osrillator eigenstate and
=L,L„/2irl is the number of states per Landau level.
Thus, in the absence of a disorder potential,

G' '(n, X;n ',X',i co„)

=5., '5», »[ico.—~,(n+ & ) —gpsc &/2fi+)M& '] '.
(4)

(Note that we have included the Zeeman contribution to
the energy. )

It will be convenient below to introduce the spectral
weight of the Green's function, defining

p (n, X;n', X';co)

=m 'Im[G (n,X;n', X',co+@A ' iri) j —(5a)

In Eq. (5c) we have introduced an effective g factor,
g'=2gpa/fico, =gm'/m, and (n,X

I VD In', X') is the
one-particle matrix of the disorder potential. [nF(s)
=(e +1) is the Fermi distribution function. ]

jc—p)/k& T

Similarly the entropy is given by

S= —kz J dcoI nF(fico) 1n[nF(%co)]

+ [1—nF(%co )] in[1 —nF (fico) ] Ip(co ),
(6)

p(co)= g po(n, X;n,X;co) .
n, X,a

It should be noted that while Eq. (5c) is a general relation-
ship between the energy and the thermal Green's function,
Eq. (6) holds only within the THFA.

The approximation we use for the self-energy is

p~(n, X;n ',X';co')
G~(n, X;n',X';ico„)= dco'

ico„—co +@A

and the energy is

(5b)
X (n, X;n',X';ico„)=X "(n,X;n', X')

+X~ (n, X;n',X';i co„),

where

X~"(n,X;n',X')= g g g J dconF(@co)p~(m', Y';m, Y;co)
0' m, F m', F'

x((n,X;m, Y
I V,

I
n', X',m', Y') —5 (n,X;m, Y

I V, I
m', Y',n', X'))

and

I,

X (n, X;n', X;ico„)=g g J dco . ((n,X
I VD I

m', Y')(m, Y
I

VD
I
n', X')) .

m, F m', F' EN+ —N

This approximation is illustrated graphically in Fig. 1.
The expression for X "(n,X;n', X') given in Eq. (9) is the
usual one, but rewritten using the definitions of the
preceding paragraph. (n, X;m, Y

I V, I
n', X',m', Y') is a

two-particle matrix element for the Coulomb interaction,
Vc(r ')="/e

I
r—r'I—

(n,X;m, Y
I

V
I
m', Y', n', X')

8 d q 2'lT' E„(q)E „(—q)(2~)' q

F„,„(q)=

Q exp

I—q„l +iq, I

2

q212 q2I2

4 " 2

X5», &i 5, „ i2 exp[iq„(X —X')j, (11)

where we have used that

( n', X'
I
exp(iq r)

I
n,X).

+ X scsA

/

/ \+

&Qx=F„„(q)5», && exp (X+X')X',X+q„l 2
(12) FIG. 1. Dyson equation for the Green*s function showing the

interaction and disorder contributions to the se1f-energy.
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Similarly Eq. (10) expresses the usual self-consistent
Born-approximation treatment of disorder scattering. We
expand the disorder potential appearing in Eq. (10) as

VD(r)= g g Ve(q) exp[iq (.r —R)],1

LL& q R
(14)

X5x, i, 5, i, exp[iq„(x —X)], (15)

where ni is the areal density of scattering centers. With
both the disorder potential and the interaction potential
treated perturbatively Eq. (4) gives the bare propagator for
the Dyson equation. Explicitly iterating the Dyson equa-
tion and using Eqs. (8)—(11)and Eq. (15) we see that

G (n,x;n', X',ice„)=5„„5~~G(n,ir0„),
where

(16a)

G~(n, ice„)= iei„—iii '(s„~—(M)

—(2X}-'yr'„.G.(m, i~„)

(16c)

(2n }

Equation (16a) simply expresses the spatial homogeneity
of the configuration averaged system which reduces the
Dyson equation to an algebraic form leading to Eq. (16b).
The interaction term in Eq. (16c) comes from evaluating
Eq. (9) with p 0-. 5r r5 ~ in which case the direct term
gives no contribution if we take V, (q=0) =0 to account

I

where the sum over R is over scattering centers. The
outer angle bracket in Eq. (10) represents an average over
scattering centers.

Assuming a random distribution and using Eq. (12)
gives

«~x
I v,

I
m', r'&&m, I

I
v, In', x'»

I 2 ~oq ~, 'q
(2n )

TABLE I. Values of X„/2/n for low-lying Landau levels.
The Hartree-Pock energy for the nth Landau level is lowered by
an amount proportional to X„as the mth Landau level of the
same spin is occupied.

