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%'ith the use of Haldane s spherical model, the fractional quantum Hall effect is studied by means
of large-scale configuration-interaction calculations. The exact wave function and the ground-state

energy are computed numerically up to ten electrons for fdling v= —,', and up to seven electrons for

filling v= —,. Quasiparticle, quasihole, and exciton energies are computed. The mutual relation be-

tween wave functions on the sphere and wave functions on the disk is fully analyzed. A wave func-
tion originally proposed by Halperin for the disk geometry is tested on the sphere; the numerical re-

sults up to six electrons for v= —, and v= 9 are favorable.

I. INTRODUCTION

One of the most exciting discoveries in solid-state phys-
ics in recent years is the fractional quantum Hall effect
(FQHE). ' Two-dimensional electrons in Ali, Ga, As-
GaAs heterojunctions at high magnetic field B present a
quantized Hall conductivity o,„at some simple rational
multiples of e2/Ii. Denoting by p the electron density,
and by po ——Be/h (c =1) the density corresponding to the
complete filling of the first Landau level, plateaus of a,~
and anomalously small values of cr appear at some ra-
tional value of the filling factor v p/po (a typical value is
v= —,

' ). These facts suggest the existence of an energy gap
in the excitation spectrum, and cusps in the correlat1on
energy per particle E(v) at the special values of v. We
refer the reader to the excellent review papers by Halpe-
rin and by Yoshioka for more details.

In all theoretical studies of the phenomenon, the elec-
trons are placed in a positive neutralizing background.
Early treatments of a two-dimensional electron system in
a strong magnetic field were based on a Hartree-Fock
charge-density-wave (CDW) picture. For v= —, the
computed value of E(v) is —0.389e /eao, where ao is
the magnetic length (iii/eB)'~2 and s is the dielectric con-
stant. This results is quite close to the variational bound,
which holds for any self-consistent CDW state:
E(v) ~ —0.395e jcao. %'e notice that for a large system
the value Eo(v) of the energy for a normal state (a self-
consistent Slater determinant without CDW) is much
»gh«: Eo( —, )= ——,'(m/8)'~ e /eao. It is also worth
mentioning that the local density of a triangular CDW is
very close to the local density of a Wigner crystal (WC)
wave function, the latter being constructed by means of

Gaussians centered on the lattice points. 6 Unfortunately,
the Hartree-Fock CDW energy turns out to be a smooth
function of v, and therefore the CDW model alone does
not explain the FQHE.

A real breakthrough in the subject came with the
pioneering work of Laughlin. ' Laughlin's wave function
describes a quantum liquid, explains the plateaus of cr,~
at v=m ' (m odd), and gives an explicit example
of a correlated many-body state. The energy E(v)
(=—0.41e /zao for v= —,

'
) is lower than the CDW value,

and it is not very far from the rigorous lower bound
E(v)& —0.782v' e /sao (= —0.4515e /eao for v= —,')
which corresponds to a classical triangular %'igner lattice.
An interesting aspect of Laughlin s treatment is the appli-
cation of the idea of fractionally charged excitation, ' as
well as the connection of the quantum problem with the
classical plasma theory. These ideas have given rise to
many interesting developments. "

However, a number of problems are left unsolved, so
that the possibility of alternative approaches' 3 is not
ruled out. For instance, the experimental value of the en-

ergy gap is smaller than Laughlin's computed value and
the extension of Laughlin's theory to v&m ' (m odd) is
not straightforward. An interesting unsolved problem is
whether the ground state is degenerate. Further-
more, a recent work by Chui, Hakim, and Ma proposes
again a solidlike trial wave function, even for v= —,. The
possibility of a crystalline order is also investigated by
Kivelson, Kallin, Arovas, and Schrieffer' using a semi-
classical path integral approach. See also Baskaran.

For these reasons, exact finite-size calculations with a
small number N of electrons (often performed in the last
few years ' '

) can still be of use in order to improve
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our knowledge of the structure of the wave function, of
the behavior of E(v) and of the excitation spectrum, etc.
These calculations can be performed more easily using

spherical geometry, ' ' which is the only geometry
without boundaries. The treatment of the neutralizing

background, which is quite cumbersome on a disk, is im-

mediate on the sphere. In Ref. 36, results of detailed nu-

merical calculations on the sphere are exhibited for v= —,
'

and E & 8. The effectiveness of Laughlin's wave function
was confirmed; also the dispersion relation of collective
excitations was found to be in quantitative agreement with
the results of Girvin, MacDonald, and Platzman.

