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A theoretical description of the electronic structure of defects in semiconductors is presented that
emphasizes the local bonding environment of the defect. For quantitative results, correlated
ab initio wave functions, within the generalized valence-bond method (GVB), are used in describing
defect properties. Explicit, detailed calculations are presented for the example of the substitutional
nitrogen defect in silicon. The language of bond pairs, lone pairs, and dangling bonds—concepts
well defined within the context of the GVB wave functions used here—is found to be a natural
language for the discussion of simple defect behavior. The heretofore obscure driving force for the
observed C3, ground-state geometry for Si:Nyg; is revealed to derive from local bonding considera-
tions: The nitrogen atom prefers to form only three covalent bonds and have one lone pair, as in
ammonia; this naturally results in a Cs, ground state. Calculations confirm this description, but the
arguments are not dependent on them. The crucial role of electronic correlation, neglected in
mean-field approaches, for the description of the character of the local electronic structure of a de-
fect is detailed. Comparisons are made between the results of correlated GVB and mean-field
Hartree-Fock calculations which illustrate the importance of electronic correlation effects. The
wave functions obtained are then used to calculate the hyperfine coupling parameters, from valence
Mulliken analyses and directly from all-electron calculations. Agreement with the very detailed re-
sults of electron paramagnetic resonance experiments is quite good and the values obtained are in-
sensitive to minor alterations to the model. The arguments used for the nitrogen-impurity case are
not species specific; the behavior of a large class of defects can be qualitatively described by the judi-
cious application of well-established local chemical and physical concepts. A few representative sys-
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tems are discussed qualitatively to illustrate the usefulness of the simple concepts presented here.

I. INTRODUCTION

The understanding and description of the properties of
defects in semiconductors have a long and venerable past.!
Even with the advent of the ready availability of large-
scale computing power, theory still lags far behind experi-
ment in the modern era of semiconductor science. While
the reigning paradigm for the description of the electronic
structure of a perfect crystal such as silicon is band
theory, the breakdown of Bloch’s theorem upon the intro-
duction of a defect renders it an inappropriate description
in those systems. For those defects which pose only a
minor perturbation to the crystal potential, the shallow-
level defects with energy levels near the band edges,
effective-mass theories’ have proven to be an adequate
description of the electronic states (except for as yet un-
resolved discrepancies in the description of the ground
state where the wave function has its greatest amplitude
nearest the defect nucleus®). The large body of defects in
semiconductors, particularly those of technological and
fundamental interest (carrier traps, recombination centers,
carrier lifetime control centers), are “deep-level” defects
with electronic levels farther from the band edges. It is
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these defects that have proven the greatest challenge to
the theorist.! The challenge lies in treating a defect in an
otherwise perfect host when the defect potential presents a
strong perturbation to the crystal potential and hence the
Bloch states are locally a poor basis with which to
describe inherently local states. The problem is further
complicated by the necessity to consider atomic relaxa-
tions that can be energetically significant. The latter ef-
fect makes the theoretical definition of an electrical “lev-
el” in the gap not such a straightforward issue. Consider-
ing the difficulties that need to be surmounted, it is no
surprise that a general censenus has yet to emerge on the
theoretical treatment of these systems. Recent theoretical
investigations of the electronic structure of defects in sil-
icon can be divided roughly into two broad classifications:
those that employ cluster methods, stressing the local en-
vironment of the defect, and perturbative methods which
start with the perfect crystal one-electron band states, usu-
ally contained in a perfect-crystal Green’s function.
First-principles self-consistent Green’s-function calcula-
tions have recently enjoyed much acclaim due to the
development of the formalism and successful implementa-
tion of techniques®~° that allow the calculation of total
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energetics in defect systems. One application of the
method to a study of interstitial aluminum in silicon® dis-
cussed a possible migration path and proposed a new
mechanism to account for the experimentally observed
enhanced migration. In another study, Car et al.® per-
formed a set of calculations on the silicon self-interstitial
in an attempt to explain its apparently athermal migra-
tion.