1

2

3
8

5
16

3
4
7
16

11
32

3
8

7
16

41
64

51
128

5

16

ll
32

51
128

147
256

for a neutralizing background. Inserting Eqs. (11} and
(13) into Eq. (9) and comparing with Eq. (16c) we see that

'n —m
00 q 2(2

Xnm=Xmn= q eXp
—ql2 2

2

X [L „" (q'~'&2)]'

r(n —m + —,
'

)r(n + —,
'

)

(2m)'i n.!( n—m)!

1 1.—m~n —Pl+ 2~ 2, 1

X3E2 1
n —m+1, —m+ —,

where the final form is for n & m and iFi is a generalized
hypergeometric function. We have used the result of
Glasser and Horing ' for the integral. The exchange term
reflects the Pauli exclusion principle by lowering s„
when states of spin cr are occupied and X„measures the
amount by which s„~ is lowered as a result of the mth
Landau level being occupied. Values of X„~ for some of
the lower Landau levels are listed in Table I, from which
we see that X„ tends to the largest when n =m.

For a given model of the scattering potential Eqs. (16b)
and (16c) can be solved simultaneously using an iterative
procedure. It is instructive however, to consider the
strong field limit where Landau-level mixing can be ig-
nored. In that case the terms with m &n in the sum over
m on the right-hand side of Eq. (16b) can be dropped and
the equation can be solved to give

2A'

p (n, co) =n'Im[G~(n, c.o —iq)]= ~ mr „„
' 2 I/2

1— %CO —en~ ~1
n, n

0, otherwise .

p~(n, co) =
1 /2

2
exp —2I„„

'2

(19)

Experimentally, ' ' " it has been found that the
broadened Landau levels do not have the sharp edges im-
plied by Eq. (18) and that results can be fitted more suc-
cessfully with the form

where I „„is typically -2 meV and usually seems to
have ~8 dependence on magnetic field. The v 8 depen-
dence follows from Eqs. (18) and (16c) for the case of
short-range scatterers [ Vo(q) = Vo] since in that case

=4"I
I VO I

' J (2n )

=4nl
I Vo I

(2@i ) (20)
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The discrepancy between Eq. (18) and experiments must

reflect, in part, limitations of the self-consistent Born ap-
proximation but also probably results from the impor-
tance of Landau-level mixing and the presence of large
scale inhomogeneities in the experiments. In order to
make our calculations more relevant to current experi-
ments we have chosen to use Eq (.19) for p (n, ai} and
solve Eq. (16c) iteratively for the Hartree-Fock energies.
Results for the thermodynamic properties following from
this approximation are discussed in the following section.

In closing this section we briefly describe the procedure
used to solve Eq. (16c) numerically. All our calculations
were performed at fixed

N N~ g f drunk(Rro)p (n, ru) . (21)

0.5

~ 0.3

0.2

0. 1

6 5
I 1

The Hartree-Fock energies were determined iteratively
starting from the bare values. At each step in the pro-
cedure the chemical potential was determined by solving
Eq. (21) before calculating the Hartree-Fock energies for
the next step from Eq. (16c). With this approach both the
chemical potential and the Hartree-Fock eneryes werc
found to converge rapidly to any desired accuracy. Calcu-
lations at fixed chemical potential, on the other hand, are
inherently unstable since the chemical potential is not a
monotonically increasing function of N and there will in
general be two (or more) solutions of Eq. (16c} corre-
sponding to different values of ¹

+[1—n~(fico)] in[1 —nF(Aa) )]I

Xp (n, ai) . (22)

In Fig. 2 we have plotted S/Nks versus field for an ideal

gas, an interacting gas in the absence of disorder and an
interacting gas with disorder. We plot S/Nka because in
single-particle approximations (including the Hartree-
Fock approximation) this quantity is proportional to the
diagonal component of the electronic thermopower. ' ' '

In Eqs. (16c), (21), and (22) the integral over the Gaussian
density of states for each Landau level was performed us-
ing Hermite-Gaussian quadrature. All of the calculations
we have done are based on parameters appropriate to a
two-dimensional electron gas (2D EG) in GaAs so that, in
temperature units, the noninteracting system I.andau-level
splitting is fico, [K]-20B[T], the spin splitting is
g'piiB[K]-0. 33B[T], and e /el[K]-51VB[T]. For
the ideal system

p (n, a~) =5(co—ai, (n + —, +g'cr/4))

and Eq. (21) reduces to a sum over contributions from
each Landau level which reaches a maximum of NL ln2