The paper is divided into thro: parts. Section II con-
tains essentially a review of the formalism of the spherical
geometry, including some details that were omitted in the
original paper of Haldane. In Sec. III we establish a
correspondence between wave functions on the sphere and
wave functions on the disk; this mapping allows the possi-
bility of testing on the spherical geometry wave functions
originally proposed for the plane, and clarifies some ques-
tions related to the effectiveness of these wave functions.
The relation between translation invariance on the plane
and rotation invariance on the sphere is fully analyzed.
Section IV contains our numerical results: We have im-
proved the accuracy of the preceding calculations, and we
have added new cases; for v= —, we have computed the
exact wave function up to %=10, and for v= —,

'
up to

%=7. Furthermore, we have investigated some wave
functions originally proposed by Halperini for the disk
geometry, and corresponding, respectively, to v= —', ,
v= —', , for large values of N. A few excited states are also
analyzed. In the Appendix, a compact form for the two-
body matrix element is derived.

II. FORMALISM OF THE HALDANE MODEL

2miriS

A=RX[ —iiiiV+eA(R)] . (3)

Denoting by R, H, p the polar coordinates and by
Q=R/R, 8,(p the corresponding unit vectors, the elec-
tromagnetic potential A can be taken to be

A= — cot8y .
eR (4)

Because of the presence of the magnetic field, the eigen-
values of

~

A
~

are not equal to I(1+1)vari with 1 an in-
teger. In order to find the eigenvalues of

~

A ~, it is use-
ful to compute the commutation relations [A,Ap].
Denoting by M = inc &—rRei3& the angular momentum
components in the absence of the magnetic field, we have,
using (1) and (3),

Let us consider a sphere of radius R with a magnetic
monopole placed at the center of the sphere. Let 8 denote
the magnitude of the (radial) magnetic field; by Dirac's
quantization condition the total flux 4nR. B must be an
integral multiple 2S of the elementary flux quantum h/e
(we take units such that c = 1); therefore

AS

eA

Le«s consider one electron of mass m constrained on
the surface of the sphere. The kinetic energy Ho is pro-
portional to the square of the angular momentum A:

[A,A~]=[M +c Q„eA„,Mp+c~, „R,eA„]=inc &~„itic „~—Ii,„I[R„A„,R,Bu]+[R„B„,R,A„]I
=i Rc~Ii„M& i tie I (5~@5»— 5~„5„p)(R„A—„R„A„)+c~„~—„„~pi„R,R„B„I

=itic p Mr+ifiec py(RX A)r ice(5~„5q„5—~q5q )cd R)—RqBv =inc Iir(Ar fiSQr)—

where e~„, etc., is the completely antisymrnetric rank-3
Levi-Civita tensor.

Furthermore,

[A~,Qp] = i c~„fRq d„,R—p]—=i fic~pqQq .g CXPY P v&

Therefore, defining

I.=A+ASQ,

we have the commutation relations

[L,Lp]=inc p~(A„fiSQr)+2iA —Sc~firQy

=i Ac~p&I. &
.

The operators I.~ are the infinitesimal generators of the
rotation group. Since A.Q =Q A =0, we have I..Q
=Q.L=PALS. Therefore,

I

and the eigenvalues of
~

A
~

are [I(I + 1)—S ]A' .
The first Landau level for one electron on the sphere is

obtained for 1=S. The corresponding eigenvalue of the
energy is eBiri/2m =fun, /2, where co, is the cyclotron fre-
quency.

Contrary to what happens in the plane, where there is
infinite degeneracy of the first Landau level, on the sphere
the degeneracy is finite; in fact, there are 2S+1 indepen-
dent degenerate eigenfunctions of Ho ——(2mR ) '(

~

L
~—irPS ). When all these single-particle states are occu-

pied, the electron density is

(2S+1)/4irR -S/2mR =(2mao)

where ao ——(A'/eB)'~2 is the magnetic length. Therefore,
for large values of S (and R) the density corresponding to
full occupation of the first Landau level is the same as in
the planar case,

Following Haldane, we represent the operators I.;
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where [x]„,[x]„denote the two components of the spinor
x. In order to be consistent with the conventions of Ref.
12, we choose the following representation of the Pauli

spin matrices;
P

0 0 —i
0 ' o'2 i 0 cT3= —

0

( j = 1,2, 3) in the space of spinors of rank 2S. Let us con-

sider a rotation of angle 8 about the axis Q, let s =(u, u)

denote a two-component spinor, and let cr; (i =1,2, 3)
denote the Pauh spin matrices. An irreducible representa-
tion of the rotation in the space of homogeneous polyno-
mials p(u, u} of degrees 2S is given by the formula

(e —iR ~L
Gep )(s) ~p(eicr. ne/2 ) (10)

Differentiating b th sidm with rmp~t to 8 md setting
g=0, we obtain

=(' "'""'s'ls& =e '"p, (s). (19)

Differentiating bo th sidm with rmp~t to 8 and setting
8=0, we obtain the result.

