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The optical-absorption spectrum is calculated for a quasi-two-dimensional electron gas interacting

with polar optical phonons in a GaAs-Al„Gal „As heterostructure. The importance of
dynamical screening, the effect of the finite width of the two-dimensional electron layer, and the

temperature dependence are investigated. The polaron mass is derived and is found to decrease with

increasing electron density. For electron densities around 10' cm ~ the absorption spectrum shows

in addition to the usual structure a shoulder at energy EF+Acul.o with EF the Fermi energy and

AcoL ihe optical-phonon energy.

I. INTRODUCTION

In recent studies' s it has been found that in semicon-
ductor heterostructures the screening of the electron-
polar-optical-phonon interaction (polaron effects) is im-
portant because of the relatively large electron densities.
Most of the studies have been devoted to the calculation
of the electron-phonon interaction correction to the self-
energy, ' the subband energy, the plasmon-phonon-
model coupling, and the polar-optical-phonon limited
mobility. From the self-energy calculation it is found
that the electron screening substantially reduces the
electron-phonon interaction. The purpose of the present
paper is to investigate the effects of screening on the pola-
ron optical-absorption spectrum and on the polaron mass.

To calculate the optical absorption of interacting pola-
rons, we will use the memory-function formalism. 6' The
electron screening is treated within the random-phase ap-
proximation (RPA). ' The electron-phonon interaction is
treated as a perturbation and the memory function is ex-
panded to first order in the electron-phonon coupling con-
stant a (see, e.g., Ref. 6}. For simplicity, we only consider
the effect of the lowest subband and a variational wave
function for the subband is useds (see also Ref. 2). In the
present study we also neglect the plasmon-phonon-mode
coupling and the nonparabohcity of the electron energy
band.

The present paper is organized as follows: In Sec. II
the optical absorption is expressed in terms of a memory
function which is calculated (for a similar discussion for
the three-dimensional (3D) polaron we refer to Refs. 6 and
10). Section III contains the numerical results and the
discussion. Our conclusion is presented in the last section.

II. FORMULATION AND CALCULATION

The electron-phonon system is described by the Hamil-
tonian
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where p(r) is the momentum (position) operator of an
electron. aq (aq) is the creation (annihilation) operator of
a phonon with wave vector k and energy ficoLo. In Eq. (1)
V~ is given by

4mo, '

Vg i RcoLo-—
Vk'

Here go(z) =(b /2)'~ ze '~ is the variational wave func-
tion of the electron in the z direction which is normal to
the electron layer. b is a known function of the electron
density, of the depletion charge density of the system,
and of the effective mass of the electron:
b =(48srmbNe2/fPeo)'~, where N =n&+ ,", n, with n—d

and n, the depletion and carrier densities, respectively.
V(r —r ') represents the Coulomb interaction between two
electrons in the quasi-two-dimensional (QZD) electron
layer. The Fourier transform of V(r) is

V(k)() =(2sre /k((e„)f(k(), b)

f(k, b) =(8b'+ 9b'k+3bk')/[8(b +k)')

the form factor. For a two-dimensional (2D) electron
layer with zero width one has f ( k, b = au ) = l.

To calculate the optical absorption (the ac conductivity}
we use the memory-function approach (see also Ref. 6).
%'e can express the dynamic conductivity in the presence
of a magnetic field as
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where X(co) is the memory functio n, n, is the elec«on
density, and mb the electron band mass. The memory
function X(co) as a function of frequency co has the form
(see also Refs. 6 and 10)

X(ra)= —f dr(1 e' '—IxnF(t),
N
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where n(x)=(e~ —1) ' is the occupation nuinber and

D(k~~, t) [D"(k~~,t)] is the electron (retarded) density-
density correlation function calculated without electron-
phonon interaction. " More explicitly we have for the real
part of the memory function
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and for the imaginary part
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We may identify hm as the mass renormalization with

km ReX(co)
(7a)

and v the collision frequency

ImX(a) )

1+hm /ms

which are now both frequency dependent.
In the absence of a magnetic field a formal expansion

of Eq. (3) can be made for high frequencies and after a
lengthy calculation one finds the results of Tzoar. ' In
Ref. 12 a diagrammatic approach was used to obtain the
high-frequency conductivity and numerical results were
given for the imaginary part of the memory function of
the 2D electron layer with zero width in the limit of zero
temperature. Here (in the next section) we will present re-

with S(k,ai)= —Ime '(k, ai) the electron energy loss
function of the 2D electron gas and e(k, co) the dielectric
function. The real and imaginary part of the memory
function are related to each other by the Kramers-Kronig
relation. In the zero magnetic field limit the dielectric
function has been calculated within the RPA with wave
vector, frequency, and temperature dependence.

