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The depolarization of rotating spins that perform a random walk on a d-dimensional lattice
I,
'd =1,2, 3) with randomly distributed rotation frequencies is studied by numerical simulations and,
especially for d =1, by analytical methods. For a Gaussian frequency distribution an exponential
polarization decay is found in all dimensions for large times t, or large step numbers n. The depen-
dence of the decay constant k on the width o of the frequency distribution is determined by the
dimensionality d. In d =1, an approximation that takes the distribution of spans of the random
walk into account yields a behavior A, =constant with an exponent Jt3= —, which is in good agreement

with the simulations. The exponent P=1.77 is numerically obtained for smaller values of o in

d =2. In d =3 the Gaussian description is appropriate, at least for small o". X=aoo, where ao de-

pends on the structure of the lattice. These results qualitatively agree with the predictions of an
effective-medium theory for the decay constant. Other examples of frequency distributions are con-
sidered in d =1 to examine the dependence of the polarization decay on the particular choice of the
distribution.

I. INTRODUCTION

In the study of spin rotation or spin resonance it is a
question of special interest how diffusion processes of the
particles manifest themselves in the experimentally ob-
served signals. One important quantity is the correlation
function that describes the loss of phase coherence or po-
larization decay of rotating spins. This loss may be
caused by interactions of the spins with the environment,
and between themselves. A stochastic theory for the po-
larization decay is easily developed when drastic simplifl-
cations on the interaction processes influencing the spin
rotation are made. For example, the stochastic theory of
the decay of spin polarization developed by Anderson'
and by Kubo and Tomita in the 1950s assumes that sin-
gle spins experience additional rotation frequencies to(t),
where to(t) represents a Gaussian stochastic process. In
this paper we are concerned with the loss of phase coher-
ence of spin rotation when the stochastic process to(t)
should be considered as resulting from the random-walk
processes of the spins on a lattice. We point out in the
following paragraphs that serious problems arise in the
usual stochastic theory, especially when the random walk
takes place on a low-dimensional lattice.

The simplest stochastic model of polarization decay is
obtained by considering the rotation of a single spin in a
transverse magnetic field with uniform frequency coo

(henceforth neglected) and the additional frequency to(t)
The rotation is described in the complex plane, and the
ensemble average of the polarization P(t) at time t is
given by

r(((=(exp —i J d( m(()''
where the spins were initially polarized along the real axis.
The polarization decay is directly observable in NMR as

the free-induction decay of spins turned perpendicular to
the axis of the magnetic field by a 90' pulse, and in
muon-spin rotation (@SR) by monitoring the decay posi-
trons of muons rotating in a transverse field. 3 In the stan-
dard stochastic theory of depolarization it is assumed that
co(t) represents a stationary Gaussian process with vari-
ance e at equal times. The process is then uniquely
characterized by its second cumulant (co(t)co(0) ). When
the further assumption of a Markovian process is made,
this cumulant can only decay exponentially, as follows
from Doob's theorem. It is then easy to evaluate (1.1);
we give only the limiting cases:

(i) Slow fluctuations with or, p~l, where ~, is the
correlation time of the frequencies. In this case the decay
of polarization is dominated by the behavior at times

c~ ~e

P(t)=exp( —o t /2) . (1.2)

(ii) Rapid fluctuations with or, «1. In this case the
large-time behavior dominates the polarization decay, i.e.,

P(t) =exp( or, t) . — (1.3)

The latter case of exponential decay corresponds to
motional narrowing of the line shape. Instead of assum-
ing a Gaussian random process co(t), one can also intro-
duce a "strong-collision model" where the frequency to(t)
changes according to a Poisson process with the event rate

After each transition a fixed frequency co is taken
independently out of a (Gaussian) probability distribution.
This strong-collision model leads to the same asymptotic
results (1.2) and (1.3) as the model of Gaussian modula-
tion; also, the intermediate behavior is very similar. Al-
though the strong-collision model seems to be more simi-
lar to a random-walk process, it is, in fact, not really dif-
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ferent from the Gaussian model.
As said above, we wish to investigate the stochastic pro-

cess co(t) that is induced by the random-walk processes of
the spins, and its influence on the polarization decay.
Consider, e.g., a muon that experiences different rotation
frequencies co„at the interstitial sites r of a lattice, due to
the dipolar interactions with the host nuclei. The muon
may perform a random walk on the interstitial lattice, and
a randoin rotation frequency co(t) results.

The stochastic process co(t) induced by this random
walk is a Markovian, but evidently not a Gaussian pro-
cess. Nevertheless, several ' authors applied the as-
sumption of a Gaussian process also to the calculation of
polarization decay caused by random walks on low-
dimensional lattices, led by the simplicity of this process.
The behavior of the second cumulant (co(t}ro(0)) was tak-
en from random-walk theory; it decays especially slowly
in d =1 ( a: r '~~), due to the frequent returns of the par-
ticle to the same sites. A polarization decay

P(t}-exp[—', (2')'~ —0 r,' t ~ ] (1.4)

results from this treatment for diffusion on a linear chain.
This result was physically appealing as an intermediate
behavior betwe)en (1.2) and (1.3) as a consequence of the
revisitation effects. It is also in good agreement with ex-
periments on the ESR line shape found in one-
dimensional spin diffusion. s'0 However, the question of
the validity of this approximation remains. The assump-
tion of a Gaussian process, the Markovian nature of the
random-walk process, and the slow decay of (c0(t)co(0)}
are inconsistent in view of Doob's theorem.

In a recent letter" we examined the polarization decay
caused by discrete random walk of a spin-carrying particle
on a linear chain with rotation frequencies taken out of a
Gaussian distribution. It was shown by analytical argu-
ments that the polarization decays ~ exp( —A,n) for large
step numbers n. These results were corroborated by simu-
lations; also, an approximate theory for the polarization
decay was given. Here the results of Ref. 11 are
developed in greater detail, and extended. In particular,
the role of different probability distributions g(co„}of the
rotation frequencies r(i, attached to the sites is examined.
It turns out that for various distributions there is a range
of step numbers where exponential decay prevails. The fi-
nal decay is governed by the precise form of the friquency
distributions. However, for small o, or short residence
time r of a particle on a site in continuous-time random
walk, the true asymptotic behavior is shifted to unmeasur-
ably small polarizations. The Gaussian frequency distri-
bution has an idealized character, in that it leads to ex-
ponential decay also for the longest times.

Another approximation inherent in the stochastic
thixiry is the single-particle description of polarization de-
cay. Such a picture is appropriate for the discussion of
depolarization of diffusing muons; it forms an approxi-
mation in the case of many interacting spins. A theory of
the spin-correlation function for interacting spins in low-
dimensional systems was developed by Reiter and Bouch-
er. ' They developed a self-consistent theory and found
exponential decay of the spin-correlation functions. The
reason for the exponential decay could be traced back to

the dipolar-interactions of the spins. In contrast, it is as-
sumed in our derivation that the main or only cause of
random rotation frequencies are the spin-host interactions,
as exemplified by a muon in a metal. In this work the ex-
ponential decay is deduced solely from the detailed nature
of the stochastic process leading to depolarization.

In the following se:tion the basic elements of the sto-
chastic theory of spin depolarization by random walks are
given. In Sec. 111 we describe the systematic technique of
cumulant expansion, appropriate for short and interinedi-
ate times. In Sec. IV the asymptotic polarization decay in
d =1 is studied, and in Sec. V the numerical results are
presented. The influence of different frequency distribu-
tions is examined in Sec. VI. In Sec. VII an effective-
medium theery is given, which can be extended to higher
dimensions. In Sec. VIII we present the simulation results
for d =2 and 3 and their analysis. Section IX contains
the concluding remarks.

g(co)= exp[ ——,'(co/u) ] .
2%0'

(2.1)

At time t =0 a spin particle is put on a randomly chosen
site. The particle performs a simple random walk (RW)
on the lattice, i.e., transitions to only nearest-neighbor
sites occur with equal probabilities. Two different models
will be considered: the continuous-time random walk
where the transitions occur according to a Poisson process
with event (or transition) rate y =r ' ("continuous
model" ), and the discrete random walk, which is charac-
terized by a fixed time interval ~ between successive tran-
sitions. Since r defines a natural timescale for both pro-
cesses, times will be measured in units of r and frequen-
cies in units of y.

In the static ease, where each particle stays on its initial
site forever, the decay of polarization depends only on the
distribution of the attached frequencies. Introducing the
characteristic function g of g,

g(x)=(e'""}= J e' "g(co)den, (2.2)

the depolarization is simply given by P(t) =g(t), and (1.2)
is regained for the Giuss distribution (2.1).