Haldane calls "coherent states" the states (17); indeed
they have the same physical meaning on the sphere as the
coherent states on the disk geometry (see Refs. 39 and 40}.
The particle is localized around the direction Q corre-
sponding to the spinor s' as much as is compatible with
the condition that the wave function is built only from the
lowest Landau level eigenfunctions of Ho. The function
p, (s) represents a "spin" localized at the point Q' of the
unit sphere, since

l p, (s) l
is maximum for s =s'.

Let us denote by Ks the subspace of the Hilbert space
spanned by all the homogeneous polynomials of degree
2S, with the scalar product defined by [see Eq. (16)]

(pt,p2) =J dQp/(u(e, p), U(e, lp))p2(u(e, p), U(e, q)),

Then, from (11), it follows that

a aLi= U +u
u U

a aI.2 —— U
- — —u

2 au aU

(12) where dQ =sinededp.
The fouowing monomials, that are eigenfunctions of

L3, Provide an orthonormal basis in Hs..
t i]/2

2S
gS+m S —m

~+m
L

for m =S,S —1, . . . , —S, (21)

where (s+~ ) is the binomial coefficient. We have

1.3es, ——Ames, for m =S,S —1, . . . , —S .

a a
L3 ———u- —u—

2 au aU

(cr Q)s= —s

Equation (14) implies

g Q)+)02
U 1 —03

(14)

For instance we can choose the product uu to be real,
I.e.)

Of course
l
Ll'p=s(s+1)Q «r anyg~u, U) of degree

2S, and the monomial u satisfies L3u =Mu
It is convenient to associate to each unit vector

Q=(sineco~, sinesiny, cose) a spinor s =(u, u) satisfying
the equation

These functions represents cyclotron orbits on the sphere
(parallels) with (cose) =m/(S+1).

Let us now consider the problem of N electrons on the
sphere interacting with each other and with a positive
background via the Coulomb potential. We assume ao as
the unit of length and e2/4meao as the unit of energy,
where e is the dielectric constant. Therefore S=R and
the Coulomb potential is simply r

In virtue of Gauss's theorem, the effect of the neutraliz-
ing background is equivalent to a charge +Re placed at
the center of the sphere. Therefore the interaction energy
electrons background is —N /R = —N /v S, and the
self-energy of the background is ,'N2/v S A—dding the.
two contributions, we obtain a shift in the energy of
——,'x'ws.

Denoting by a the creation operator of an electron
with wave function es, the restriction of the interaction

u =cos(8/2)e'~~, U =sin(8/2)e (16)

Putting s'=(u', U'), we denote by (s'ls) the scalar
product u 'u+v'U. The polynomials

(17)

satisfy the eigenvalue equation

( L Q)p, (s) =ASp, (s) .

Equation (18) can be verified by applying a general rota-
tion to p, and using (10) and (14):

to the relevant many-particle Hilbert space is given by

+S +S +S +SV, g g g g m, m,
~

m3m4 s
ml ———Sm2 ———Sm3 ———Sm4 ———S

Xa~,a ' a a~ . (23)
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As noticed in Ref. 36, the problem is formally equivalent to that of a partially filled nuclear shell with j =S, even
though the interaction is quite different. We can write

(
2S +J

{Sm „Sm,
~

m & {Sm3,Sm,
~

JM ) V,'"Z -',
J=OM= —J

(24)

VJs'=2

4S —2J 4S+2J+2
2S —J 2S+J+1

4S+2
2S+1

(25)

where the reduced matrix element VJ
' is independent of

M, and the remaining factors are Clebsch-Gordan coeffi-
cients.

It is possible (see the Appendix) to express the Vz
' in

the compact form:

P(uiiviiuz~vzi iuw~viv )

V) V2
p ) ) ~ ~ ~

Q) Q2
(29)

mials P(z„z2, . . . , zN ) that are homogeneous of total de-

gree M. Setting zj =pje, M is the eigenvalue of the to-
tal angular momentum M, = —ig,. iB/By;, which is a
conserved quantity (we have set fi= 1).

We can extend the mappings I and I ' to the many-
particle case by defining, for any P, a polynomial P by
means of the relation

III. STEREOGRAPHIC MAPPING
BET%EEN FUNCTION SPACES

Let us now consider the disk geometry in the planar
case; the non-normalized single-particle wave functions
for the lowest Landau level are

n —
I
s

I
'/4

qr„( z)=z"e ~'~ ~, with n =0, 1,2, . . . , (26)

1 —03
0)+iQ2

Q) —iQp

1 —0, (27)

On the other hand, from our definition of the correspon-
r

dence p~I', we have

p(u v)=u P
Q

Since (27) represents a stereographic projection of Q to
the complex conjugate of v /u, we call I the "stereograph-
ic mapping between function spaces. " I' maps the cyclo-
tron orbits on the sphere that are parallel to the plane,
into cyclotron orbit on the plane. Notice that I is not
isometric since the norm of u "v is different from the
noxTQ of z

Let us now consider a class of many-particle wave func-
tions that are currently used in the plane geometry to
describe the FQHE: These are the antisymmetric polyno-

where z =x iy Lea—ving. aside the exponential factor,
that plays the role of a measure, let us consider the space
I.s spanned by the first 2S + 1 functions (26}, i.e.,
the space of polynomials of degree & 2S (2S integer).