In the following we will concentrate on the zero mag-
netic field case where the dielectric function is known and
leave the more difficult case of nonzero magnetic field for
future study. In order to make our results more transpar-
ent we follow Ref. 12 and compare Eq. (3) with the Drude
form for the conductivity (see also Ref. 6)

ill~ 8
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suits for the optical-absorption spectrum which not only
involves the imaginary part of the memory function but
also the real part of the memory function. The tempera-
ture will also be taken different from zero and further-
more the effect of the finite width of the 2D electron layer
on the optical-absorption spectrum will be investigated.

III. RESULTS AND DISCUSSION

We have calculated the optical-absorption spectrum
which is defined as

—ImX(co)

[a)—ReX(ri) )] + [ImX(co)]

Physical parameters are taken which correspond to the
GaAs-A1GaAs heterostructure, i.e., fauLo ——36.77 meV,
dielectric constants eo ——12.83, e„=10.9, band mass
m& ——0.0657m„and electron-phonon coupling constant
a=0.068. The depletion charge density is taken to be
n~ ——8&10' cm

In Fig. 1 we show the optical-absorption spectrum of an
ideal 2D electron system (zero layer width) at zero tem-
perature for different values of the eIectron density. The
zero-density absorption spectrum corresponds to the 2D
equivalent of the 3D results of Ref. 10 (see also Ref. 6) in
which the two Feynman parameters U and m are taken as
u =w. This corresponds to a calculation of the memory
function within second-order perturbation theory. Figure
1 shows that the electron screening reduces the intensity
of the absorption spectrum appreciably.

At zero temperature there are no real phonons. The
electron can only emit phonons but no phonon absorption
processes are possible. This is the reason why the absorp-
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tion is zero for frequencies below the LO-phonon frequen-

cy. There is a delta function peak' at the origin with

weight elm' where m' is the polaron mass. For fre-
quencies above the I 0-phonon frequency the absorption
first increases, it reaches a maximum after which it de-
creases. In the limit of high frequencies the absorption
spectrum behaves as co ~ and is independent of the elec-
tron density. Note that Tzoar' finds that 1m X(co)
-co for large frequencies. We found for large fre-
quencies ImX(co) -co ' which results in the co

behavior of the absorption spectrum [see Eq. (8)].
For electron densities around 10' cm (see Fig. 1 and

its insert) the absorption spectrum shows besides a peak
also a shoulder structure. The shoulder is around u=mLO
+EFIh, with EF the Fermi energy. This frequency is in-
dicated by arrows in the insert of Fig. 1. At lower elec-
tron densities the shoulder structure is no longer present
because it is mixed with the maximum of the absorption
spectrum. For higher electron densities the shoulder
disappears in the tail of the absorption spectrum and be-
comes very hard to resolve.

The real and the imaginary parts of the memory func-
tion of the ideal 2D electron system at zero temperature
are plotted in Fig. 2 for different values of the electron
density. The zero electron-density results are the 2D
equivalent of the 3D results of Refs. 6 and 10. The elec-
tron screening smoothes and reduces the memory function
which results in the reduction of the absorption spix:trum.

We also calculated the absorption spectrum within the
Hartree-Fock (HF) approximation. In this approximation

the screening is neglected but the occupation effect, result-

ing from Fermi-Dirac statistics, is included. In Fig. 3 the
optical-absorption spectrum of the ideal 2D system in the
HF approximation at zero temperature is plotted for dif-
ferent values of the electron density. We notice that no
shoulder structure appears in the absorption spectrum in
the HF approximation. The extra structure at
co=coLo+EFIA in the absorption spectrum for the RPA
approximation is replaced by an abrupt decrease of the ab-
sorption at co=coLo+E+IA. In the insert of Fig. 3 we
plotted the imaginary part of the memory function calcu-
lated within the HF approximation. The imaginary part
of the memory function has a cusp at co=coLo+EF/iii
which is the origin of the abrupt decrease of the absorp-
tion spectrum. Comparing Fig. 2 and the insert of Fig. 3
we notice that the electron screening included in the RPA
smoothes the cusp structure of the memory function.