In the case of the random walk the ensemble average
(1.1) over many spin particles actually must be interpreted
as a double average, where one extends over different real-
izations of the random walk and the other over different
configurations I co, ]. Thus

P(() ((exp —i j cu( d)i)i='
r

II. BASIC PROPERTIES OF THE MODEL

The model we use for a description of the depolariza-
tion of spins is defined in the following way: We consider
an infinite d-dimensional lattice which has a spin-rotation
frequency u„associated with each lattice site r which is
taken from a probability distribution g(co). ' For con-
venience we suppress vector notation. With the exception
of Sec. VI our considerations will be restricted to the ease
of a Gaussian distribution with mean (c0}=0 and vari-
ance 0', 1.C.,
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The last average can be performed exactly, if we introduce
the total times t„(t) that the particle has spent on the par-
ticular site r. The accumulated phase of spin rotation,

f 'co(t')dt', can be written as g, to, t„(t), and we obtain

P(t)=((exp
' —i ate, t,(t) '))

(2.4)

i.e., for the distribution (2.1):

(2.5)

In the case of the discrete random walk we only consider
the depolarization for integer times t„=n (i.e., the time
when the nth transition is performed} and the above equa-
tions can be rewritten as

P„=P(t„)=((exp —i ate, h, (e) ))T

(2.6)

exp —
p pl (2.7)

where h„(n} is the total number of visits on the lattice site
r. For simplicity, it will generally be assumed that ran-
dom walks start at the origin r =0 of the lattice.

Before we consider the difficulties which are connected
with the further evaluation of (2.5) or (2.7), we first dis-
cuss the more general aspects of the model.

Obviously, the characteristic property of the stochastic
process to(t) induced by the random walk of the particle is
that repeated rotations with the same frequency can
occur. In comparison with the strong-collision model
where a new frequency is taken on with each transition,
the number of different frequencies is reduced compared
to the number of transitions. These revisiting effects can
be considered as a "loss of mobility. " One expects, quali-
tatively, a reduced motional narrowing, or in other words,
a somewhat faster polarization decay with time. This ef-
fect should be especially strong for random walks on low-
dimensional lattices, since revisiting effects become more
important with decreasing dimensionality (note that the
strong-collision model is "exact in d = ce "}.

These expectations are reinforced by the results of the
theory which combines the Gaussian assumption for co(t)
with frequency correlations appropriate for the random-
walk process. For a stationary Gaussian process (1.1)
yields

P(t) =exp —f (to(t')to(0) }(t t')dt'—(2.N

In the case of the continuous random walk,

( (t) (0)}= 'P(0, t)

(2 9)

P(t)-exp( —const&(o2t i
) for d =1 „ (2.10)

where P(0, t) is the probability that a particle is at the ori-
gin r =0 at time t. Thus the following asymptotic
behavior of P(t} in d =1—see (1.4)—and d =2 results:

P(t)-exp[ —const Xo t in(t)] for d =2 . (2.11)

Oe2

P(t) & exp — g t,'(t)) (2.13)

i.e., a rigorous lower bound for the polarization decay is
obtained. On the other hand, the expression on the right-
hand side of (2.13) is nothing else than another form of
(2.8), i.e., the depolarization one obtains by introducing
the Gaussian approximation for to(t) Thus. , (2.10}—(2.12)
yield lower bounds for the asymptotic decay of P(t). The
consequences for transient walks are obvious; since an
upper bound (for all d) is given by the depolarization of
the strong-collision model, the actual polarization must
thus decay simple-exponentially. The question about the
decay in d =1 and 2 can obviously not be answered by
these considerations.

According to (2.7) the problem of random-walk averag-
ing is reduced to the problem of determining probabilities
P„(Ih, j ) for the sets I h, j of the numbers of visits h, on
the sites r by an n-step random walk. We remark that the
knowledge of these probabilities would also be useful for
the calculation of P(t) in the continuous case. Let us
briefly comment on the results of random-walk theory
concerning the determination of the P„(Ih„j). For arbi-
trary dimension d, Rubin and Weiss have given the gen-
erating function of the probability P„(Ih„,,h„,, . . . , h, j }
for finite sets of lattice sites. ' This result is useful in the
case where just a few sites r„r2, . . . , r are of interest,
but not appropriate for the depolarization problem. Only
the simple topology in d =1 allows us to count explicitly
all possible random walks with fixed numbers of visits on
the different sites. (See van Beijeren and Spohn. ' '
Their results are still rather complicated, and we were not
able to perform the summation over all possible configu-
rations I h„j in the expressions for the depolarization. )

III. CUMULANT EXPANSION
FOR THE DEPOLARIZATION IN cg = 1

In d =1 the Gaussian assumption for the stochastic
frequency modulation (o(t) leads to an asymptotic depo-

The Gaussian assumption (2.8} always leads to a simple-
exponential decay when a correlation time

7—= ((o(0) ) ' f ((o(t)co(0)) dt ~ oo

exists; in this case P(t)-exp( —o.~u). ' This condition is
fulfilled for transient random walks; the quantity 7 is
given by f P(0,t)dt =ao—for the simple random walk in
d», e.g., a0=1.516. . . for the simple-cubic lattice. 's

Thus the Gaussian assumption yields

P(t)-exp( aa—ot) for d & 3 . (2.12)

In the Introduction we pointed out the principal incon-
sistency of this treatment. Nevertheless, these results may
be used to give an exact bound for the actual polarization
decay.

As den Hollander pointed out, ' Jensen's inequality for
convex functions can be applied to the depolarization
problem. Note that P(t} is given in (2.5) as the average of
a convex function of the stochastic variable g„t„(t);
hence,
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larization decay proportional to exp( —const X t ),
which is in obvious contradiction to the observed simple-
exponential decay we briefly mentioned in the Introduc-
tion. Nevertheless, it is an interesting question whether or
to which extent the Gaussian treatment —or, more gen-

erally, a systematic cumulant expansion —can be used as
an approximate description. For simplicity, we shall re-
strict this discussion to the case of the continuous model.
Consider the exact frequency-averaged expression (2.5) for
the depolarization, which is replaced by (2.13) in the
Gaussian approximation. If one considers thepobability
distribution for the stochastic variable X—=Xt, generated
by the random walk, (2.13) corresponds to its approxima-
tion by a simple 5 distribution, namely 5(X—(X) ). The
cumulant expansion of (2.5) provides the possibility to
take systematically higher moments of the actual distribu-
tion into account; this expansion is given by

P(t)= lim P(~)(t),

where each quantity (X"(t))„the cumulant of kth order,
is determined by the first k moments

M i(t):—(X(t)), . . . , Mk(t) = ( X"(t)) .

The Gaussian approximation represents the cumulant ex-
pansion in first order.

To investigate the cumulants in more detail, we start
from, the simple expression for the time t, (t)

n, t' t', where the stochastic variable n„ t' is de-

finaf to be one if the particle is at site r at time t', and to
be zero otherwise. The initial condition of start at the ori-
gin r =0 corresponds to n„(0)=5„0 Th. e set of all quan-
tities n„(t) fully describes the actual random walk. With

X(t)= g f dtl f dtl n„(t) )n„(tl),

P( )(t)—:exp
k=1 ,

(X'(t)), (3.1) we can write the kth moment in the form

Mk(t) =
PI yl'21 ~ ~ ~

dt, dti f dtlk(n„, (ti)n, , (tz)X Xn„„(tlk 1)n„(tlk)) . (3.2)

It is useful to divide the integral up into 2k! time-ordered integrals, where t) & tl » tik If we. formally introduce
2k site variables ri, r2, . . . , rlk, which obey the conditions rk+, r; (i =1,2,——. . . , k), and further define S(2k) to be the
set of all permutations II on the set of indices I 1,2, . . . , 2k J, (3.2) can be written as

k
1 2' —1

M, (t)= y y g5, . „. , f dt, f dt, f dt Ik(n„„„,(t I,„„, 3 Xn,„„,(tik)) .
116$'(2k) vl, r&, . . . , rk i =1

(3.3)

For simplicity let us define rj. =rrt(J). The average (n (t ) i-n(t ).3n- (tzk)) in (3.3) is the joint probability
r& v2 r2

p (r i, ti,'rltl', ,rlk, tzt,
~

r =0, t =0) that a particle, starting at time t =0 at the origin r =0, is at times tj at the sites
r& (j= 1,2, . . . , 2k). This probability can be written as a product of conditional probabilities
P(r;, t;

~
r;+ „t;+„r=0, t =0) that a particle is at site r; at time t;, when it has been at r;+, at t;+ l. Since the random-

walk process is a Markovian process, this conditional probability is just the ordinary random-walk probability
P (r;, tt

~
r;+ i, t;+I) that a particle, starting at time t;+ i at site r;+, , is at r; at time t;. This can be written as

P(r, r+, , I, t +, ~

.r—=0 t —=0)=P(r", r+„—I, t +, ) . ——
Thus we obtain

( n (ti )n (tl) np (tik)) P(ri rig I( tl)P(rg r31 t3 t3) X ' ' ' XP(rgyt3k) (3.4)

Inserting this expression in (3.3), we obtain a convolution-type integral. Hence the Laplace transform Mk(u) of Mk(t) is
given by

k

Mk(u) = —g g ff 5, , P(r, r2, u)P(rl r3, u—) X . XP(r2k, u), —
g fi)P2, . . . )Pk /=I,

where P(r, u) is the Laplace transform of P(r, t).