%e establish a mapping I between the spaces Hs and
Ls by mapping the polynomial

2S

( ) y 2S —kk
k=0

defined on the sphere into the polynomial P(z}
vckz defined on the plane. See also Ref. 40. The

mapping I is reminiscent of the stereographic mapping
between points. In fact, from (15) it follows that

Denoting by D(si, s2, . . . , s~) the Slater determinant

det[)AJ)), with AJ =zj' (ij =1,2, . . . , N), and by
D(si, sz, ,sz) the Slater determinant det()BJ j [

with
ZS —s. s,.Bj.——uj 'UJ', I maps D~D. We notice again that D

and D are not normalized.
Let us put iii= 1 in (13) and let us consider the total an-

gular momentum for a system of particles on the sphere.
Since for one particle, L3u "v =(S—k)u v" (for
k =0, 1, . . . , 2S), we have

N

+3D(s si, 2. . . ,s~)= NS —gs; D(si, sz, . . . , sz)

and since the Slater determinants form a basis for the
many-particle space, we h»e

1.3P =(NS —M)P (30)

for any homogenous polynomial P of total degree M.
We are now in the PMition to prove the following ele

mentary theorem.
Theorem. The stereographic mapping I ' maps

homogeneous translation invariant polyno-
mials P(zi, zz, . . . ,z~) with total degree M =MS
into fully rotationally invariant polynomials
P(u I,v l, u2, V2,'. . . ', uN, UN ).

Proof. The square of the total angular momentum
operator applied to a homogeneous polynomial p on the
sphere gives, in virtue of (30),

L 'P =V I-++(&s M)'+(xs M)]p-, —(31)

,v;(BIBu;) and I.+ =g, ,u;(B/Bv;).
On the other hand, from the relations
u(BIBU)(u v )=ku~ "+'v ' and (B/Bz)zk
=kz (which 1101d for k =0, 1, . . . , 2S), we see that,

Nr-'g r=L, + . (32)Z.

Suppose now that P=1p is a translationally invariant
polynomial, i.e.,
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P(zi+c,z2+c, . . . ,zN+c)=P(zi, zi, . . . ,zN)VcEC.

Then (g,. iBIBz;)P=0 and

N
L+p =I 'g I'p =0 .

Bzt
(33)

Since the maximum degree in one variable is (N —1}m, it
is reasonable to assume that 2S =m (N —1). The func-
tion I 'P is just the Laughlin-Jastrow wave function on
the sphere proposed by Haldane, i.e.,

(u U)
—U;uj)

Since P is translationally invariant M =m(N(N —1)j2)
=MS, we recover the known result I. y =0.2 iI

Given an expansion in Slater determinants of a wave
function defined on the sphere,

Since we have assumed that M =VS, it follows from
(31}that L p =0. The theorem is thus proven.

As an example of an application of the theorem, let us
consider Laughlin's polynomial

N
P= II(z, —z, )

f3 =ciD(0,3,6)+c2D(1,2, 6)+ciD(0,4, 5)

+c4D(1,3,5)+c5D(2,3,4) . (36)

It is easy to verify that the condition L+gi ——0 deter-
mines the coefficients c; up to a factor (a possible solution
bemg c, =l, c2 ——ci ———3, c4 ——6, and c5 ———15). This
means that for N =3 Laughlin's state is the only rotation-
ally invariant state that can be constructed in the subspace
defined by (36). It follows that Ps is an exact eigenstate
of the correlation Hamiltonian, as has already been point-
ed out by Haldane.

The following question arises: supposing that p is a
good variational wave function on the sphere, does it fol-
low that P =Ip is a good variational wave function on
the disk (or vice versa)'? We have no general results that
guarantee that this is the case, but we have the feeling that
this is very often true. Laughlin's wave function, for in-
stance, is very good both on the sphere and on the disk
(slightly better on the sphere, see the case X =3).

