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Pseudofunction method: Application to a monolayer of CO and to the Si(111)surface
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The newly developed pseudofunction method has been developed to provide ab initio energy

bands and binding-energy curves for molecules, surfaces, and bulk. The effectiveness of this ap-
proach is demonstrated by computing the electronic properties of a CO molecule in a monolayer

configuration. %e find the CO bond length, dipole moment derivative, and the vibrational frequen-

cy are close to that of a free CO molecule. %'e have further demonstrated this new method by com-

puting the surface relaxation of a Si(111)(1&(1) four-layer film with one surface saturated by H. The
unsaturated surface relaxes inwards by 0.086 A with a vibrational excitation of 0.038 eV, nearly

identical to generalized-valence-bond cluster calculations.

I. INTRODUCTION

Study of the formation of ordered adsorbate mono-
layers on single-crystal metal surfaces provides a very
fruitful approach for the clarification of the physics and
chemistry of adsorbate-adsorbate and adsorbate-substrate
interactions characteristic of chemisorption on surfaces.
Major advances have been achieved in the application of
theory to experiment for surface geometry and electronic
structure for long-ranged-ordered atomic adsorbates on
well-defined surfaces of transition metals. In spite of the
great

theoretical

and practical interest in molecular-
adsorbate chemisorption systems, equivalent analytical in-
terpretations for ordered molecular-adsorbate monolayers
existing either in isolation or on a substrate have been
greatly hampered by the hmited applicability of available
first-principles calculations to relatively large unit-cell
systems and to short bond lengths as found in mole:ules.
We present here a study of the isolated monolayer of mol-
ecules. These new results are obtained by the use of a new
calculational approach capable of providing detailed in-
formation on structure and chemical behavior of a
molecular-adsorbate monolayer.

Computation of the precise electronic structure and to-
tal energy of ordered molecular-adsorbate monolayers is
an important objective. Ab initio cluster calculations'
have been effectively applied to the interpretation of clean
and chemisorbed systems where long-range-order contri-
butions are minimal and the required cluster size is not
excessive. In comparison, ab initio linearized augmented-
plane-wave (LAPW) ' band-structure calculations include
long-range-order effects but encounter difficulty in han-
dling the relatively large unit cells and small bond lengths
characteristic of molecular adsorbates because of comput-
er effort constraints. This problem arises in part because
the size of the wave-function basis is proportional to the
inverse of the muffin-tin radius (-1.0 a.u. for a CO mol-
ecule); thus diagonalization of the Hamiltonian matrix be-

comes coinputationally formidable.
Analysis of the electron band structure and atomic

geometry of ordered chemisorbed monolayers on single-

crystal transition-metal surfaces, particularly CO on
Ni(001), s 6 is often employed as a test case for comparison
between theory and experiment. As a first step in study-

ing chemisorption of CO on single-crystal transition met-
als to this end, we have performed ab initio calculations of
the CO bond length and vibrational frequency of CO in

an isolated carbon monoxide monolayer with a molecular
spacing and atomic geometry characteristic of the
c(2X2)CO-Ni(001) system. In addition, another exam-

ple of a test application is calculation of relaxation in the
unreconstructed surface of Si(111).

Accurate computational modeling of crystal surfaces
with adsorbed layers will be a valuable tool in understand-
ing the interactions at these surfaces, and a great deal of
effort has gone into devising computational
schemes. ' ' ' Kohn and Sham" showed that the
ground-state properties of a many-electron system can be
computed in terms of one-electron solutions to an effec-
tive Hamiltonian computed self-consistently. Particularly
interesting among these ground-state properties are the to-
tal energies for different atom locations and the electronic
band structure which relates to experimentally observed
photoemission spectra. A useful approximation applic-
able in many approaches (including the present work) is
the local-density approximation (LDA).

%e represent here a small-basis computational tech-
nique. This approach, which we call the PSF (pseu-
dofunction) method, uses augmented pseudofunctions as
its basis, where the pseudofunctions describe the long-
range behavior of wave functions away from atomic cores
and can be any function smooth enough to be represented
as finite Fourier sums. With well-chosen basis functions
this approach is capable of excellent accuracy.