(3.5)

To derive explicitly Mk(u), one has to determine the con-
tributions of the different permutations in (3.5). We re-
frain from describing the simplifications which can be ob-
tained by llslllg symmetry alld factorlzatlon arguments.

We point out the moments of successively higher order
can actually be computed although with rapidly increas-
ing calculational efforts. Here we restrict the discussion
to the first two moments. %'e note the normalization
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(3.6)

The calculation of the first moment is trivial, and (3.5)
yields

Q„P(r,t)=1, corresponding to Q, P(r, u)=u ' in the
Laplace domain. The Laplace transform of the one-
dimensional probability P(r, t) is given by '

P(r, u) = [u +1—v'u (u +2}]!"! [A (u)]!"!
&u (u +2) C(u)

100

Mi(u) =
2 P(O, u) =

u2 u &u(a+2)
(3.7}

which corresponds to the following expression in the time
domain:

M, (r)=(X(r)) = I r'exp( —r')[I,(r')+I, lr')]dr',

where Io(t),Ii(t) are modified Bessel functions. For
t »1 one finds the asymptotic behavior given in (1.4) or
(2.10). We also consider the second moment M2(u). In
the evaluation of (3.5) for k =2, three different contribu-
tions (with equal weights 2"k!=8}must be calculated; the
result is

M2(u)= z
—P (O, u)+P(O, u)QP (r, u)

u

100
time t

150

FIG. 1. Depolarization of the continuous random walk in
d = 1 for o =0.1. Comparison of the first- and second-
cumulant approximation, P[&](t) and P(2](t), respectively, with
the result of the numerical simulation (points).

+ gP (ru) (3.8}

especially for d = 1,

8 1 1 1+3 (u)
uzC(u) & ~(u) 1 —A2(u)

1 1+33(u)
&(ii) 1 —A (u)

(3.9)

From the expansion of Mz(u) for small u one finds the
asymptotic behavior of Mz(t} for t~ 00: Mz(t)-11/9t'.
This is a special case of the general result
Mk(t}-const X & ( t~ 00 ), which can be proven
rigorously. Omitting numerical factors, we can represent
the result of the second-cumulant approximation as

P~i~(t)-exp(constXt3) as taboo . (3.10)

Since the constant in the exponent is positive, this asymp-
totic expression obviously is irrelevant for the description
of the asymptotic depolarization decay; nevertheless, the
second-cumulant approximation makes an important con-
tribution at intermediate times. The explicit calculation
of P~2~(t) for arbitrary times t can be performed by nu-
merical inversion of (3.9). Figure 1 shows the behavior of
P~„(t) and P~2~(t) for a typical value of o. Comparison
with the simulation shows that the actual decay is rela-
tively well approximated up to the order of 10 ' by the
first- and up to the order of 10 by the second-cumulant
approximation. This observation gives an explanation for
the fact that experimental results were found in relatively
good agreement with the theory based on the Gaussian ap-
proximation. Already the rough approximation given by
(1.4) yields times for decay to 1/e which typically deviate
only about 30% from the simulated values. This allows

the conclusion that the linewidth derived from the Gauss-
ian treatment should describe quite well the correct
behavior (see the experimental results in Ref. 8). We note
that a similar conclusion was drawn by Reiter and Bouch-
er for the model with interacting spins. '

The cumulant expansion obviously is an expansion for
short times. The time region, in which the decay of polar-
ization is quite well approximated, increases with decreas-
ing parameter o, which can be considered as a measure of
disorder. The larger the disorder, i.e., 0, the earlier finer
details of the random-walk process, which actually probes
the disorder, become important. Finer details enter
via higher correlations, i.e., averages of the form
(n„,(ti)n, , (t2) . n, (t2i, )), in this description, i.e., via

higher moments or cumulants. At least in d =1, correla-
tions due to visits on a fixed number k of lattice sites can-
not sufficiently describe the situation in the asymptotic re-
gime, where arbitrarily many sites and returns to all of
them are involved. The advantage of the cumulant
method is that, principally, the initial decay of polariza-
tion can be approximated as far and as well as one wishes
by successive expansion. We note that for values o »1
the Gaussian-type decay, given by (1.2), yields a good
description for the behavior of the depolarization, since
the details of the frequency modulation co(t) are effective-
ly irrelevant.

IU. ASYMPTOTIC POLARIZATION DECAY IN d =1

While a description of the initial decay of the depolari-
zation may profit from the fact that in the initial time re-
gion visits of only a restricted number of lattice sites are
important, a theory appropriate for the asymptotic
behavior must also take into consideration that principally
an increasing number of lattice sites will be visited with
increasing time. Let us consider the number s of distinct
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sites visited by a dlscI'ctc I'alldoIIl walk wltli n steps (i11

d =1 the "span" of the walk); for fixed n this quantity
can take on values between s =2 and s =n. The two ex-
treme cases illustrate the totally different behavior of
"contracted" (small s) and "extended" (large s) walks:
Their individual contributions are given by a Gaussian-

type decay exp( —o n /4) for s =2 (if n even), and the
simple exponential exp( cr —n/2) for s =n T. he latter
corresponds to the depolarization in a discrete version of
the strong-colhsion model, since with each new step a new
site or frequency is visited. For arbitrary s the contribu-
tions of the different walks cannot easily be determined,
but an approximative expression is obtained from the as-
sumption" that for fixed n each of the s sites is equally
often visited, namely n/s times. Equation (2.7) then
reduces to

O' PlP„=( C„(s)), C„(s)—:exp
2 5

(4.1)

where now the average extends over all possible values of
s. The further, crude approximation that each n-step
walk visits exactly (s) sites, where (s)-(8n/Ir)'~ for
n~ ao in d =1, leads to the result

' 1/2

n'" (4.2)
2 8

P„-exp

W„(s)= g ( —1)r+'j exp( —,'j s /n) . —
&2mn,

(4.3)

This result is analogous to the decay given by (2.10).
Similarly, for d =2, with (s)-constXn ln(n), a decay
analogous to (2.11) is obtained; again for d) 3„where
(s ) —const Xn, a simple exponential decay results,
analogous to (2.12). A better evaluation of the approxi-
mate expression (4.1) must take the actual distribution
W„(s) of the spans of the random walk into account. In
d =1, W„(s) is exactly known. I Since we are interested
in the asymptotic depolarization decay, we directly use an
asymptotic expression for the span distribution. Weiss
and Rubin have given two expressions in the form of in-
finite series, which differ in their convergence on the left
(small s) or right wing (large s) of the distribution. i4

Since extended walks provide the largest individual contri-
butions C„, we use the form which converges rapidly in
the region beyond the maximum:

&s) 0
~~0 1401100I00$0000410$4Hooiossolosing $001000~ 0~ 0 ~4140Iooto ~oootti ~

0 50

s(number of sites visited)

100

FIG. 2. Distribution 8'„(s) of the number s of distinct sites
visited in a one-dimensional n-step random walk, C„(s)
=exp( erin—I/2s), and f„(s)= W„(s)C„(s) for n =100 and
ca=0.5. (The maxima of 8'„and C„are normalized to 1, and
the maximum of f„ to 0.6.)

obtained. We note that the approximation (4.1) yields an
upper bound of the polarization decay, since for each indi-
vidual walk the inequality g, h, )n /s holds.