III. RESULTS FOR THERMODYNAMIC PROPERTIES

A. Entropy

For the isotropic (configuration averaged) system Eq.
(6) becomes

S = —NL ks g f da) I np(%co) ln[nF(ha))]

FIG. 2. Entropy versus magnetic field for ideal electron gas
(dotted curve) interacting electron gas vrithout disorder (dashed
curve), and with disorder (I [meV] =0.34V 8 [T]).
n =5.0X IO" cm ~ and T =4.2 K. The main effect of interac-
tion is to split the peak values through the gigantic exchange
enhancement as discussed in the text.

when that Landau level is half full. At typical experimen-
tal temperatures for thermopower measurements
iriai, &&keT but g'ljaB-k&T. The main effect of in-
teractions in the THFA is to produce a giant spin-
splitting enhancement. The source of this giant enhance-
ment is clear from Eq. (16c},where we see that the ex-
change lowering of the majority spin energies is propor-
tional to e /I which is many times larger than the bare
spin splitting for typical fields. In Fig. 2 the spin splitting
reduces the entropy, especially at odd integral filling fac-
tors, since only Landau levels of one spin have appreciable
fractional occupation at a given field. Landau-level
broadening begins to influence the entropy when I' be-
comes comparable to kii T. The curve in Fig. 1 was calcu-
lated using I /eau, =0.2/&B[T] which in temperature
units is I [K]=4v'8 [T]. We see that the maximum en-
tropy value is reduced from its ideal value by increasing
amounts as the field is raised. Level broadening can also
influence the entropy where I becomes larger than the
bare spin splitting since the spin-splitting enhancements is
reduced in proportion to the reduction in the difference
between majority-spin and minority-spin occupations.
For example, we observe that at odd integral values of v
introducing disorder increases the entropy.

B. Chemical potential

For a 2D EG the chcmica1 potential at zero tempera-
ture has discontinuities as a function of magnetic field
wh1ch arc associated wEth tbc energy gap between Landau
levels and are therefore very directly related to the unique
properties of these systems. Recently the magnetic field
dependence of the chemical potential has been measured
for a 2D EG formed in a Si metal-oxide-semiconductor
field-effect transistor by Pudalov et al. but, as far as we
are aware, the corresponding data for GaAs-Ga, „Al„As
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6 5
I ) (

20
=kaNI g J drop (n, co)x (e"/ +e "

)
n, a

(23)

where x =(fico —p)/ka T. It is useful to start by discuss-
ing the regime where I « irico, . Then when the cheinical
potential lies midway between well-separated Landau lev-
els (assuming the spin-degeneracy is not resolved)

—fuu,
Ci -4kgNL exp (24)

8 B

On the other hand when the chemical potential is in the
middle of a Landau level

FIG. 3. Shift of the chemical potential from the zero-field
value po. 1 [meV] =0.34KB [T], n =5X 10" cm i, and

T =4.2 K. The dashed curve shows the effect of mteraction.
The discontinuities in LM, which occur at integer filhng factors is

a measure of the gaps I the quasiparticle energy spectrum (see

text).

systems are not yet available. For the areal density we
have chosen for the 2D gas, 5X10" cm, the chemical
potential in temperature units at 8 =0 and T =0 is 205
K in the absence of interactions and 60 K with interac-
tions included in the Hartree-Fock approximation. (The
exchange contribution to the chemical potential at 8 =0
and T =0 is —1 8/r, ' in .effective Rydberg units where

r,
' is the effective density parameter. ) In Fig. 3 we plot

the difference between the chemical potentials and these
values with the same value of I as in Fig. 2 both with and
without interactions. Without interactions the chemical
potential increases in proportion to iriai, with increasing
field but drops suddenly when a Landau level empties and
the chemical potential moves to a lower Landau level.
When interactions are included the giant spin-splitting
enhancement causes a drop in the chemical potential when
it moves from a minority-spin level to a majority-spin lev-
el. In addition, the rate of increase in the chemical poten-
tial with field in the middle of a Landau level is shar-
pened since irico, is increasing and the exchange lowering
of an energy level tends to lessen as the level empties.
Correspondingly, the drop in the chemical potential after
a level has completely emptied increases because exchange
tends to increase the difference between the energy levels
of occupied and unoccupied states.