The pseudofunction (PSF) method is improved over the
extended muffin-tin-orbital (EMTO) method' in two im-
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portant respects. First, the pseudofunction is defined as
the radial solution of the muffin-tin potential in the re-

gion near the muffin-tin boundary. The interior region of
the muffin-tin is still a linear combination of spherical
Bessel functions as before. The tail is chosen as a spheri-
cal Neumann function although other functions such as
Gaussians or Slater orbitals mould be suitable. The ad-
vantage of our new pseudofunction is that the wave func-
tion has the correct self-consistent shape in the bonding
region which is especially important for molecules.
Furthermore, the wave function has the desirable property
of consisting of overlapping radial solutions of the
muffin-tin potential. Our overlap of radial solutions is
exact and the first of its kind. In methods such as linear
muffin-tin orbital's (LMTO) and augmented spherical
wave, ' potentials (not radial wave functions) are over-
lapped in an approximate manner.

The other improvement over EMTO is that the expan-
sion of the pseudofunction in plane waves (Gaussians or
Slater orbitals could also be used) is augmented with radi-
al solutions of the spherical potential. This augmented
pseudofunction then becomes our trial basis function.

We find the bond length of CO is 1.138 A when the
molecules are 3.52 A apart, as would be found for CO on
Ni(001) in a c(2&(2) pattern. ' The computed vibration-
al frequency is 2157 cm . The potentials at infinity indi-
cate the 0 is negatively charged. Values for fry CO (Ref.
15) are 1.128 A for bond length and 2170 cm ' for fre-
quency with a slightly positive 0. It has been reported'
that two other exchange approximations have been found
to increase bond lengths only slightly. Thus, we might ex-
pect an equilibrium bond length to change only a little
when we change from Hedin-Lundquist exchange. '

An additional calculation was performed on the (111)
surface of Si to test suitability of PSF for semiconductors.
Our model of the Si(111) surface consists of a four-layer
film of Si with one surface saturated with H atoms. The
remaining surface is then allowed to relax. We find a sur-
face relaxation of 0.086 A and vibrational excitation of
0.038 eV. These results compare closely to those for the
generalized valence bond (GVB) method' where a Si4H9
cluster was used to model the Si(111) surface. The pseu-
dopotential method obtains 0.29 A (Refs. 19 and 20) for
the surface relaxation for the paramagnetic case. The re-
laxation is 0.20 A for a spin-polarized pseudopotential
calculation. The pseudopotential calculations were done
for a superlattice of ten-layer films. It appears the PSF
and GVB methods yield very different results from that
of the pseudopotential method.

The PSF technique differs from the widely used pseu-
dopotential' and LAPW (Refs. 3 and 4) methods in that
we use a local basis function, whereas those methods rely
on plane waves. For CO we used 3751 plane waves to ex-
pand our locally defined pseudofunctions, and 26901 for
the potential. Such a large number is dictated by the ex-
tremely localized molecular bond. In recent work, '
those groups have used only about 800 plane waves for
the symmetric diatomic molecule Si2. No bond length
computation was reported for Si2. Furthermore, the Si2
bond length of 2.25 A is nearly twice the bond length of
CQ.

The PSF formalism is presented in Sec. II. Examples
of applications for CO and Si are given in Sec. III. Sec-
tion IV contains a summary of the PSF method and its
potential use.

II. THE PSF CALCULATION APPROACH

Xi(Ei,r, z )= ~
Ni(Ri+coiRi ), r & R Mg

—E(, r &EM

Ri and Ri are the radial solution of the muffin-tin (MT)
potential and its first energy derivative for energy Ei that
is fitted onto the spherical Neumann function Ki of ener-

gy ~ . Ni and cubi provide the fitting parameters. A linear
combination of these muffin-tin orbitals form Bloch func-
tions which are used as the trial basis set. Two sets of
muffin-tin orbitals (MTO's) are defined for each atom.
The energy E~ and tail parameter a are chosen so that
the filled and empty orbitals have adequate variational
freedom. Atoms such as Ni are well represented by an s
MTO with ~ &0.0 and sp d MTO's with ~ &0.0 (10
MTO's/Ni). Atoms such as Si, C, and 0 required two
sets of sp orbitals (8 orbitals/atom). The Hamiltonian
matrix element consists of a term over the muffin tin
(MT) and an interstitial term (I). The potential is defined
as the spherical contribution VMr(r) and the nonspherical
b, V(r). The matrix element of the Hamiltonian is