The comparison with the results of numerical simula-
tion (see Sec. V) shows that (4.4) is indeed a good descrip-
tion of the actual polarization decay in d =1. Neverthe-
less, the role of (4.4) as a simple exponential upper bound
for P„ is not satisfactory since it cannot exclude the possi-
bility of a polarization decay with a power of n higher
than n ' in the exponent. It is useful to construct also an
appropriate lower bound, from which relevant conclusions
can be drawn. Consider now the class of all random
walks which end at a fixed site r Its minim. al individual
contribution to P„ is given by a walk with maximum
value of g„,k, . Such a walk is characterized by two
properties ("maximum degree of contraction"); see Fig. 3:
The number s of distinct sites visited is as small as possi-
ble, i.e., s =r, and a minimum number of these r sites,
which corresponds to two neighboring sites, is visited as
frequently as possible. If for simplicity only the case of
even n =2m is considered, one easily obtains for each pos-
sible site r =2k (

~
k

~

=0, 1,2, . . . , m)

In the average in (4.1) and for large n it suffices to take
the first term in (4.3) only, since the other terms all lead
to exponentially small contributions. The summation of
the product f„(s)=W„(s)C„(s) can be performed by
saddle-point integration. The maximum or the saddle-
point of f„—see Fig. 2—is located at s =cr r 2 ' n,
with a relative width around the maximum of the order of
n 'r . Since f„(s) is not defined for arguments s )n, the
derivation is restricted to values of rr where s is smaller
than n, i.e., roughly for values of a not exceeding unity.
The result is

exp( —3 X2-'"~'"n) .
8

(4.4)

CLI

Vl

CM
LJ

4 L I 4 S k s 4 S
C5

\ I v 0 ~ l I f

step number

r r w W I r

s=r

Thus a simple exponential decay of the depolarization is
FIG. 3. n-step walk which ends at site r with "maximum de-

gree of contraction" (see text).
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where the equality holds for all k&0. Obviously,

Pt 2

P„&P„:—g QI (2k)exp — 1.(k)
k= —m 2

(4.5)

where QI (2k) denotes the well-known probability that a
walk with n =2m steps ends at site r =2k. For large n

the distinction between even and odd n becomes ir-
relevant, and starting from (4.5) P„can be evaluated using
the asymptotic probability density Qq (2k)
-(me ) '/ exp( k /—rn). The result of this straightfor-
ward evaluation is given by (for values of o not exceeding
unity)

P„-exp[——,'(Ir + l)n], (4.6)

i.e., again by a decay with the power n ' in the exponent.
In summary, we have shown the asymptotically P„cannot
decay faster than given by (4.6); hence, a simple exponen-
tial decay of P„ follows.

V. NUMERICAL RESULTS IN d = 1

Before we turn to the verification of the results of Sec.
IV by numerical simulations, we give a brief description
of how these simulations were performed:

In a first method, corresponding to the simulation of
(2.6)- -or the analogous formula in the continuous case—a
linear chain of typically 5X10 sites with random fre-
quency configuration Im, I is generated, on which many
random walks (typically 5 X 10~) with random starting po-
sitions are performed. The accumulated spin-rotation
phase 4 of each walker is observed. A.fter repeating this
scheme some 10' times for different frequency configura-
tions, the depolarization is computed as the mean value
(cossp), averaged ovcI' all gcIlcratcd I'alldoII1 walks. This
method is time consuming and not very accurate, since
when P„ is of the order of 10 2—10, where typically
the asymptotic regime is not yet reached, the statistical
scatter of the data becomes too large.

The second method uses Eq. (2.7), which is now es-
timated by the simulation. Since the average over the ro-
tation frequencies is exact, only an average over different
random walks has to be performed. With this method the
decay of polarization could be followed up to 10 (and in
some instances far beyond) for a wide range of parameters
o between 2 and 10 . The number of generated walks
has been of the order of 10 —10 . We note that for values
o )2 the decay of polarization becomes so fast that no
relevant information is obtained by computing the
discrete depolarization I'„. Although this decay can, in
principle, be followed in the continuous case, this range of
the parameter cr is not of special interest, since the polari-
zation becomes extremely small long before asymptotic
properties of the random walk play their specific role.

Simulations of the continuous model, which have also
been performed by both methods, have some specific
disadvantages compared to the discrete case, mainly the
necessity of the additional simulation of the waiting-time
distribution. Hence, these simulations were not per-

3 X 2
—5/3~4/3 (5.1)

of the exponential (4.4). Figure 5 shows the dependence
of the decay constant on the width of the frequency distri-
bution. The slope of the straight line through the data
points is 1.30+0.02, which is close to the value —, in (5.1).
The observed decay constants are larger than (5.1)—in
agreement with the fact that (4.4) is a lower bound for P„.
The absolute deviation can be described by a numerical
factor which is approximately given by =1.3.

The question arises as to which extent the result (4.4)
can be used to describe the polarization decay in the con-
tinuous model. We now compare the depolarization of
both models. It is tempting to assume that P„, for large
step numbers n, can be translated into P(t) by identifying
n with tlr. However, the results of the simulations —see
Figs. 4 and 5—show that this identification cannot be
made; the results of the continuous model and of the
discrete model are different, in that P(t) has a larger de-
cay constant. Such a difference already appears in the
strong-collision model, where a different frequency is tak-
en at each step. We have mentioned (cf. Sec. IV) that

100
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FIG. 4. Depolarization of discrete and continuous random
chalk {d =1) for two typical values of o. Solid symbols, results
of simulations performed by the first method described in text;
open symbols, second method.

formed to such an extent as in the discrete case, which
provides the simpler possibility of investigating a wide
range of parameters. The relationship of the two models
will be discussed below.

The simulations show that for all values of a the
asymptotic decay indeed approaches a simple exponential;
in Fig. 4 the results for the discrete as well as the continu-
ous depolarization are given for two typical values of cr;
for comparison, some data points of the first method are
included.

Since (4.4) only describes the asymptotically leading
behavior of the depolarization, based on the approxima-
tion (4.1), the appropriate quantity for comparison with
the numerical simulations is the decay constant
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If we assume that for large n correlations between the dif-
ferent br become more and more irrelevant, the average in
(5.2) can be replaced by a product of n identical averages
(exp[ —(a /2)4 ]). This average can be performed ex-
actly, leading to a rather complicated expression; for
o«~1 the result is

Oe 2 g 2

exp — (b, ) =exp
2 2

Thus we obtain, from (5.2), replacing n by t/r,

P(t)=exp( ar—t) (tr~&&1), (5 3)

1O-' 10 10
"

width 0
1O'

P(t)=P„exp[ (crt—) n/2] (a~&&1) . (5.4)

which is the result of the strong-collision model.
The argumentation cannot directly be applied to the

random-walk problem where the actual numbers of visits
on each site play a crucial role, but if we again assume
that all visited sites are equally often visited, we obtain, by
analogous derivations,

FIG. 5. Dependence of the decay constant A, in

P„-exp( —A,n) on the width 0. Results of the simulations
represented by open (discrete model) and solid circles {continu-
ous model). Dashed line, Eq. (5.1); lovrer curve, result of
effective-medium theory (see Sec. VII).

P„=exp[ (a~) n—/2], while the continuous model yields
P(t) =exp( erst) T—his dif. ference can be understood by
the following arguments.

For the Poisson jump process in the continuous model,
the probability that n steps are performed in the time in-
terval [0, t] is

P, (n) —= (t/r)"exp( t/r);—1

n!

it has a sharp maximum at n = t/r for t &yr with a rela-
tive width hn/n =(t/~) '~. Thus in the asymptotic
limit only those walks which perform n = t/r jumps con-
tribute. For the depolarization the accumulated phase of
spin rotation is important. This quantity depends sensi-
tively on the actual waiting times between successive tran-
sitions, and thus the contribution of all walks with n

jumps in [O, t], which will be denoted P(t
~
n), cannot

siinply be replaced by P„with n =t/~. We decompose
the time tj of rotation with the jth frequency, tj =r+hJ,
where v. is the mean value and 5» the deviation
(j =1,2, . . . , n) With.

The resulting decay constant is 1,+a /2 (r:1), whe—re A,

is given by (5.1), i.e., proportional to

a (1+constXa ) . (5.5)

This makes it plausible that the decay constants of the
continuous model approach the values of the discrete
model from above when a decreases. Thus for sufficient-
ly small a we also expect for the continuous model the
dependence

A, =constXo~ (5.6)

VI. DIFFERENT FREQUENCY DISTRIBUTIONS

with P= —', . This exponent P should be contrasted to the
value P=2 of the standard Gaussian treatment or the
strong-collision model. If we describe the polarization de-
cay on the real time scale, the decay constant correspond-
ing to (5.6) is given by A, =constXa(ov) ', i.e., here, r
enters with the exponent = —,'. The principal experimental
relevance is the following: If one knows the temperature
dependence of r, e.g., from independent measurements of
the diffusion constant, the possibility arises of measuring
the dependence of the decay constant on a, i.e., to esti-
mate the value of P. The dimensionless combination
(av)'~ can also be identified in the result of the Gaussian
treatment (cf. Ref. 9) and also appears in the theory of
Reiter and Boucher. '

p(( (e)=(exp

we obtain

P(() P(((e)=(exp=
2

P„&P„.
j Ihjj

(5.2)

Up to now we have assumed that the local rotation fre-
quencies co„are taken from the Gaussian distribution
(2.1). It was pointed out by Van Vleck that this approxi-
mation gives a good description of the actual distribution
of local magnetic fields in a crystal. Since we are discuss-
ing rather detailed behavior of the polarization (e.g., decay
down to 10 ), it is a relevant question whether this
behavior depends on the explicit assumption of a Gauss-
ian distribution. We hence consider other types of distri-
butions in this section.