As we have already announced in the Introduction, we
have mapped on the sphere a few interesting wave func-
tions that have been previously proposed (see Refs. 2 and
41). In particular, we have considered the following poly-
nomials that describe explicitly the correlation between
pairs of electrons:

SI r$2r ~ ~ ~ r S~
cr s s D(si, sz, . . . ,sN),Sls2 N

(35)

(37)
the condition I.+p =0 often gives rise to useful identities.
For instance, let us consider the expansion of fatti in Slater
determinants for N =3 leaving undetermined the coeffi-
cients:

where s, t, u GZ, s —t & 1 odd, s & 1, u &0, A is the an-
tisymmetrization operator and I'~ is given by

N/2
1Ps = II [z2kz2k i+z»z» ]

—T(z2k+z2k —1)(z»+z» —1 )]
k, A, =1
k(A,

= II [ —,'[(z,k i —z» i)'+(z2k i
—z»)'+(zzk —z» i} +(zzk z») ]—-[(z2k —zzk-i) +«» —z»-i} ~) .2 & 2 2

k, A, =1
k(A,

(38)

TABLE I. Ground-state energy per particle for v= —,. r(0 is

the Laughlin wave function.

Ps is translationally invariant. Furthermore, the total de-
gree M is given by

Dimension
of the CI

matrix & rett I gcxcct &

i' (X —1) X NM= s ——t+ ———1 u,2 2 2 2

and the maximum degree N,„ in one variable is

(39)

5

6
7
8
9

10

15
73

338
1656
8512

45 207
246448

—0.503 779
—0.474 815
—0.459402
—0.449 954
—0.443 521
—0.438 865
—0.435 339

—0.4116

—0.503 779
—0.475 024
—0.459 510
—0.450 173
—0.443 735
—0.439096
—0.435 591
—0.432 840
—0.4117

1

0.99804
0.99906
0.99644
0.996 36
0.99540
0.99406

Nm, „=(N—1)s r+ ———1 u .

Let us now apply the mapping I ', we see from the
theorem that an isotropic state is obtained if

2S= =(X—1)s i+ ——1 u —.2M
N 2
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TABLE II. Quasihole energy for v= 7'. $0——pi [see Eq.
(47)].

TABLE III. Quasiparticle energy for v= 3. go=g3+ [see
Eq. {47)].

Dimension
of the CI

matnx

6
23
98

464
2306

11 975
64071

0.042 701
0.037 821
0.035 489
0.033 623
0.032 574
0.031 715
0.031026
0.0264

& WO l Wexact &

1

0.995 78
0.997 14
0.99349
0.99400
0.993 25
0.992 23

Dimension
of the CI

matrix

3
11
46

217
1069
5529

29463

0.119676
0.104692
0.098 959
0.093 635
0.091 013
0.088 775
0.087000
0.0772

& PO I 4exact&

1

0.995 45
0.99625
0.992 73
0.993 28
0.992 33
0.991 38

Nmax u
V

N 2
=S+ (s+t+u) u

N
~s+ —for large N .

2

(41)

It may be verified immediately that for t =1, s =2, and
u =1 the wave function (37) is an exact solution of the
eigenvalue problem for four particles; writing

P =c Di(0, 1,5,6)+c D2(0, 2,4,6) c+Di(1,2, 3,6)

+c4D(1,2,4,5)+csD(0,3,4,5),

This is precisely the value of N., for the polynomial PB.
It follows that the image of P on the sphere corresponds
to a rotationally invariant state.

Halperin and Morf and Halperin4' consider also the
following pairing factor:

N/2

Pii ——g [z2k+zzk i
—(zzi +z2i i )]

k, k, =i
k&A,

An analogous computation shows that the image on the
sphere does not correspond to a rotationally invariant
state, since N,„=(N —1)s i+2(Q/2 —1)u ~ 2M/—~.

The filling factor for the isotropic case (38) is given by

there is only one normalized rotationally invariant wave
function.

In the next section numerical results for six electron are
given for s =2 and s =4. The same kind of analysis can
be applied to a wave function proposed by Girvin and
Jach:"

(43)

The image of P on the sphere turns out not to be rotation-
a11y invariant.

An obvious consequence of formula (31) is that any
translation invariant homogeneous polynomial on the
sphere of total degree M is an eigenstate of 1.2 corre-
sponding to the eigenvalue NS —M. Consequently, start-
ing from Laughlin's polynomial PL ——II, (z; —zj), we
can construct approximate excited states in a simple way:
it is sufficient to apply to PL any homogeneous symmetri-
cal polynomial in the derivatives t)/t3z; (for
i =1,2, . . . , %.

Two interesting possibilities are offered by the polyno-
mials:

the condition L+P=O determines the coefficients c; up
to a factor (a possible solution being ci ——1, cz ————', ,

c4= —15, ci ——c5 ——10). In this respect there is a strong
analogy between the pair function (37) and Laughlin's
function: in the subspace spanned by the functions (42)

y t) t)

i&t' &t' «i &N

a

iK

(45)

TABLE IV. Energy gap 5 and exeiton energy 5,„,for v=
3 .