&ij = &X"
I

—~'+ VMr+~V —E
I
XJ"&Mr

+(X";
I

V+hV E—IX")i . — (2)

This matrix element is greatly simplified by adding and
subtracting a pseudofunction term over the MT region:

( P;"
I
a +b, v E

I

P)~) Mr . —

%e now obtain the EMTO equation, which is

H;, =(X,".
I

—7'+ VMg+b V E
I
Xj~)Mg-

—&P"
I
&'+ VM~+ ~V E

I PJ &M~-
+ (P;

I
~ +b V E

I PJ )n . —

Equation (3) holds provided P;" is properly defined:

J
P ( i) Ji +CO 2, r (RMr

r ~RMg .

Thus, the pseudofunction matches continuously to the
real function at the muffin-tin radius. Since b, V is at its
maximum value at RM~, we assume

(X,"
I

b, v
I
X ) —(P;"

I
b, v

I

P") .

%e obtain

A. The extended muffin-tin-orbital method

It is necessary to first summarize the EMTO method. '

The wave function is defined by muffin-tin orbitals:
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The terms over the MT's are solved with one-dimensional
radial integration. The term over the unit cell, 0, is
solved by expanding the pseudofunction and b V in plane
waves. To treat an isolated film, the plane-wave expan-
sion of the pseudofunction are fitted at matching planes
above and below the film to decaying radial solutions of
the potential in vacuum.

The EMTO method' has given accuracy equal to that
of LAPW (Ref. 23) and pseudopotentials for Si, Ge, and
GaAs. EMTO results compare closely to that of LAPW
(Ref. 25) for one- and three-layer Ni Alms. It has also
given good energy bands for CO on Ni. 2 Comparisons
for CQ on Ni have been only to experiment as there have
been no other infinite film theoretical results.

8. The pseudofunction method

The PSF method uses the familiar muffin-tin partition-
ing of space in describing wave functions, charge densi-
ties, and potentials. The basis functions used for solving
the Hamiltonian are augmented pseudofunctions. A pseu-
dofunction, abbreviated PSF and represented in this paper
by P, is a smooth function specifying the basis function in
the interstitial region. Each PSF is represented by a sum
of a large number of plane waves with coefficients chosen
to refiect a simplified form of the wave function as
described below. This choice of a plane-wave representa-
tion is not essential to the method; expansions in Gauss-
ians and Slater orbitals are also possible. Plane waves are
convenient here because of the two-dimensional periodici-
ty of the systems under study and also because the fast
Fourier transform (Fkl') algorithm and their ortho-
gonality make them easy to deal with.

Within muffin-tin spheres, the pseudofunction is linear-

ly augmented using radial solutions to the spherical poten-
tial within the sphere. Up to a specified angular momen-
tum limit 1,„, radial functions for specific angular
momentum projections of the PSF are replaced with a
linearized radial solution. Thus, if the angular momen-
tum projections of a given PSF I' about an atom r are

P&~,(r) =f Yi~(8,$)P(r, 8,$)dQ, (6)

then the corresponding true basis function in that sphere
will be

', X {rlo}a2.0
0

0.0
Rim WR ~

dimensional solutions to the planar-averaged potential
with specified momentum parallel to the film (G~~ ) rather
than the angular momentum states used in the spheres.

Since the PSF's determine the boundary conditions for
augmentation and thus the entire basis set, they must be
chosen carefully. Our formalism allows an arbitrary
choice for the Fourier coefficients defining the PSF's,
which has advantages to be discussed later. We have
achieved good results using PSF"s defined in terms of an
improvement to muffin-tin orbitals (MTO's). These
PSF's are, like MTO's, Bloch sums of angular momentum
states about particular atomic sites. Given the wave vec-
tor x, the site v, and the orbital quantum numbers I and
m, all that remains is to specify the radial function. An
MTO radial function has two parts, a tail outside the
muffin-tin radius, and a smooth continuation within. The
tail is a function of fixed (positive or negative) kinetic en-

ergy, i.e., a spherical Neumann or Hankel function. The
continuation in the sphere of an MTO is also based on
spherical Bessel functions.