I.et us first briefly consider the example of the Cauchy
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of Lol'eiltz distflbutloll g(co)=(5/ir)(5 +f0 ) (5&0).
It is known that in this case the decay of polarization is
totally independent of how many different frequencies are
taken on—and how they are taken on; the decay is always
given by P(t) =exp( —5t). (In the context of spin-
resonance phenomena this effect has bxn called "total ab-
sence of motional narrowing. ") Hence, the question of
how the random-walk process influences the polarization
decay is completely irrelevant for the Cauchy distribution.

In the following we shall consider three examples of
distributions, which all have mean (to) =0 and variance
tr, but differ according to their (finite) higher moments
(co ). We first discuss the symmetric exponential distri-
bution

1
exp( —v 2

~

t0
~

/tr ) .2' (6.1)

We will investigate the olarization decay due to this dis-
tribution in more detail. The two other examples are the
rectangular (constant) and the dichotomic distribution,
and these will be discussed later.

g(t)=(1+ —,o t ) (6.2)

The asymptotic decay is now algebraic, i.e., much slower
than in the Gaussian case The i.nitial decay of P(t) for
the exponential distribution is given by 1 —tr t2/2, valid
for t «o '. The same initial decay results from the
Gaussian frequency distribution of width a.

It can be shown that an arbitrary frequency distribution
g(to) with mean (to) =0 and variance o2 leads to an ini-
tial polarization decay P(t)=1 cr t /2 —for t « tr
Under these assumptions the cumulant expansion of the
characteristic function g(x) can be written as

lng(x}= g, Ei~(ox)2m!

0 2 1
2

x +—K4(ox) —+4

2 4!
(6.3)

where E2 =(t0 ~), /o . It can be used for an approxi-
mation of g(x) for ox «1, and P(t)—=g(t) according to
(2.2). As (6.2) exemplifies, the asymptotic polarization de-
cay depends on the precise form of the frequency distribu-
tion in the static case. The question is how this fact influ-
ences the polarization decay in the case of random walk
on the spin particles. For simplicity, we shall restrict our
considerations to discrete random walk, where
P„=(g, g(h, )); see (2.7).

We will discuss the properties of P„ in the frame of the
approximation we introduced in Sec. IV, i.e., h, is re-
placed by n/s for all s different visited sites. We thus
start with (4.1),

n

P„= g W„(s)C„(s), (4.1')

A. Symmetric exponential distribution

The polarization decay of an ensemble of spins with the
distribution (6.1) in the static case is easily derived by cal-
culating the characteristic function g(x}, cf. (2.2}. We
have

where IV„ is the span distribution, and C„(s) the contri-
bution of a walk with span s, in this approximation. For
an arbitrary distribution,

C„(s)=[g(n/s)]'=exp[ —s 1ng(n/s)] . (6.4)

For the Gauss distribution, C„(s) is given by
exp[ —cr n /(2s}], a monotonically increasing function of
s. This property is refiected in the tendency that increas-
ing "mobility" leads to a slower polarization decay. For
arbitrary g we can use (6.3) to obtain an approximation
for trn ls «1,

C„(s)=exp ——,o +—K4cr
&

+so((on/s) )
g S

C„(s)=exp —s ln 1+ —,
' o.

S
(6.6)

We first note that C„has a (single) minimum at so ——kort;
the constant k can be calculated numerically and is given
by k =0.357. C„(s) increases for s &so with decreasing s
and for s &so with increasing s. The question is which
part of C„(s) is important for the behavior of P(t); this
requires a detailed discussion of separate cases.

1. 0~~1

Here (or more precisely for all o & k ', where so & n),
C„ is monotonically decreasing over the entire range of
possible s values. Contrary to the Gaussian case, con-
tracted walks now yield the most important individual
contributions. Since C„ is also convex on I 2, 3, . . . , n J, a
lower bound for P„can be obtained by applying
Jensen's inequality: P„=( C„(s)) & C„((s ) ). With
(s)-(8n/n)' (n »1) in d =1, this inequality reads

' 1/2

P„&exp
Sn

ln 1+ n
ACT

7r

=exp[ —const&(n'r ln(cr n)], n »1 . (6.7)

We thus find the interesting result that the symmetric ex-
ponential distribution leads to an asymptotic polarization
decay which is slower than simple-exponential. To inves-
tigate the actual decay of P„ in our approximation for
n »1, we take advantage of the fact that in leading order
this decay depends on the position s of the maximum of
the product f„=C„W„.Since, here, contracted walks are
most important, we use a form for W„(s) which is espe-
cially suited for a description of the span distribution for
s & (s). It suffices to take the first term of the sum in
Eq. (23) of Ref. 24,

(6.5)

Only for o «1 is there a certain range of s values
(on «s & ri) where C„(s) behaves similar to the Gaussian
case. For cr »1, where s «on for all s, the behavior of
C„ is determined by g(x) for x »1. Let us explicitly
consider the case of the exponential distribution (6.1);
with (6.2),
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8n rr n 'fT' PlW„(s)- —1 exp
S $ 2$

(6.8)
10-

' ..W„(s]

To determine the maximum of f„, we formally write
f„(s)=exp[—y(s)]; (p'(s )=0 yields s . Only consider-
ing contributions which are relevant for n ~ oo, we obtain

05-
f„(s]

ir n Pl
y(s) = +s ln

2$ 2$

cr n
3 n=lo

$m 2$m

(6.9)

10-
{s) 150

I

(b] n = 650

Saddle-point integration yields I'„-f„(s )
=exp[ —p(s )] to leading order in n Introducingx:n/—s~, y(s ) can be written as (3ir /2)x, and x is
determined by

f„(s]

05-

3/ n / ln( 2 cr nx} (6.10)

With the ansatz x =m "/jn'/ h(y), where y =cr / n,
(6.10) reduces to 0

0 %0 'f50
I I

h / (y)=ln[ —,'y /3Ij(y)], (6.11)
10-

~ ~

tc) n =750

which yields the leading behavior of h:

I (y) (
4 )2/31n2/3(y)

We thus obtain, for n ~ oo,

P„-exp[ (67r )' 'n ' —'ln' 3(cr' 2n)],

(6.12)

(6.13}

i.e., an extreme slow decay for large step numbers n, com-
pared to the asymptotic decay exp( —A,n). However, the
polarization P„ is already extremely small for step num-
bers n where the approximation leading to (6.13) is justi-
fied. Hence, we hardly expect that this asymptotic
behavior can be verified by numerical simulation.
Nevertheless, the qualitative tendency should be visible.

f„(s)

05-

0

.W„cs)

s (number of sites visited)

FIG. 6. Distribution W'„(s) of the number s of different sites
visited in an n-step random walk {d=1},C„(s) [given by Eq.
{6.6)], which is only shown m (a), and f„{s)=W„{s)C„{s},for
the exponential frequency distribution with width a=0.2. In
(a)—(c) different step numbers are considered. See Fig. 2 for
normalization.

For cr «1 the situation is not as simple as for o &p 1,
since now the minimum so of C„ is somewhere in the
range of possible span values s =2,3, . . . , n, so that, in
principle, both wings of C„can become important. We
can distinguish two different cases, which depend on the
position of so relative to the maximum of 8'„,which is at
about (s )-(8n/m)'/. Let n' be the step number where
both coincide, i.e., where so = (s ):

(6.14)

(i) For n &&n' (and, consequently, so « (s ) ), f„has a
pronounced. maximum beyond the maximum of W„.
This situation is shown in Fig. 6(a) for the parameters
o=0.2, n =200 (n'=500). To determine the value of f„
at the maximum, i.e., f„(s ), we use the approximate
arm

8'„(s)— 8
exp( —s /n),2

3/2en.
in analogy to our analysis in Sec. IV. If, in addition, the s

2
—1 j3 2/3~

P„-exp( —A,n}, X=3X2-'/jo'/3 .
(6.15)

The influence of the next term in the expansion (6.5) for
C„(s) can be treated approximately, i.e., we can calculate
the corrections to (6.15) to lowest order in o. The result
for the position of the maximum is

(6.16}

Since for our distribution (6.1), IC = (a) ), /o =3 &0, at

values of interest (s larger than (s )) obey the condition
crn/s «1, the calculation of f„(s ) can be simplified by
using the expansion (6.5). (Note that this last assumption
is at least valid, if already on/(s) «1.) With C„(s), to
lowest order, approximated by exp( on /2s), w—e obvi-
ously obtain the same results as obtained in Sec. IV for
the Gaussian frequency distribution, cf. (4.4),
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least (6.16) yields a qmL)itatively correct picture; e.g., see
Fig. 6(a}. We obtain the decay constant

(6.17)

i.e., in the frame of our approximation, the decay con-
stant, which describes the exponential polarization decay
in a certain range of step numbers n «n', is expected to
be somewhat smaller than the decay constant in the case
of the Gaussian distribution.