00 X
Cy-kaNI T I dx

(ex/2+ e
—x/2 )2

X gp„(fi '(e„+k&Tx)}. (25)

0.20

0. 15

0. 40
C3

0.05

0.00

12

When k~ T/%co, is not very small the prefactor in Eq. (24)
causes Ci to have a peak between Landau levels due to
inter-Landau-level excitations. As kz T becomes much
smaller than Ace„however, the contribution to CV from
these excitations drops very rapidly because of the ex-
ponential factor. The contribution to Ci, from intra-
Landau-level excitations drops more slowly with T how-
ever and, as we see from Eq. (25), ultimately depends
linearly on T for kz T« I „„.From these considerations
we expect that (i) for fixed T the spo:ific heat will cross-
over with increasing field from having peaks at integral
filling to having minima at integral filling; (ii) the cross-
over point depends primarily on fuu, /k~T and so should

C. Heat capacity

The heat capacity of a 2D EG in a magnetic field al-
ready shows some interesting features in the absence of in-
teractions which have been discussed previously. In or-
der to explain these we recall that, for a noninteracting
system,

FIG. 4. Heat capacity versus magnetic field with
I [meV] =0.34V 8 [T] aud n =5 X 10" cm i. The curves show
how a crossover from dominance by interI. andau contributions

(sharp spikes in the curves) to dominance by intraI. andau level

contribution (broadened peaks in the curves} occur at lower
fields as the temperature is lowered from T=S K (dashed
curve) to T =5 K (solid curve).
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lO

FIG. 5. Heat capacity versus magnetic field without interac-
tion (solid curve) and with interaction (dashed curve). I and n

are as in previous figures, T =4.2 K.

occur at lower fields for lower temperatures; (iii} since in-
creasing I reduces the gap between Landau levels it
should tend to increase the inter-Landau-level peaks; (iv)
since increasing I reduces the density of states in a Lan-
dau level it should tend to reduce the intra-Landau-level
peaks.

We have calculated the specific heat numerically to il-
lustrate these features and discuss how they are modified
by interactions. In Fig. 4 we compare the specific heats of
a noninteracting system with I [K]=4v'8 [T] as in Fig. 2
at two different temperatures. At the higher temperature
the inter-Landau-level contribution dominates over most
of the range of fields plotted but at the lower temperature
the crossover to dominant intra-Landau-level contribu-
tions occurs at much lower fields. In Fig. 5 we illustrate
the effect of interactions on these results. The most visi-
ble effect is the giant spin-splitting enhancement which
produces minima at odd integral filling factors. We also
see, however, that inter-Landau-level contributions are re-
duced because of the increase in the difference between
Hartree-Fock energies of occupied and unoccupied Lan-
dau levels which was mentioned in the preceding section.

D. Magnetization

At zero temperature the ground-state energy of a 2D
EG has a downward-pointing cusp at integral filling fac-
tors. Thus the magnetization, which is given by

r

has a discontinuity as a function of 8 at T =0 which is
directly related to the discontinuity in the chemical poten-
tial discussed in Sec. III B. In fact since v =2ml N !I.,l.»,
and only the dependence on v is singular we have for
T =0 that

FIG. 6. Magnetization versus magnetic field for an ideal
electron gas (soljtd curve) and with interaction and disorder
(dashed curve). I [meV]=0 34V 8.[T], n =5&&10" cm 2, and
T =4.2 K. The discontinuities in the magnetization is a mea-
sure of the quasiparticle energy gaps as discussed in text.

(I + I }2—(I +-i )—
~ps iriuic

(27)

i.e., the discontinuity in the magnetization per electron in
units of effective Bohr magnetrons (ps ——eA'/2m'c) is
twice the discontinuity of the chemical potential in units
of i)leo, . In Fig. 6 we have illustrated our numerical results
for the magnetization which were obtained from Eq. (26}.
The effect of interactions is to increase the discontinuity
of the magnetization because of the increased Landau-
level splitting, especially between different spina, as men-
tioned previously. Introducing disorder, of course, leads
to a reduction in the Landau-level splittings and therefore
causes a reduction in the magnetization discontinuity.