The present PSF's include an improvement that allows
them to better represent the true wave functions in the
presence of a potential that varies strongly even outside
the muffin-tin spheres. The radial function consists of
three parts: a tail for r & R,«, R,„,&RMr, a segment of
radial-solution augmentation for R,„,&r &R;„, and a
smooth continuation to the origin (Fig. 1). The radial
solution is based on the spherical part of the potential
measured to R,„„well beyond RMr (and perhaps into
spheres of neighboring atoms).

The assumption behind our use of the MTO's is that
the potential in the interstitial region can fairly accurately
be represented by a constant. This works well for close-
packed metals but is inadequate for open structures with
covalent bonding such as silicon and an adsorbed layer of
CO. The present PSF's account for differences in poten-
tial between regions near the atoms, outside the spheres

X(r) =p(r)+ g [ci R (ir) +'ciRi(r)
+ max

I'i (r)]Yi (8,$), —

J
&, Xp

l r
rr

~r

PSEUDO FUNCTION P
-—-- REAL NAVE FUNCTION g

where EI is the radial solution at the energy EI to the

spherical potential, R is its derivative with respect to ener-

gy, and the coefficients ci and c'i are chosen for con-
tinuity of X and dXldr at the muffin-tin radius. A simi-
lar augmentation is performed in the vacuum regions ex-
cept that the functions used for augmentation are one-

FIG. 1. The pseudofunction I;solid curves) is equal to the true
radial solution (dashed curve) of the muffin-tin potential in a re-
gion about the muffin-tin radius (RMT) defined by 8;„and R,„,.
The tail is a Neumann function in this particular example al-
though it could be a Slater or Gaussian orbital.
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+(&X [8—s )X')}„„„„. (8c)

Note that the kinetic-energy operator in the Hamiltoni-
an is not Hermitian if it is simply truncated at finite
boundaries, as in the restriction to the MT spheres, but
since the basis functions are smooth at the boundaries the
surface terms will vanish provided the same convention is
used in applying the operator (only the ket function is dif-
ferentiated}. Equation (8a) is the matrix element of the
total Hamiltonian within the slab, evaluated between
PSF's. As the PSF's are superpositions of plane waves
this amounts to just the convolution of Fourier series;
these are evaluated using FFl' methods that are fast yet
exact.

Equation (gb) is the corrie;tion due to augmentation
within muffin-tin spheres. These terms are computed us-

ing radial integrals. The computation is further simpli-
fied if the approximation is made that

&X
~
V„.„„„„~X')=&~

~
V„. ,„„~~ },

i.e., that nonspherical terms in the potential are evaluated
using the PSF rather than the augmentation. In this ap-
proximation the Hamiltonian in (8b) has spherical sym-
metry, so no mixing of terms of different angular momen-
tum occurs in Eq. (Sb). For the PSF's as presented de-
fined this is a good approximation because the nonspheri-
cal potential is large only near the muffin-tin sphere,
where the PSF approximates well the true wave function.
For the central atom of a given PSF the agreement from
8;„ to E.MT is as good as the Fourier series mill allow. At
noncentral sites the agreement is acceptable because of
smooth matching at the sphere. The error is reduced fur-
ther because at noncentral atoms the absolute magnitude
of the basis function is smaller than at its central site.
This approximation, used for the present results, can be
eliminated if the need arises.

The final term (8c} represents the correction due to the
augmentation in the vacuum. Here again the simplifying
assumption is made that the nonsymmetric potential can
be neglected; i.e., only the planar-averaged potential is
used. It would be fairly easy to include also variations in
the potential parallel to the slab.