~exc & tio
~

i('exact &

0.162 377
0.142 513
0.134448
0.127 258
0.123 587
0.120490
0.118027
0.1036

—0.464 116
—0.451 641
—0.440 829
—0.436074
—0.431 970
—0.428 458
—0.426 695

—0.464 116
—0.451 641
—0.440887
—0.436 500
—0.432 188
—0.428 896
—0.427 113

0.11899
0.093 53
0.093 11
0.08204
0.080 83
0.081 60
0.076 30
0.0766

1

1

0.998 98
0.989 71
0.995 60
0.987 74
Oe987 25
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that correspond to L =E(E+I) and Li ——K.
Another important example of excited state has been

proposed by Morf and Halperin: '

(zi —zj )+(zz —zj )
~x,x=~, fI '

~L
z, )', , (z, —z;)(z, —z, )

TABLE VI. Quasihole energy for v= —,'. t(to ——|('s [see Eq.
(48)].

Dimension
of the CI

matrix

where A denotes the antisymmetrizer. However for nu-
merical tests, Pxtt and Qx it are easier to use, since no
antisymmetrization is required.

Finally, we notice that for E =N, Qtt z reduces to the
quasiparticle state proposed by Laughlin, and R~ ~
reduces to the quasiparticle state proposed by
Halperin. However, one should remember that when the
state represents a quasiparticle, the value of S must be
suitably changed (S~S——,

' ).

15
102
783

6615
59 105

0.012 694
0.010550
0.010336
0.008 494
0.009069
0.0071

1

0.979 74
0.99242
0.94608
0.978 45

IV. NUMERICAL RESULTS AND CONCLUSIONS

We have adapted a numerical method used for full con-
figuration interaction (full CI) calculations in qutintum
chemistry to the case of aligned spins. In this way it has
been possible to treat large Hamiltonian matrices (for
v= —, and N =10 the dimension of the CI matrix is
246448). Use was made also of the Lanczos method,
which consists in the diagonalization of the matrix H in
the subspace generated by the vectors H"

~ fo), where

~ fo) is a given starting vector. The choice of the simple
sequence H"

~
l(o) is convenient since the symmetry of

~ go) is preserved in the iteration procedure.
We have repeated the calculations performed in Ref.

36, adding a few more cases. For the cases of the quasi-
particle and quasihole energies, we have used the Lanczos
procedure, assuming, respectively, the starting vectors:

+ t) (t. =0)
rn exact

t)Ut

(L =0)
Pm = oui hexa« (48)

where P',„,=„' is the ground state.
We have computed the quasihole and quasiparticle en-

ergies 7 and e+, respectively, by keeping the radius 8
constant This corre. sponds to the prescription suggested
in Refs. 11 and 41 for computing the "proper energies. "
In order to keep R constant, the field 8 has to vary when

going from the ground state to the quasihole or quasipar-
ticle state, since S~S+—,'. Consequently, also the eigen-
value fico, (N/2) of the kinetic energy Ho has to vary.
However, these variations are exactly opposite to one
another, so that the relevant quantity 6=a++a does
not depend on Ho. (mh is equal to the discontinuity in
slope of the energy curve. ' ')

In our calculations of e and 7+, we have also included
a correction proposed in Ref. 36, which consists of assum-
ing a neutralizing charge of

~

e
~

(N+m ') in the back-
ground, since, physically, quasiholes and quasiparticles
are charged objects. This amounts simply to replacing the
energy shift —,'N /8, du—e to the effect of the back-
ground, by the more precise value ——,

'
[N —(1/m )t/R.

We denote by Eo the initial value of the energy per par-
ticle ($0 ~

H
~
go)/E, and by P,„,« the final wave func-

tion obtained by the iteration procedure. The quantity
b,,„, denotes the exciton energy, defined as the minimum
value of the excitation gap with respect to the "wave
number" L/R; L denotes the angular momentum of the
excitation.

In Tables I—VIII values of Eo, E(v), s, s+, b„h,„„
L, and of the scalar product (pp ~ l(,„,«) are exhibited for
v= —,

' (% =3,4, . . . , 9) and v= —,
' (%=3,4, . . . , 7). In

the case of v= —,', % =10 we have only computed the
value of E(v) due to the large dimension of the matrices
involved. The results are extrapolated to X= ao by con-
sidering the various energies as functions of N, and fit-
ting the data ~ith a second-order polynomial obtained by

TABLE V. Ground-state energy per particle for v= —,. $0 is

the Laughlin wave function.
TABLE VII. Quasiparticle energy for v= Y~. fq $5+ [see-—

Eq. (47)].