IV. FEATURES AT FRACTIONAL FILLING FACTORS

In the preceding section we have studied the thermo-
dynamic properties of a 2D EG in a strong magnetic field
within the Hartree-Fock approximation. For sufficiently
weak disorder and sufficiently low temperature all proper-
ties exhibit features near integral filhng factors which re-
sult from the energy gap between Landau levels. In fact,
as we have mentioned, both the chemical potential and the
magnetization measure this energy gap directly. In the
case of integer filling factors the energy gap between Lan-
dau levels is increased by electron-electron interactions.
From the occurrence of the fractional quantum Hall ef-
fect, i it is clear that gapa open up at fractional values of
the Landau-level filling factor which are entirely due to
interactions. These gaps are absent in the Hartree-Pock
approximation discussed in Sec. II and applied in Sec. III
because they are due to correlations among electrons in
the same I andau level. Nevertheless, we suggest below
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that the results of Sec. III may be used to draw some con-
clusions concerning the behavior of the various thermo-
dynamic properties at fractional filling factors.

Our argument is based on the hierarchy picture of the
fractional quantum Hall effect. In this picture the
electron system has especia11y stable incompressible
liquid3 at a series of rational values of vo, all of which
have odd denominators (vo ——p/q, where q is odd). For
filling factors v close to ve the ground state and the low-

lying excited states of this system are in one-to-one
correspondence with those which exist when vo is an in-
teger. (See especially Ref. 33.} To be specific, there are
Nl possible quasielectrons and NL, possible quasiholes
which can be created in the ground state, the differences
being that in the fractional case it does not cost an extra
energy fm, to create a quasielectron and that the quasi-
particle charges have the fractional magnitude e/q. If v

is close to vo and temperatures are low so that quasiparti-
cles populations are small, quasiparticle interactions can
be neglected and the energy is given by

Z=Z(v, )+X, f d.{p+(e)n, (e)

+p (s)[nF(e) —1]J e
2

In Eq. (7} p+(e) are the disorder-broadened distributions
of quasiparticle energies centered about +a+ and
nF(e)= (exp[(s p—)/k, +T]+1j is the fermion-like dis-
tribution function for the fractionally charged quasiparti-
cles. ~e note that p, =)Lt/

~ q ~

since one electron is creat-
ed or lost for each q quasiparticles added to or removed
from the system. The quasiparticle energies that appear

I/
0, 5+5 5 0 527

I I

(~) 0.8
O.SOS '~ O.~27

I

1
f

1

0. 0

/
/

/
j ~~M. ~ Z. .J M. .~~ L~ J..~

0.6
ih

I

l
I

I

I

0 0 ) I I I

19

I/
0 327

1

I
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4

I i i I I I I l j I I I I l I l

20

FIG. '7. (a) Contributions to the entropy from low-lying excitations at filling factor near v= 3 in the fractional quantum Hail ef-

fect (FQHE) regime. n =1.5X10" cm 2, T =0.5 K, and I [meV]=0.03''8[T]. (b) Heat capacity in the FQHE regime [cf. Fig.
7(a)] at v close to 3. I [meV]=0.09V'8[T] and n =1.5X10" cm . At T= 1 K (solid curve) we observe a minimum at v= —,

mhile the reverse is the case at T =2 K cdashed curve), cf. Fig. 4. Ic) Magnetization versus magnetic field close to v=
3 . The jump

in the magnetization is a measure of the energy gap at v= 3 . n = 1.5X 10" cm ~, T =0.5 K, and I [meV] =0.03+8 [T].
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here are the gross quasiparticle energies, ' which for the
case of v near vo ———,

' are given by c+———0.12e /el and
—c = —0.23e /el. At a given filling factor and tem-
perature ihe quasiparticle chemical potential, p, is related
to the filling factor by

v=vo+q ' I dctp+(c)nF(c)+p (c)[nF(c) —1]] . (29)

Similarly, based on the one-to-one correspondence be-
tween the excitations for vo near integral values and the
loio lyin-g excitations in the fractional quantum Hall re-
gime, we argue that the entropy is given by

X~k~—J dF[~~(s)ln[np(E)]+[( nF(r)]—

)&In[1 —nF(c)]][p+(c)+p (c')] .