The Hamiltonian matrix is computed and diagonalized

(RMT&r &R,«), and the cavity regions relatively far
from any atoms. The assumption of spherical syminetry
for the potential is useful as long as R,«does not extend
far into the strong potential of neighboring atoms. Even a
relatively small value for R,„, of 1.2 RMT gives a substan-
tially more accurate basis function in the binding region
roughly between the atoms. We could meaningfully use a
larger R,„, if we solved coupled equations involving non-
spherical moments of the potential, but the nonspherical
potential is adequately included by variational freedom in

combining basis functions from different sites.
Given the basis set, the Hamiltonian matrix elements

are expressed as

&X iH —s [X')=(&P iH —sic'))I+MT

+(&X iH —e iX')

(8b)

PPSF+QPRW, v+Pvac . (10)

The first term gives a plane-wave expansion of the
charge density due to the PSF's. The third term is the
vacuum charge density. The second term is the correction
for the difference between PSF's and their true basis func-
tions; again the approximation is made that the nonspher-
ical terms in this correction are negligible. The justifica-
tion for this is that the nonspherical terms must vanish
near the origin while the correction itself vanishes at the
muffin-tin sphere. However, these nonspherical terms can
be calculated in terms of multipole charge densities, from
which their multipole potentials can be easily obtained by
simple radial integrations. Associated with each atom, ~,
we added and subtract two charge densities. One is a
point charge q, and another is a Gaussian charge density

PG, . The total system charge density p as a sum of the
valence electronic charge density p„„and the charge of
the ion core z, is then given by

P=QP~+QPF, v+PFwv ~

where

Pv=PRW, ~ qv&(r~—) ~

PF,——(Z, +q, )5(r, ) —PG, ,

PPwv =PPsF+ g PG, v +Pvac

(12)

(14}

r, is the position vector relative to the nucleus of the atom
and 5(r, ) is the three-dimensional delta function. The q,
is chosen such that p, is neutral within each muffin-tin
sphere, i.e., q, is equal to the total charge of PRw, in
magnitude but opposite in sign. The pG, is chosen such
that its total charge is equal to —(Z, +q, ). With these

q, and p&„p pF and pp~v have zero not charge
separately. The total Coulomb potential is a superposition
of the potentials resulting from these three charge densi-
ties.

pG, in Eq. (14) is expanded in plane waves. The
Coulomb potential given rise by the neutral ppwv is solved
using the Green-function method. The potentials due to
p, are obtained by radial integrations. Since p, is neutral
within the MT sphere, this potential is zero outside the
sphere. The Coulomb potential VF,(r, ), due to the
charge density pz, is simply

VF,(r„}=2(Z,+q, }erfc(gr, )/r, Ry, (15)

where erfc(i}r, ) is the complementary error function, g is
the decaying parameter in the Gaussian charge density,
and r, is the radial distance from the nucleus of atom r

r, Z„and q, are in atomic units. The LAP%'
method uses the same technique by adding and subtract-
ing Gaussian charge densities. However, unlike the
LAPW method, we do not confine the Gaussian charge

for each sampled point of the irreducible sector of the sur-
face Brillouin zone; the charge density is then computed
from the occupied states:

pt.t= g g1'uX(r) '
OCCuPIed A.



KASQ%'SKI, TSAI, RHQDIN, AND CHAMBLISS 34

density within the muffin-tin sphere. Rather, we let it ex-

tend up to the vacuum boundaries. This feature is partic-
ularly important in the molecular-adsorbate system. Due
to the smallness of the muffi-tin spheres in the adsor-
bate, a relaxed Gaussian charge density is desired to have
a satisfactory convergence in the plane-wave expansion.

The exchange-correlation potential is computed using
the local-density approximation, within the formulation
of Hedin and Lundquist. ' This is done by evaluating the
total charge density (including core states), and it' s
exchange-correlation potential V„, on a grid of space.
The result is added to the plane-wave expansion of the po-
tential.

For computation of the basis set it is necessary to know
the spherical parts of the potential about each atom both
for finding the PSF in the region R;„gr ~R,„, and for
computing the augmentations. The spherical projections
out to RMq of the plane-wave potential are therefore add-
ed to the muffin-tin radial potential and subtracted from
the plane-wave potential, leaving the total potential un-

changed but making available the true spherical parts.
The spherical projections beyond RM~ are also computed
for defining the PSF's; the radial functions thus computed
are not used as part of the total potential in computing
matrix elements so these parts need not be subtracted off.