(ii} I.et us now consider the case of larger n. When
n & n', a second maximusTT of f„,at the left-hand side of
the maximum of W„, becomes more and more pro-
nounced, while the first maximum slowly vanishes, see
Fig. 6(b). This signals that now the influence of contract-
ed walks begins to dominate the decay of PRL For
n »n', i.e., when the minimum of C„ is far beyond the
maximum of W„, only these contracted walks contribute,
see Fig. 6(c), and we have the situation we already dis-
cussed for o »1. Thus, also for small values of cr we ex-
pect an asymptotic polarization decay proportional to
exp[ —const x n '~sins l(o s+n)], see (6.13).

We point out that the step number n' is a rough esti-
mate of the actual step number, where [in the approxima-
tion (4.1')] the crossover to the non-simple. exponential de-

cay appears. Nevertheless, we can make a rough guess of
the magnitude of P„and its dependence on o at this
crossover point. From (6.15) combined with (6.14) we
deduce the estimate

P„,=exp(-3X2'/ln 'k lcr l~l) . (6.18)

Thus the crossover can be shifted to unmeasurably small
values of P„by reducing n

—,'(v 3o) ', v3cr&ci—&v 3n
g(cl) =

0, otherwise.

Its characteristic function is given by

sin(l/3ox)

(6.19)

The dichotomic distribution describes the case where the
local rotation frequency can only take the values co =+a:

g (co)= —,
' [5(a)+cr)+5(co—a )],

g(x) =cos(ox) .
(6.21)

(6.22)

It is a characteristic property of both distributions that
they lead to oscillations of P(f)=g(t), the depolarization
in the static case. We note that the cumulant expansion
(6.3) of g is well defined for arguments x with g(x) &0;
the range of convergence is given by

~
x ( &x„with

x, =A 1/3cr) ' (rectangular) or x, =m(2cr) ' (dichotom-
ic). Comparison with (6.2) further shows that the decay

S. Other distributions

We now briefly consider the two other examples of fre-
qucllcy dlstflblltloils. Thc fcctallgulaf dlstflblltloil ls de-
fined by

of the amplitudes of g(t) for f~ cc is even slower than
the decay in the case of the exponential distribution (6.1);
for the dichotomic distribution (6.21} there is no decay of
the amplitude with time at all.

It is important for the discussion of the polarization de-
cay in the case of random walks that the individual con-
tribution of a single walk with span s, C„(s}=[g(n/s)]',
may also take on negative and positive values. We distin-
guish two regimes: for s&s, =nx, ', i.e., where the
behavior of g(x) for x &x, determines the behavior of
C„, the function C„ is positive and monotonically increas-
ing from C„(s,)=0 to C„(n)=[g(1)]". For s&s, the
behavior of C„ is mainly dominated by "oscillations, "
which —roughly speaking -are becoming more and more
rapid when s decrelses. Thus, again, two different situa-
tions, now distinguished by the relative position of s, and
(s ), are relevant for the behavior of PR s In analogy to
the definition of the step number n ' in the preceding sub-
section, we introduce a step number n, where s, =(s ); n,
is given by (8m /3)o (rectangular) or 2lfo (dichotom-
ic). The situation where s, » (s ), i.e., where n »n„ is
relevant for the asymptotic decay of P„ for arbitrary cr

(and especially for the polarization decay for o »1).
Since here the oscillations of C„play an essential role,
simple saddle-point arguments cannot be applied. P„also
takes on negative as well as positive values. At least we
may conclude that the decay of the amplitudes will be
slower than the asymptotic decay obtained for the ex-
ponential distribution.

For n « 1 and n « n, (s, « (s ) ) the situation is simi-
lar to that of cr «1 and n «n' discussed above; actual-
ly, the same arguments can be applied. If, in addition,
nn/(s) «1, the expansion (6.5) for C„can again be
used. We directly refer to the result (6.17},in which —at
least to lowest order in o—differences between the dif-
ferent kinds of distributions appear in the decay constant
of the resulting exponential decay exp( —A, 'n):
s(,'=All —constXE4n / ). For the rectangular distribu-
tion (6.19), E4 ————,', for the dichotomic distribution
(6.21}, E4———2. Thus, contrary to the case of the ex-
ponential distribution (6.1), we now expect decay con-
stants which are somewhat larger than the decay constant
A, resulting from the Gaussian frequency distribution.

C. Comparison mth simulations

Our preceeding considerations are all based on the ap-
proximation (4.1'}. In the case of the Gaussian distribu-
tion this approximation l~s to a quahtatively (but not
quantitatively) correct description of the actual polariza-
tion decay. The question remains of whether the same is
true for the three other distributions. We have simulated
the depolarization caused by discrete random walks, for
the three distributions with different values of a. It is not
our aim to make an equally extensive and detailed com-
parison as in Sec. V for the Gaussian distribution; we are
mainly interested in a quahtative verification of our pre-
dictions.

In»g 7(a} the depolarization P„ for the exponential
distribution alld a=2.0 is shown in comparison to P„ for
the Gaussian one. It is clearly ansi that, already for small
step numbers n, the decay is slower than simple-
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FIG. 8. See Fig. 7; here the width 0 is 0.5.

FIG. 7. (a) Depolarization of spin rotation for random walks
on a linear chain with rotation frequencies taken from the ex-
ponential distribution (6.1), circles (simulation), compared to the
results of the simulation for the Gaussian frequency distribution
(2.1), squares; the width 0 was 2.0. (b) Apparent exponent a of
decay law lnP„~ n .

exponential; also so: Fig. 7(b), which shows the depen-
dence of the apparent exponent a, P„ocexp( —const Xn ),
on n The e.xpected asymptotic decay, given by (6.13),
corresponds to an asymptotic value a = —,

' . Figure 7(b} ex-

emplarily shows the difficulty to six—snd thus to
verify —this behavior by simulations. In Fig. 8 the analo-
gous results are plotted for cr=0.5. For this value of a
there is only a small range of step numbers where the po-
larization decay can be approximated by a simple ex-
ponential (at about n =45, a(n) =1.0; note that ri'=80).
The result for cr~0.05 (see Fig. 9) shows a nearly ex-
ponential decay over many decades; as expected, the
nonexponential decay is shifted to very small values of P„.
The decay constant A, in the regime of exponential decay
has been determined for several values of cr. Figure 10
shows that these values are smaller than the decay con-
stants obtained for the Gaussian distribution, in qualita-
tive agreement with (6.17) with positive E4', the difference
decrees~+ with decreasing o.

For the other two distributions, (6.19) and (6.21), the re-
sults of the simulations show qualitatively the behavior
we expect from our previous considerations. For n larger
than s crossover step number, which increases with de-
creasing cr, superimposed oscillations emerge in the polari-
zation decay, such that finally P„ takes on negative as
well as positive values; the amplitudes decay rather slowly

compared to the polarization decay of the first example.
For small o the initial ("undisturbed") decay can indeed
by approximated by a simple exponential; see the data in
Fig. 9. Again, in agreement with (6.17), this decay is fast-
er in the case of the dichotomic distribution (E4 ——2)—
than in the case of the rectangular distribution
(Kz ————,

'
}, and both are faster than the decay of the

Gaussian distribution.
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500
step number n

FIG. 9. Depolarization for random walks on a linear chain
with exponential frequency distribution (6.1), squares, rectangu-
lar distribution (6.19), circles, and dichotomic distribution (6.21),
triangles; the data are results of simulations. The results for the
Gaussian distribution {2.1) are represented as a continuous
curve. The width o was 0.05.
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The results of this section demonstrate that it is indeed
a special property of the Gaussian frequency distribution
that it leads to an asymptotic simple-exponential polariza-
tion decay. While for the other distributions a similar de-
cay results over a certain range of step numbers (when
o « 1), the asymptotic decay always depends on the actu-
al form of the distribution, normally slower than exponen-
tial.