Dimension
of the CI

matrix

13
86

649
5AA A

48417

—0.398 570
—0.377044
—0.365 020
—0.357 993
—0.353070
—0.3282

—0.398 570
—0.377 578
—0.365 134
—0.358 716
—0.353 493
—0.3284

((to
~ f.. .&

1

0.98405
0.99743
0,948 65
0.976 81

Dimension
of the CI

matrix

10
67

511
4306

38 375

0.027 873
0.023 367
0.022 566
0.019699
0.020 186
0.0173

& 4010,

1

0.997 43
0.997 72
0.981 02
0.99438
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TABLE VIII. Energy gap b and exciton energy 5„,for v= —,.

~exc & 00 l inexact &

0.040 567
0.033 918
0.032 902
0.028 192
0.029 255
0.0244

—0.389 336
—0.372 708
—0.360907
—0.356214
—0.351 064

—0.389 336
—0.372 817
—0.361 008
—0.356 400
—0.351 173

0.027 703
0.019044
0.020 628
0.013 898
0.016245
0.0160

1

0.998 82
0.994 76
0.989 84
0.992 67

TABLE IX. Some tests of the Halperin wave function (37) for t =1, u =1, and s =2,4. v denotes
the asymptotic filling factor s +u /2.

Dimension
of the CI

matnx

5

58

43

2137

2
5
2
5
2
9
2
9

—0.550098
—0.499 378
—0.416932
—0.386 953

E(v)

—0.550098
—0.500400
—0.416 941
—0.387 140

0 exact

I

0.988 39

0.99994
0.99407

TABLE X. Test of the quasiparticle wave function (46) (E =Ã). Eo and E denote total energies.

Dimension
of the CI

matrix Eo

—1.930 110
—2.319236

—1.932092
—2.320043

& 00 l 4exact&

0.992 80
0.998 05

TABLE XI. Test of the exciton wave function {46)(L =E ~ 1V). Eo and E denote total energies.

Dimension
of the CI

matrix

—2.204 145
—2.199338

—2.204433
—2.199566

& &0 l 4exact &

0.998 98
0.999 14

0.5 0.5

0.0 0.0

-0.5

I

80 $80
t

80
I

120 180

FIG. 1. Charge density p,„, versus 8 for v= —,, X =9, and
I =5.

FIG. 2. Charge density p,„, versus 0 for v= 5, X =7, and
I =4.
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a least-squares method. The extrapolated values are for
v= —,, E(v) = —0.4117+0.001, 6=0.1036+0.002,

b„„,=0.0766+0.002, and for v= —,, E(v) = —0.3284

+0.002, 6=0.0244+0.003, 5,„,=0.016+0.005. Our

value of E(—,
'

) is slightly larger than I.aughlin's value

(—0.334+0.0028). However, since our calculations for
v= —,

' have bam carried out only up to N =7, this does
not constitute a serious discrepancy. On the order hand,
it should be noticed that the following second-order poly-
noauals

—0.41167—0. 18486N ' —0.274289N 2 for v= —,

—0.328 39—0. 149 712N ' —0.182 958N for v= —,
'

fit the values of Ez(v) very accurately. We have re-
peated the calculations of E(—,

'
) replacing the Coulomb

potential by the inverse of the arc distance between two
points on the sphere. The results remain substantially
stable.

Our values of b, and h,„„are in agreement with the re-
sults of Haldane and Rezayi, ' Halperin and Morf, ' and
Girvin, MacDonald, and Platzman, and lie above the re-
sults of Laughlin and Chakraborty.

Figure 1 shows the behavior of the charge density

p,'„,'=sine p(8,p)dy of the exciton for v= —,', N =9,
0

and L =5. The charge q of the exciton turns out to be
equal to 0.399. Figure 2 shows p,„, versus 8 for v= —,

'
„

N =7, and L =4. The charge q turns out to be equal to
0.253. We have also computed some values of the
"quasiexciton" dispersion relation &E(L/R) for v= —,,
N =9 and for v= —,', N =7. The results (see Fig. 3) are in
good agr~mnent with those of Ref. 37.

Finally, we have tested the correlated pairs wave func-
tion (37) for t=1, u =1, s =2, N =4,6 (v- —', ), and
i =1, u = 1, s =4, N =4,6 (v- —, ). As seen in Table IX,
these wave functions appear to be quite satisfactory.
However, the technical difficulties of the calculation in-
crease very rapidly with N, since our computer program
requires an explicit expansion in Slater determinants as
starting vector of the iteration procedure.

We have tested the quasiparticle wave function (46) for
E=L =N (see Table X) and for K=L ~N (see Table

XI}. The results are again satisfactory but not conclusive
due to the small number of electrons.