The important feature of the PSF approach is that the
basis set, while small, is specified in a parameter space
large enough that very close representation of true wave
functions are accessible. The accuracy of this method is
determined by the choice of basis. If the basis could be
chosen ideally, the method would give the accuracy of
complete-basis methods such as LAPW. With the PSF
method, it is possible to work with any desired basis, in-
cluding Gaussians, Slater orbitals, and MTO's in any

FIG. 2. The energy bands of an isolated CO monolayer.

combination, and to enlarge the basis when more accuracy
is needed. More importantly, it is possible to evaluate
quantitatively the appropriateness of these particular
basis. This is necessary for studies of large systems
beyond the present reach of LAPW and other highly ac-
curate methods; for these systems variational freedom
must be replaced by scientific judgment to achieve high
accuracy.

It should be noted that while the PSF method is
presented here in terms of application to thin films, it can
be applied as well to isolated molecules, polymers, and
clusters, true surfaces, bulk-bulk interfaces, and of course
bulk behavior. For molecules and clusters the vacuum
augmentation is changed from a one-dimensional augmen-
tation at a planar boundary to a radial augmentation at a
spherical surface. The plane-wave expansion can still be
used for PSF's with some modifications, although for
nonperiodic structures the plane waves lose their special
appropriateness, and it may be more convenient to expand
using Gaussian or Slater orbitals. For true surfaces and
bulk-bulk interfaces, the vacuum is replaced by bulk on
one or both sides. This embedding can be accounted for
in the calculation with an effective potential determined
by the Green's function for the bulk.

IH. EXA.MPLES OF APPLICATION
FOR CO MONOLAYER AND FOR Si(111}

A. C—O bond length deteanination
for monolayer of CO

CO is known to chemisorb onto a Ni(001) crystalline
surface in an ordered c(2X2) pattern. We have com-
puted the structural and electronic properties of CO in a
monolayer configuration. The molecules are 3.52 A apart
as they would be for CO on Ni.

Our basis set consists of only 14 functions. On both the
C and 0, we have sp functions with a spherical Neu-
mann function tail that is decaying (a = —0.3 Ry) and
P functions with oscillating tail (z2=0. 5 Ry). The
planes above and below the film are placed at +4.5 a.u.
relative to the center of the film. It is easy to converge
our total-energy values to 0.0001 Ry as a monolayer of
CO is a wide-band-gap material.

In Fig. 2, the energy bands for the monolayer of CO are
plotted. In this figure, the zero energy is defined at the
infinity above the 0 atom. The 5cr band has a bandwidth
about 1.2 eV, and is about 6 eV above the 4r band. 1m is
split at the X point by 0.5 eV. The separation between 1m.

and 4r is about 2.4 eV; this is reduced substantially froin
that of free CO, 2.8 eV. The 4cr band is nearly a straight
line. The substantial lm and 5cr bandwidths reflect a sig-
nificant influence of the long-range order and the CO-CO
coupling. In Fig. 3, the total energy is plotted as a func-
tion of bond length. We obtain an equilibrium bond
length of 1.138 A and a vibrational frequency of 2157
cm '. These values are remarkably similar to that of free
CO, namely 1.128 A for the bond length and 2170 cm
for the vibrational frequency.

An infinite dipole layer gives rise to an electrostatic po-
tential difference on the two sides of the layer. The rela-
tion between the potential difference and the dipole densi-
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FIG. 3. Potential energy curve for the CO monolayer.

ty is given by 5/=37. 7D, where hP is the potential
difference in volts and D is the dipole density in'2
debye/A . In our system of monolayer of CO, hP corre-
sponds to the Coulomb potential difference between
z =+ oo and —oo. Thus the net dipole, p in debye, of a
CO molecule can he calculated by

ju =0.361137', (16)

where A is the surface area of a unit cell in A and V is
the potential (energy) difference in Ry.