The physical origin of the structure in the absorption
around co=coLo+EF/A will now be discussed. For con-
venience we will limit ourselves to the zero-temperature
case where only emission processes are possible. Consider
an electron with energy E; which absorbs a photon with
energy fico. The electron, as a consequence, will emit a
LO-phonon and will be scattered to a state with energy
E/. Conservation of energy requires that E;+fm=EI
+Picot o and therefore E; =E/+RcoLo fico. At z—ero tem-
perature Fermi-Dirac statistics lead to the following
bounds, E; (Ez and EI &Ez. This sets the following
limits to the range of electron energies for participation in
the scattering process E~ &E; &EF+AcoLO —%co. A max-
imum energy range is obtained when EF+AcoLg —Boo=0.
For a photon energy fico=ficoLo+EF a maximum number
of electrons in the Fermi sea can participate in the scatter-
ing process. For larger frequencies the number of elec-
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FIG. 1. Optical-absorption spectrum of an ideal two-
dimensional electron gas interacting with polar optical phonons
at zero temperature is plotted for different values of the electron
density. In the insert the arrows indicate the position of the fre-
quency Q)Lo+ EI: /R.

FIG. 2. Real part and the imaginary part of the memory
function of an ideal two-dimensional electron system at zero
temperature are plotted for different values of the electron den-

sity.
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trons which can contribute to the absorption of light no
longer increases. This is the underlying physical reason
for the appearance of the shoulder structure at
co=coLo+EFIA The exact frequency dependence of the
absorption spectrum also strongly depends on the efficien-
cy with which the electron interacts with the LO-
phonons. For example for high frequencies the absorp-
tion strength decreases due to the decreasing efficiency
with which the electron interacts with the I.O-phonons.

The effect of the finite width of the 2D electron layer
oil tile optical-absorptloil spectrum is lllvestlga'ted ill Fig.
4 for the zero-temperature case. The Q2D character of
the system reduces the intensity of the absorption spec-
trum considerably. The reduction is about a factor of 2
around the maximum of the absorption but increases to a
factor of 3 for larger frequencies. Note also that the
shoulder structure of the absorption spectrum still exists
for the electron densities around 10' cm

In the present study we only considered the lowest sub-
band. This approximation breaks down for larger electron
densities because higher subbands will then also be occu-
pied. In Ref. 3 the subband separation is calculated and
shown to depend on the electron density. For the electron
densities in the present study ( n, = 10' cm
—10' cm ) the Fermi energy is smaller than the separa-
tion between the first two subbands. We also neglected
the phonon assisted intersubband transition which will
contribute to the optical absorption at high frequencies.
In Ref. 14 the effect of the intersubband transition on the

optical absorption has been studied for the quantum-well
structure and results in additional peaks in the absorption
spectrum which corresponds to the different thresholds
for transitions to the different subbands. In Ref. 14 only
one electron is involved with Boltzmann statistics and
consequently no screening has been considered. In con-
trast, in the present paper many electrons are considered.
The limitation to the lowest subband is introduced for
convenience because it severely reduces numerical work.

The effect of the temperature on the optical-absorption
spectrum is shown in Fig. 5 for the ideal 2D electron sys-
tem for different values of the lattice temperature and the
electron density. At low temperature (i.e., the T =20 K
result for n, =10" cm ) the absorption spectrum is very
close to the zero-temperature result since the LO-phonon
frequency is rather large, i.e., TQ Rcoi——.o/ks ——427 K.
For T =20 K the relevant quantity T/TQ 0.047——is very
small. For nonzero temperature LO-phonons are present
in the semiconductor and contribute to the scattering pro-
cesses. Consequently the absorption becomes nonzero for
frequencies below the LO-phonon frequency. The should-
er structure of the absorption spectrum for electron densi-
ties around 10'2 cm 2 still exists, but is less pronounce.
The delta-function peak at the origin broadens with in-
creasing temperature. '

Screening also affects the mass renormalization which
is given by Eq. (7a). In Fig. 6 the mass shift at zero tem-
perature and zero frequency is shown as a function of the
electron density. For the ideal 2D system the mass de-
creases as the electron density increases. The reason is
that screening increases with increasing electron density.
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FIG. 3. Zero-temperature absorption spectrum of an ideal
two-dimensional electron gas calculated within the Hartree-
Fock I'HF) approximation is plotted for different values of the
electron density. The insert shows the imaginary part of the
memory function in the HF approximation.
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FIG. 4. Zero-temperature absorption spectrum is shown for
an ideal two-dimensional and a quasi-two-dimensional electron
system.