FIG. 10. Decay constant A, in the regjme of simple-
exponential polarization decay, P„=e px( An—), ,for random
walks on a linear chain with frequency distribution (6.1); the re-
sults of simulations for several values of the width 0 are
represented as open circles. The solid circles denote the Gauss-
ian distribution.

er sites are considered to belong to the effective medium.
The corresponding depolarization amplitudes can be cal-
culated exactly and the condition that the decay of the to-
tal depolarization —after averaging over all possible values
of roc—is again given by (7.1) leads to a self-consistency
equation which determinates A, [Eq. (A12) of the Appen-
dix]. Since the properties of the random-walk process
only enter via the probability of return to the origin, the
decay constant can be calculated in principle for each type
of lattice for which this probability (or its Laplace
transform) is known.

Let us first consider the case d =1. The result for A,—
also see Fig. 11—has been included in Fig. 5 and must be
compared with the results of the simulations of the con-
tinuous model. For the parameters considered the decay
constant in this approximation is about a factor 1.8—2. 1

too small. This tendency is plausible, if one considers the
basic properties of our approximation. Compared to the
actual random-walk depolarization problem, where corre-
lations due to returns to all lattice sites are responsible for
the fast polarization decay, we have only included the ef-
fect of correlations due to returns to the origin. In the
log-log plot the slo e of A,(0) yields the exponent P, ap-
pearing in A(o )-cr, which should be compared to P= —,,
e.g., for cr=0. 1 one obtains P=1.29, and for cr=0.01,
P=1.32. Actually, for e«1 the exponent P finally
seems to approach the value —', .

The results for d =2 (square lattice) and d =3 (simple-
cubic lattice) are shown in Fig. 11;for comparison we also
included the result for d = 1. First, as one expects, the de-

cay constant decreases with increasing dimension. If in

UII. EFFECTIVE-MEDIUM THEORY
FOR THE DECAY CONSTANT

0

Returning to the model with Gaussian frequency distri-
bution, we now present an effective-medium theory for
the decay constant A, of the exponential polarization de-
ca/,

P(t}-exp( —A,t} as taboo, (7.1)

in the continuous model. It is a special advantage of this
theory that results can be obtained for higher dimensions
quite as simply as for the one-dimensional case. We note
that, since already in d =1 the asymptotic decay is
simple-exponential, the same will be true in all higher di-
mensions (for d &3 this property could already be de-
duced from Jensen's inequality; see Sec. II).

Here we want to restrict ourselves to the basic ideas of
the effective-medium theory; more details can be found in
the Appendix. The theory is introduced in the following
way: The asymptotic polarization decay (7.1) can formal-
ly be described as resulting from a random-walk process
on a homogeneous lattice=the "effective mediuin"—
~here on each site the local amplitudes experience an ex-
ponential damping of strength A, . To obtain an approxi-
mation for I, we replace the actual, completely disordered
lattice with configuration Ice„ I by a less disordered lattice,
which is constructed in the way that only the site r =0 re-
tains its random local rotation frequency cue while all oth-
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FIG. 11. Dependence of the decay constant A, in
P{t)-exp( —A,t) on the width a. The solid curves represent the
results of the effective-medium theory, i.e., the solutions of Eq.
(A12), for d =1,2, 3. The dashed line represents the result of
Gaussian theory for d =3; see Eq. (2.12}.
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analogy to the discussion for d =1 we consider the slopes
of the curves in Fig. 11, we obtain an estimate for the ac-
tual dependence of the decay constant on cr, i.e., for the
exponents P. In d =2 the theory yields values of P of
about 1.66 for cr=0. 1 and 1.82 for o=0.01, while in
d =3 the corresponding values are 1.86 and 1.99. As a
more detailed consideration for d =3 shows, the
effective-medium result A,(o) tends to A, =aocr for 0 «1,
with ao ——P(0, u =0)=1.516. . ., i.e., to the decay con-
stant one obtains in the Gaussian approximation; see Eq.
(2.12). While the ladder yields an upper bound for the ac-
ta~& decay constant, we expect -ee Our arguments
above —that the effective-medium thcery yields a lower
bound. We thus conjecture that in the limit cr « 1 the ac-
tual value should also be given by A=a, ocr In. the follow-
ing section we shall preient the results of numerical simu-
lations for d =2 and 3; it will be an interesting question
whether the qualitative features of this theory correspond
to the actual polarization decay.

VIB. RESULTS FOR d p2

In this section the numerical results of the spin depolar-
ization due to a random walk on a square and on a
simple-cubic lattice will be presented and compared with
theory. For simplicity, the numerical simulations have
been restricted to the case of the discrete random walk.
They have been performed in analogy to the second
method described in Sec. V for the one-dimensional ran-
dom walk, i.e., we estimated

Pg= exp — r
T

by aveiaging over a large number of n-step walks. Values
of rr between 2.0 and 0.01 have been considered. Figure
12 shows the decay of polarization for a typical value of o

in one, two, and three dimensions; it shows the slower de-

cay for higher dimension.
For the one-dimensional case the analytical treatment

based on the approximation (4.1) yielded a qualitatively
good description of the dependence of the decay constant
on cr. The analogous treatment seems not to be possible
for higher dimensions since much less is known about the
distribution lV„(s) of the number of distinct sites visited.
In Fig. 13 the numerically obtained decay constants A, are
plotted versus o", for comparison, the data points for d = 1

have been included. We first consider the case d =2: if
we assume a dependence A, 0:0~, the data show that the
value of P increases slightly with decreasing 0-, for the
smaller values, @=1.77. Remember that the effective-
medium theory yielded quite similar values for the ex-
ponent P.

For d =3 it is useful to compare the data with bounds
which can be given for the decay constant. The first one
is the trivial lower bound A, =o2/2, given by the depolari-
zation of the model where no revisiting effects are present.
An upper bound can be obtained from Jensen's inequality;
in analogy to (2.13),

P„&exp (8.1)

As den Hollander' has explicitly shown, for transient
walks (h„)-(2ao —1)n (n && I). Thus the expression on
the right-hand side of (8.1)—the Gaussian approximation
for P„decays asymptotically with the decay constant
A. =cr2(ao ——,), i.e., A, =1.016cr for the sc lattice in d =3.
Note that the difference to the analogous decay constant
in the continuous model, A, =cr uo [Eq. (2.12)], is given by

1Q
C:

~ ~
C$

~ 10
b4

Cl
CL
CM

)00

a 0 k

10 g 0
~ 0

0
8

1

1Q 1Q 10
"

width o
1Q

FIG. 12. Depolarization P as a function of the step number
n for random walks on a linear chain (d =1},on a square
(d =2), and on a simple-cubic (d =3) lattice. The width o was
0.1.

FIG. 13. Dependence of the decay constant in
P„-exp( —A,n) on the width o", results of simulations for ran-
dom waljt:s on a linear chain (1=1), on a square ( d =2), and on
a simple cubic ( d =3) lattice. The dashed line denotes the lower
bound A. =o~/2.
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FIG. 14. Dependence of the decay constant A, on the width cr

for random waOrs on a simple-cubic lattice (d =3): The lines
represent upper and lower hounds for the decay constant, see
(8.2); the upper bound is the result of the Gaussian theory.

o /2—in agreement with our considerations at the end of
Sec. V; see (5.4).

The decay constant, hence, must lie between these two
bounds, i.e.,

o /2(A, &o (ao ——,') . (8.2)

Figure 14 shows the validity of this relation for the nu-

merical result. Moreover, we see that for cr«1 the
values of A, approach the upper bound cr (ao ——,

' ). From
this behavior we conclude that for the continuous random
walk the decay constant approaches the value cr ao for
o «1, just as expected from the result of the effective-
medium theory.

IX. CONCLUSION

We have investigated the decay of phase coherence of
transverse spin rotation due to the random walk of the
spina on lattices with random rotation frequencies. In the
main part of this work it was assumed that these frequen-
cies are taken from a Gaussian distribution with mean
zero and width cr. The frequency modulation co(t) in-

duced by the random walk is characterized by a slow, i.e.,
algebraic, decay of correlations (c0(t)co(0) ), due to revisit-
ing effects which become especially important for the
low-dimensional lattices. In cI = 1 and 2 no finite correla-
tion time exists; thus the theory based on the Gaussian as-
sumption for co(t) heds to a nonexponential asymptotic
polarization decay, e.g., to a decay with an exponent pro-
portional to r in d =1. For comparison„ the "stan-
dard" (Gaussian) theory, where an exponential decay of
frequency correlations is assumed, leads to a simple-
exponential decay with decay constant a ~„where v, is
the correlation time; in the case of fast modulation
(cr~, &&1) the same result is obtained from the strong-
collision model.

The process ro(t) induced by random walks is actually

not a Gaussian process. For d = 1 we analyzed the role of
this assumption within the discussion of the more general
cumulant expansion for the depolarization P(t). The ap-
proximations based on this systematic expansion are ap-
propriate for the description of the initial decay of P(t),
but not for the asymptotic regime.