The Coulomb potential above the 0 atom at infinity is
0.23 Ry, relative to that above the C atom for the equili-
brium C—0 bond length. It corresponds to a net dipole
moment of —1.0 debyes for a CO molecule; the negative
sign stands for a C+0 dipole. The dipole moment as a
function of the C-0 distance is shown in Fig. 4. The
curve is nearly a straight line with a slope of 3.16
debye/A. This dipole moment derivative is very close to
the free CO value of 3.14 debye/A. ' The large dipole

10-

0
'C

K
UJ 10-
t

CURVE 1

USING

aA An

moment, if using a pair of point charges model separated
by 1.14 A, corresponds to a charge of 0.2e. That is, there
are about 0.2 electrons shifted from the C atom to the 0
atom. Since the 0 atom is more electronegative than the
C atoms, a small charge shift resulting from the CO-CO
coupling is reasonable. It has been shown that the small
free CO dipole moment results from detailed balancing
between a triple-bond CO, with a C 0+ dipole, and a
single-bond CO, with a C+0 dipole. The single bond
is favored for a longer bond length. Our slightly larger
bond length and a C+0 dipole are consistent with this
picture. Besides, the CO-CO coupling in the monolayer
should draw some charge froin the C-0 bonding region,
which reduces the population of the triple-bond CO.

In this CO monolayer calculation we choose the wave
vector of the plane waves up to 6„'"=6„'"-5/RMT and
6, '"-7/RMT for the expansion of the PSF's. 6 '"'s are
doubled for the expansion of the potential. LAPW
method uses a 6 '"RMT -7 criterion for its choice of the
plane-wave basis set for transition-metal systems. The
number 7 is chosen from the first root of the spherical
Bessel function with I =2. Since we have system dom-
inated by s and p orbitals, we can reduce the criterion to
the first root of the l =1 spherical Bessel function, which
is close to 5. We have tested several sets of plane waves
and find that the dipole moment is very sensitive to the
number of plane waves when it is insufficient. For in-
stance, when 6„'"=6» '"=G, '"-2.8/RMT is used, the
dipole moment becomes only about one-half the value
given previously. The dipole moment even changes sign
to that of free CO when the number of plane waves is re-
duced further.

We have also tested a double layer of CO with the two
C atoms facing each other and separated by 7.12 and 4.2
A. This is an inversion symmetric systein. Figure 5

Xh

E
Cl

E 09-
O
CL

0.8-

~ -20-X
O

-so-

—-40-K
telI'.
rA
I

K
X -60

-IO 0
z (A)

CURVE 2
USING

26901 pws

I

5
C 0

10

0.7
1.06 1.08

I i i

1.10 1.12

C—0 bond iength (k)
1.16

FIG. 4. Dipole moment of CO as a function of C-0 distance.

FIG. 5. The nonspherical Coulomb potential along the
molecular axis of a double layer of CO separated by 7.12 A.
Dashed curve uses 4225 plane waves, while the solid curve uses
26901 plane waves.
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shows the nonspherical Coulomb potential along the com-
mon molecular axis with a 7.12 A C-C separation. The
dashed curve uses 6, '"=6» '"-2.8/&MT
6, '"—1.4/8 MT and the sohd curve uses
6„'"=6» '"-2.8/RMT and 6, '"-2.8/RMT. It is clear
that the potential is poorly represented by the smaller set
of plane waves. Even the larger set still has a wavylike
plateau in between the layers. The depth of this plateau
results from the net dipole density in either one of the CO
layers. A negative plateau corresponds to a C+0 dipole.
Figure 5 demonstrates that a large enough number of
plane waves is essential to yield a correct film dipole mo-
ment. The dipole moment obtained from the double-layer
calculations is similar to that of the monolayer; this seems
to indicate that the large dipole moment we obtained is
not an artifact.

In summary, the application of our PSF method on the
monolayer of CO yields very similar equilibrium bond
length, dipole moment derivative, and vibrational frequen-
cy to that of free CO. These properties are related to
changes in the normal direction, which should depend
mostly on the short-range ( 0 bonding and are not ex-
pected to change significantly by the long-range ordering
and CO-CO coupling. On the other hand, the electronic
structures and the dipole moment do change substantially
from free CO values. The large C+0 dipole moment is
explainable as a depopulation of the triple bond,
C =0+, due to CO-CO coupling so that the balancing
between the triple bond and the single bond, C+ 0 in
free CO, is shifted to favor the single bond.

B. Relaxation of (111)surface of Si

We have chosen to model the (111) surface of Si with a
four-layer film with the dangling bonds on one side sa-
turated with H atoms. The remaining surface is then re-
laxed to find the equilibrium. Our model differs from
that used in pseudopotential calculations, ' ' 0 where a su-
perlattice of ten-layer films was used and both sides of the
film were relaxed symmetrically. Such a model must be
chosen carefully to avoid interactions of dangling bonds
between neighboring films and across the film.