(30)

-0
0.0 0.2 0.6 0.8

M e/I, = —1+ [2vf'(v) —f(v)] .
Pfp g AEog

(31)

In the Hartree-Fock approximation (the dashed line in
Fig. 8) we see from Sec. III that f(v)=( v/2)]/n/2— .
which gives

In Figs. 7 we present results for the entropy, the mag-
netization and the specific heat for v near vo ———,'. These
are discussed below but we should first emphasize that for
the ideal system quasiparticle interactions may never be
negligible, even for v arbitrarily close to vo. Our results

apply in the regime where the interactions of the vo ———,
'

quasiparticles with the disorder potential are much
stronger than their interaction with each other, at least in
the range of filling factors considered. We expect this re-
gime to exist even with the highest mobility 2D EG sam-
ples currently available. For the entropy, Eq. (30) predicts
that a minimum should occur for v near vo, whenever the
temperature is small compared to the disorder reduced en-

ergy gap, Es=c+—c —2I [see Fig. 7(a)]. The heat
capacity, as illustrated in Fig. 7(b), is predicted to have a
maximum at v= vo for higher temperatures and a
minimum at lower temperatures. As discussed in Sec. III,
this behavior is closely associated with the nature of the
excitation spectrum assumed in the present discussion
and, if confirmed, will provide convincing support for the
hierarchy picture. The magnetization is illustrated in Fig.
7(c).

In closing this section we comment on the thermo-
dynamic properties of the completely disorder free system
as T~O. In this case anomahes should be present near
many fractional values of vo and the dependence of ther-
modynamic properties on magnetic field should be rich
with detail. For example we show in Fig. 8 a curve for
magnetization for v (1 based on the approximate expres-
sions given by Halperin for the ground-state energies at
hierarchies of v[] values. The magnetization M
= —BE/88 was approximated using a finite difference
between states at adjacent filling factors. (States with
fractional charges of magnitude greater than

~

e
~
/39 in

the hierarchy scheme were included. ) Writing
E =X[e f( )/vI+ %co/2], as is appropriate when
Landau-level mixing can be ignored, we see that

FIG. 8. Magnetization versus filling factor in the FQHE.
The dashed curve is for the Hartree-Fock approximation (see
text). The deviation of M/Npq from the noninteracting value,

M/Xpq ———1, is in units of ( e /eI)/fico, .

' 1/2M" (e/l)v m= —1—
+@~ 2A ro 2

(32)

%hen correlations within a Landau level are included,
however, the v dependence of f (v) at small v is dominat-
ed by the v' dependence ' expected for a classical
Wigner crystal which is independent of field and therefore
gives no contribution to the magnetization. The smaller
magnitude deviations from v'~ dependence which are as-
sociated with the fractional quantum Hall effect give a
magnetization with an erratic field dependence centered
around the noninteracting value. Using Eq. (27) we see
that the discontinuity in the magnetization per electron in
units of i))lying at v=vo is 2q times the quasiparticle energy

gap in units of fm, . From this it is clear that measure-
ments of thermodynamic properties can, in principle, test
theories of the fractional quantum Hall effects in great
detail. At present it appears that these experiments are
extremely sensitive to sample homogeneity but as our cal-
culations show, much will be learned if existing experi-
mental obstacles can be surmounted.

V. SUMMARY AND CONCLUDING REMARKS

%e have studied the anomalies in the thermodynamic
properties of a 2D electron gas associated with the energy

gap between Landau levels in the Hartree-Fock approxi-
mation (HFA). We believe that this approximation gives
a rehable description of the way in which interactions
modify these anomalies. The most obvious and dramatic
consequence of interactions is the giant enhancement of
the spin splitting which makes anomalies at odd integral
values of the Landau-level filling factor much more pro-
nounced. The lowest-lying excitations at integral filling
factors are composed of holes in the highest filled Landau
level and electrons in the lowest unfilled Landau level.
The approximations used here are equivalent to ignoring
the interactions between these electron and holes. This is
justified except when the electron and hole are close to-
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gether in which case the excitation has a collective na-

ture and our description is in error. Phase space con-
siderations, however, make the corrections to thermo-
dynamic properties small. A more serious weakness of
the HFA is its failure to include the consequences of
correlations of electrons within the same Landau level.
These correlations are responsible for the fractional quan-
tum Hall effect in which the system has especially stable
ground states at a series of fractional filling factors I voI.
We have presented some qualitative results for the
behavior of the thermodynamic properties for v near v&.

Our predictions are based on the hierarchy picture in
which there is a one-to-one correspondence between the
excitations for v near vo and the excitations for v near an

integer. Most interesting among these predictions, is the
claim that the specific heat should change from having a
maximum at v=vo to having a rninirnum at v=vo as the
temperature is lowered. Verification of this property
mould provide impressive support for the hierarchy pic-
ture.
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