For the discrete random walk we were able to show that
the polarization decay is simple exponential already in
1=1—in contrast to the prediction of the Gaussian
theory. A theory which takes the distribution of the span
s of the one-dimensional walk into account elucidates the
basic physical reason for this result: The decay propor-
tional to the step number n in the exponent is due to the
contributions of walks which are "extended" compared to
the average walks with s oc n '~, i.e., which visit of the or-
der of n ' different sites (s cc n '). Our derivations indicate
that the specific properties of the one-dimensional random
walk lead to a characteristic dependence of the decay con-
stant A, on the width 0, A, =constXcr~; the result is valid
for values of o not exceeding unity. The exponent P=1.3
which has been obtained from numerical simulations is in
good agreement with the theoretical result P= —', .

Comparison between the depolarization P„of the
discrete and the depolarization P(t) of the continuous
random walk showed that the two quantities are not iden-
tical when the identification n =t/r for larger step num-
bers n is made. The faster decay of P(t) could be under-
stood by taking the actual distribution of waiting times
into account. However, for small values of cr the depen-
dence of the decay constant on 0 can be described by the
same exponent as in the discrete model. This is supported
by the result of the effective-medium theory for the one-
dimensional continuous random walk.

For d =1 also other examples of frequency distribu-
tions (with mean zero and width o ) were considered in or-
der to answer the question to which extent our previous
results depend on the particular choice of a Gaussian dis-
tribution. In the discrete model and for cr «1 there is a
certain range of step numbers n for each distribution
where exponential polarization decay similar to that in the
Gaussian case prevails. With decreasing O.„ the actual
asymptotic decay, which indeed depends on the particular
distribution, is shifted to extremely small values of the
depolarization. For instance, for the example of the sym-
metric exponential distribution we deduced an asymptotic
decay proportional to exp[ n'~ in~~ (—n)]. It appears to
be a specific property of the Gaussian distribution that it
leads to a simple-exponential decay for all large step num-
bers n.

In which way are the results on P„experimentally
relevant, e.g., the presence of an extended range with
simple-exponential decay for o « li Random walk of
particles takes place as a continuous-time process in vari-
ous physical systems. Hence the mean time ~ between
two transitions should be restored; o. substituted by o.~
and n by r/v. [The difference between P„and P(t) dis-
cussed above will not be considered further. ] The condi-
tion u « 1 of the discrete model translates into the condi-
tion cr~ && 1 of the continuous model. This condition may
be easily fulfilled by adjusting the residence time r of the
particles, for instance, by temperature variation. Further,
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small ~ corresponds to large step numbers n for fixed time
t H. ence the case o «1, n »1 of the discrete model can
be experimentally realized in the corresponding continu-
ous model.

We furthermore investigated the polarization decay for
random walks in two and three dimensions. In agreement
with the result of the effective-medium theory for the
square lattice, the dependence of the decay constant on o,
as it was observed in the simulations in d =2, could quite
well be described by A, =const Xo'~ with P= 1.77 in the re-

gime of smaller values of n.
In d =3 (simple-cubic lattice} the decay constant of the

effective-medium theory for the continuous random walk
equals the decay constant of the Gaussian theory, given by
A, =o ao (ao ——1.516. . . ), in the limit o «1. Our simula-
tions for the discrete random walk showed that the decay
constants approach the value of the corresponding Gauss-
ian theory at smaller values of the parameter o. We ex-

pect that for d & 3 the Gaussian theory is the appropriate
description in the case of fast frequency modulation.
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The quantity p (r —r ) is the probability for a particle at a
site r' to jump to the site r, e.g. , p (r r—')
= —,

' (5„+i+5„, i) for the one-diinensional simple sym-

metric random walk.
Let us now consider the effective medium itself, charac-

terized by an exponential damping of the local amplitudes
of strength A, on each site. For distinction we denote these
amplitudes by E(r, t). They are described by

E(r, t) = AE—(r, t)+ g p (r r')E—(r', t) E(r—,t), (A4)

with the initial condition E(r,O)=5„0. For A, =O this
equation reduces to the ordinary master equation for
the probability P (r, t). Thus one easily obtains
E(r, t)=exp( At)P(—r, t). It follows that the depolariza-
tion of the effective medium is given by [see (7.1)]

PE(t)= QE(r, t)=exp( —At) . (A5)

We now consider the lattice, where —compared to the ac-
tual problem —only the site r =0 retains its random rota-
tion frequency duo, while all other sites are considered to
belong to the effective medium. The depolarization am-
plitudes obey the following equation:

A(r, t) = —AA (r, t)(1 5„0)—in)OA—(0 t)5 p

APPENDIX EFFECTIVE-MEDIUM THEORY + gp(r r')A(r', t) —A(r, t) . — (A6)

In this appendix we show how the basic idea of the
effective-medium theory already presented in Sec. VII ac-
tually leads to the self-consistency equation for the decay
constant and how the results for d =1—3 are obtained.

First, we consider spin particles performing a
continuous-time random walk on an infinite lattice with a
given frequency configuration [ro, I, where the initial con-
dition is that at time t =0 all particles start on site r =0,
and we introduce the average spin polarization of these
particles, denoted by P(„}(t), where we explicitly indicate

the fixed frequency configuration. This quantity may for-
mally be written as

P(„}(t)= g A (r, t) .

where the quantities A (r, t), which we call "local depolari-
zation amplitudes, " contain the contributions of all parti-
cles which are at site r at time t Averaging o.ver all fre-
quency configurations yields the depolarization P(t), i.e.,

Now the true depolarization, determined by (A2} and
(A3), is approximated by {g„A (r, t))„,which still de

pends on the constant A.. Asymptotically, P (t } should be
given by Pz(t), which itself is characterized by I,; thus,
this approximation leads to the following self-consistency
equation:

This equation yields the decay constant A, .
Let us return to (A6). Laplace transformation,

A(r, u)= f exp( ut)A (r, t)dt, —

and Fourier transformation,

Aq(u) = g exp(iqr)A(r, u),

of the amplitudes A (r, t) yields, with (A4) and the analo-
gous transformations of the quantities E (r, t),

P(t)={P(„}(t})(„)= QA(r, t)
r

(A2)
Aq(u) =Eq(u)+(A, —iso)A(O, u)Eq(u) . (A8)

The amplitudes A (r, t) can be described by a system of
differential equations, in analogy to the master-equation
formalism for the elementary random-walk probabilities
P{r,t). The derivation of these equations is straightfor-
ward, and one obtains

A(r, t)= ice, A(r, t)+ g—p(r r')A(r', t) A(r,—t), —
r'

{A3)

where the initial condition is given by A(r, t =0)=5„o.

Fourier backtransformation gives

A(r, u) =E(r,u)+(A, —irido)A(O, u)E(O, u),

which allows the determination of A(O, u):

A (O, u) =[E '(O,

u)+italo

~] (A10)

{Aq 0(u) )„,=Eq o(u) as u ~0,

Since the self-consistency equation (A7) can be formulated
in the Laplace domain as
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it is equivalent to

((A, —itoo)A (O, u) )„=0
[see (AS)], and thus equivalent to (A(r, u)) =E(r,u) [see
(A9)]. With the choice r =0, i.e.,

( A(r =0, u)) =E(O,u) as u~0,

we obtain, with (A10),

([E '(O, u)+itoo —A] ')„,=E(O,u) as u~O, (Al 1)

which only involves the quantity E(O,u). This quantity is
simply given by P(0, u +A, ), the Laplace transform of the
probability P (0, t) with shifted argument, since
E (0, t) =exp( —A,t)P (0,t). Taking the average in (A 1 1) for
u =0, we obtain the final form of the self-consistency
equation:

~1/2
exp[B (A, )]erfc[B(A,)]=P(0,A, ), (A12)

2tT

where B(A,)=[P '(O, A, ) —A, ]/2o . This equation can be
numerically solved when P(O, u) is known.

In d =1, P(O, u) is given by [u(u+2)] '; see Eq.
(3.6). In the case of the square lattice ( d =2), this quanti-

ty can also be written in closed form:

P(O, u)=(1+u) ' —K[(1+u) ], (A13)

where K is the complete elliptic integral of the first kind;
for the numerical calculation appropriate approximations
and/or expansions can be applied. P(O, u) cannot be
written in closed form for d =3, but with the appliction
of two different series expansions given for the sc-lattice
Green function [Eq. (7) in Ref. 29, Eq. (5.24) in Ref. 30],
P(O, u) can be calculated with sufficient accuracy for all
values u ~0 and (A12) can be solved for all interesting
values of o.
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