EFFECT OF SCREENING ON THE OPTICAL ABSORPTION OF. . .

I
N

N

002 Q
ll
ll
III

II
II
II
ll

II
II
II
jl
II
II I
ll I" ll
II- II
Ii I
Il
11

001 ~ &

I l g
I

I

I I

I
/

I II
II ~

I JI g g

il

50K !
W

1 . ."'

50K

I

20K,&

0
0

20

Uj/4)LO

FIG. 5. Optical-absorption spectrum of an ideal two-

dimensional interacting electron gas is shown for different

values of the lattice temperature and the electron density.

n, =10' cm . However with increasing electron density
the mass decreases more slowly than for the ideal 2D case.
The screening effect seems to be compensated by the sub-

band effect. The reason is that the subband width de-

pends on the electron density and at higher electron densi-

ty the electron layer is squeezed and becomes closer to the
ideal 20 system. %hile the screening reduces the mass
shift, the subband effect tends to enhance the mass renor-
malization. As a result the mass decreases slowly as a
function of the electron density.

In Fig. 6 the mass shift corresponding to the HF ap-
proximation is also plotted. In the HF approximation
only the Fermi-Dirae distribution function affects the
mass shift. There is no screening effect, i.e., no electron-
electron interaction is incorporated in the dielectric func-
tion. The results are also compared with the polaron mass
renormalization found recently by Das Sarma' (indicated

by the symbol DS in Fig. 6) who found that the mass shift
is an increasing function of the electron density. In Das
Sarma's approach the subband effect seems to be strong
enough to compensate the screening effect. Although we

find a different electron-density dependence, our mass re-

norrnalization is only a factor of 1.3 smaller for
n, = 10" cm but increases to a factor of 2 for
n, =10' cm in comparison with the result of Ref. 1.
A static RPA screening (see, e.g. , Ref. 2) overestimates
the effect of screening as shown in Fig. 6.

In the zero-density limit the well-known result ira j8 is
obtained. For the Q2D system, the subband effect, i.e.,
the finite width of the electron layer, reduces the mass
shift over the whole electron-density region with a factor
of about 3 for n, =10" cm 2 and a factor of 2.5 for
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FIG. 6. Mass renormalization at zero temperature is plotted
as a function of the electron density for both the ideal two-

dimensional (two upper curves) and the quasi-two-dimensional

(lower part of the figure) electron system. The results from dif-

ferent approximations are shown.

IV. CONCLUSION

In conclusion we have calculated the optical-absorption
spectrum of a two-dimensional electron gas interacting
with polar optical phonons. We found that the optical-
absorption spectrum shows a shoulder structure for elec-
tron densities around 10' cm . The screening of the
electron-phonon interaction reduces the intensity of the
absorption spectrum and the correction to the electron ef-
fective mass. The subband effect, i.e., the finite width of
the electron layer, also reduces the intensity of the absorp-
tion spectrum and the mass renormalization. The corn-
bined effect of screening and finite width of the two-

dimensional electron layer results in a slow decrease of the
mass renormalization as a function of the electron densi-

ty.
%'e also want to point out that screening has been in-

corporated dynamically, i.e., the dielectric function for
nonzero frequency appears in the inemory function. For
the imaginary part of the memory function at frequency
cu only the imaginary part of the inverse dielectric func-
tion at frequencies co+toto is important. This is in con-
trast with the real part of the memory function which
contains both the real and imaginary part of the inverse
dielectric function. In ReX(co) Ime '(k, x) is needed for
all frequencies but Re@ '(k, x) is needed only for the fre-

quencies x =coLo and x =co+~LO. Consequently the mass
renorrnalization at zero temperature involves an integra-
tion over all positive frequencies of a function which con-
tains Ime '(k, x). This is analogous to the ground-state

energy where we also found that all frequencies of
Ime '(k, x) were important.
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