We would like to add a final remark. Not only are
there cases in which the L =0 states do not exist [see Fig.
4(d) of Ref. 36] but there are also cases where they do ex-
ist but are excited states. A simple example is provided
by the case N =4, S = —', , in which case the ground state
corresponds to L =2 (Ez ———0.507730), and the only
state with L =0 is an excited state (Eo ———0.488145).
This kind of "broken symmetry" deserves further investi-
gation.
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APPENDIX

y( ) JJ g ~—1

1 2

where the normalization factor No is given by

(A3)

We want to prove formula (25). Let us denote by
I
J,J)i the two-particle wave function (2S —J odd):

I
JJ)2——(uiu2 —u2U~) u~uq (Al)

(/If'OI in Haldane's notation). The effect of the stereo-
graphic mapping applied to

I
J,J )z is simply

I
I J,J)i——(z2 —z)) (A2)

Therefore NS —I=2S —(2S —J)=J. From (31) it
follows that the corresponding eigenvalues of L and Li
are, respectively, J(J+1}and J. Since Vz

' is indepen-
dent of the magnetic quantum number, it can be comput-
ed by the relation

0.10

0.05

O.OO
O.O f.O

I

2.0

and Q~ and Oz are two unit vectors on the sphere.
Using polar coordinates, we can write:

Q [ Qp ——sine/sineicos(q7} —Ip2) +cose)cosep

=cos6I .

Therefore defining u i, U i, u 2, U2 as in (16), we have

I Qi —Qi I
=2(1—cos8)=4

I
uiu2 —Uiu2 I

(A4)

(A5)

FIG. 3. Gap ~ versus "wave vector" I./E. . Circles are for
v= —, and N =9 and triangles for v= —,

' and %=7.
It fo11ows that the numerator of the right-hand side of

(A3) is given by the integral
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= ,' -f«1 f«21~11"I~21

I I
Q2 =Q1Q2 —U1 U2

I g

U2 =U1Q2+Q1U2

since the factor u 1 U2 —u2U1 becomes simply

Q1U2 —Q2U1 =U2

(A8)

(A9)

(A7)

In both expressions (A4) and (A7) it is convenient to per-
form the unitary transformation

Let us consider for example the integral (A7} (No can
be treated in the same way). Since the unitary transfor-
mation (AS) induces an orthogonal transformation
Q2~02 on the points of the sphere, we can write:

I=
2 Ql 02 Ql Q1Q2 —U1U2 U2

2J 4S —2J —1

81 H2

,' f-d81 fdpi fd82 dy2sin81sin82 cos sin
2

2J
H1 82 H, H2

cos -- cos —sin sin e
2 2 2 2

(A10)

where in the last factor we have neglected the inessential phase factor exp[i(y, +y2)/2]. Making use of the identity
(with a and 12 real numbers)

Jf d+, la be
'

2l 2J 2~y n2kb2J 2k-
k=o .

we obtain

~n m'/2
32~ g f d8 sin82l —2k+1cos82J+2k+1 + f d8 84s —2k 82k+1

k=0 . .

321r (2S+1)! J J (J —k)!(J+k)!(4S—2k)!k!4"
(4S+2)!(2J+1)lk

k (2S —k)! (Al 1)

As mentioned above, the integral Xo can be treated in the same way. The result is

[s)
VJ

(4S —2k)!(J+k)! 4k+1
1 (2S+1}i2 k o(2S-k)i(J-k)iki
2 (4S +2)! (2S —k)!(J+k)!

(J—k)!k!

(A12)

Denoting by D the differential operator d /dx, we can write

(2S —k)!(J+k)!
(J—k)!k!

J J 1
J J

(2S —k}!(J+k)!=—,gJ' k=0 . . ' k=0
D2S —k 1

1 —x =o 1 —x x=0

J J=—X k DJ—ka2S —J 1

1 —x
DkDJ DJ D2S —J 1

1 —x „o J1 1 —x
1

1 —x x=0

=(2S —J)!D
(1—x) +

x=0

(2S —J)!(2S+J+1)!
(2S+ 1)!

(A13)

In the same way, since

1 (4S —2k)!
( 1 )1/2 42$ —k(2S k)i

we can write
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' (4$ —2k)!(J+k)!4'
o (2S —k)!(J—k)!k! J! k

DJ+k
x=0 1 —x x=0

g)J—ka2S —J
k (1—x)'~

Dka J
l —xx=0 x=0

42/
DJ D2S —J l DJ

Jl 1 —x
x=0

{4S—2J)!(4S+2J+2)!{2S+1)!
(2S —J)!(2S+J+1)!(4S+2)! (A14)

From (A12), (A13), and (A14), we obtain

4$ —2J 4S+2J+2
2S —J 2S+J+1

V,'"=2-
4S+2
2S+ I

(A15)
y(s) I S

[$2 (J/2)2]1/2 (A16)

For large values of S, J, 2$ —J, Vq
' has the following

asymptotic behavior:
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