The binding-energy curve for relaxation of the surface
layer is shown in Fig. 6. The surface layer relaxes in-
wards by 0.086 A. The corresponding vibrational excita-
tion is 0.038 eV. The potential at infinity above the H sa-
turated surface is —0.07 Ry, relative to the potential be-
ing 0.0 above the relaxed surface. Thus, termination of
dangling bands with H is an appreciable effect. Different
results inight thus be expected from having films with no
H termination on one side as in a superlattice.

Our results are in remarkable agreement vnth the GVB
(Ref. 18) method for a cluster. Redondo er al. 's modeled
the (111) surface of Si with one Si above a triad of Si
atoms. The dangling bonds of the triad are saturated by
nine H atoms. They obtain 0.08 A for the relaxation and
0.036 eV for the vibrational excitation.

The pseudopotential method' ' obtains very different
results for a superlattice of ten-layer films. The relaxation
is 0.29 A or 0.26 A. We estimate from this work a vibra-
tional excitation of about 0.032 eV. With spin po-
larization, the relaxation is reduced to about 0.20
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FIG. 6. Potential-energy curve for relaxation of one surface
of Si(111)with the other surface saturated with H.
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FIG. 7. Energy bands for an unrelaxed four-layer Si(111)
with one surface saturated with H atoms.

0

A. ' The difference in relaxation of 0.26 versus 0.29 is
probably due to calculational setup.

Thus, the PSF results for a film with one surface sa-
turated with H is more similar to a GVB cluster than to
that of a superlattice with no H saturation on either sur-
face. It will be important to investigate the various recon-
struction models of the Si(111)-(2&(1)surface. The super-
lattice pseudopotential results strongly favor the Pandey
covalently n-bonded chain model of the surface and not
the ionic Hanneman model. 2s Low-energy electron dif-
fraction calculations favor the ionic Hanneman model
over the Pandey model of the (111)-(2X 1) reconstruction.

The energy bands for the Si film are shown in Fig. 7.
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As expected, there is only one band of dangling bonds in

the band gap. A band of derived H states is found at
about —12.8 eV. Our dangling bond bands are very simi-
lar to that of pseudopotentials when properly translated
into the same Brillouin zone. But the electronic states are
sufficiently different to give different surface bond
lengths.

A plausable explanation for the large difference in re-
sults between the superlattice model and our H-saturated
model is difference in screening. A semiconductor does
not have a source of electrons to screen out long-range in-
teraction as metals do. Therefore, the dangling bonds at
one surface see different long-range forces depending on
whether the other surface is H saturated and semiconduct-
ing or whether it is unsaturated and metallic as in the su-
perlattice. Thus, it will be important to make compar-
isons to experiment to determine which model is a more
accurate refiection of the semi-infinite solid.

IV. SUMMARY AND FUTURE POTENTIAL USE

faces of semiconductors. Current calculations underway
include CO on Ni to determine whether the top site or the
fourfold site is the preferred bonding site. We will also
study the preferred (2X1) reconstruction for a Si(111)
film with one side saturated by H and compare it to pseu-
dopotential results.

The PSF method is well suited for the study of defects
as the method is applicable to either long-range or short-
range effects. The small basis set again is of great impor-
tance as it enables calculations on large unit cells. Large
unit cells allow one to model more accurately the crystal-
line response to a given defect.¹teadded. An alternative to defining two sets of PSF
orbitals per atom in the unit cell is to use a mixed basis
set. The procedure is similar to the mixed basis approach
of Louie. Our basis consists of one set of PSF's per
atom along with a small number of augmented plane
waves. Preliminary results for films indicates that this is
an efficient approach to obtain proper long-range
behavior. '

The PSF method has been shown to give an accurate
bond length, dipole moment derivative, and vibrational
frequency for CO molecules in a monolayer configuration.
We have also computed a surface relaxation of Si(111) in
close agreement with cluster calculations using an entirely
different method (GVB). The success of the method for
these two problems indicates that the method will be use-
ful in studying molecules on surfaces of metals and sur-
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