To make the calculations tractable, these methods usu-
ally employ the local-density approximation’ (LDA)
within density-functional theory.! A small cluster of
atoms is treated explicitly while the electronic states are
coupled to bulk band states by the Green’s function. The
LDA has been used with success for calculating ground-
state properties for such common semiconductors as sil-
icon and germanium.”!® The lattice constant is typically
reproduced to within 1% of the experimental value, the
bulk modulus to within 5—20 %, and the cohesive energy
to within 15—309%. Recently, however, the inadequacy
of the LDA in reproducing the excited-state band struc-
ture has come to light,'°~!? the so-called “band-gap prob-
lem.” Calculations using the LDA consistently underesti-
mate the band-gap energy, typically by 30—50 %, so that
the silicon LDA gap is approximately half that of experi-
ment'! while the germanium LDA gap is near zero.'?
Since the ground-state electronic structure of defect sys-
tems in Green’s-function calculations is intimately depen-
dent on the proper description of the perfect-crystal band
states, this shortcoming has serious implications and
much effort has been expended in the elucidation of the
source of this problem and its possible remedies.!* One
option is simply to rigidly shift the conduction-band-state
energies to match the experimental gap through a “scis-
sors operator”!# before the Green’s function is calculated.
Although not a panacea, it does allow work to progress on
these defect problems until there is a true resolution to the
band-gap problem.

The cluster methods attempt to simulate the defect en-
vironment by treating a limited number of atoms sur-
rounding the defect. The first of these is the “defect-
molecule” calculation of Coulson and Kearsley'® for the
diamond vacancy. They used the sp® dangling-bond orbi-
tals of the vacancy to construct a configuration-
interaction (CI) calculation to evaluate the lowest-energy
states of the neutral vacancy. This first treatment was
neither variational nor did it take into account lattice re-
laxations, but it has served as a good conceptual model for
future studies. A more ambitious attempt was that of
Messmer and Watkins,!® who within extended Hiickel
theory (a parametrized molecular-orbital method) treated
the vacancy and the nitrogen substitutional defect in dia-
mond, a system analogous to the subject of the present
work, using a large cluster to simulate the defect environ-
ment. As in silicon, substitutional nitrogen in diamond is
observed to be displaced trigonally from the high-
symmetry tetrahedral geometry.'” The calculation was
able to reproduce the proper ground-state geometry,
namely a [111] displaced nitrogen, but attributed the
cause of the distortion to a Jahn-Teller instability'® in the
calculated degenerate ground state of the tetrahedrally
symmetric defect system. Subsequent studies'®~2' deter-
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mined that the ground state for the high-symmetry T, de-
fect system is nondegenerate, invalidating the appeal to
the Jahn-Teller theorem to account for the existence of a
broken-symmetry ground state.

Theoretical models of defect systems use mean-field
theory almost exclusively. Hartree-Fock theory and its
parametrized derivatives, which by definition include no
electronic correlation effects, have been the approxima-
tions of choice for cluster methods due to their relative
computational simplicity. Only rarely are correlation ef-
fects considered, such as in the simple Coulson and
Kearsley model'® or the more sophisticated study of the
low-lying covalent states of the neutral silicon vacancy of
Surratt and Goddard.?> Most of the remaining methods
employ various local-density approximations in their cal-
culations to account for exchange and correlation. An
essential part of such a LDA calculation involves the
self-consistent solution of a one-electron Schrodinger
equation, the exchange and correlation being included
through a one-electron potential. This exchange-
correlation potential, dependent on the local electron den-
sity, is a mean-field potential.

For these mean-field methods, electrons are distributed
pairwise (for non-spin-polarized cases) into usually delo-
calized one-electron orbitals. The delocalization of the or-
bitals, often dictated by the requirements of symmetry,
makes it very difficult to discern the nature of the elec-
tronic state, i.e., the nature of the bonding is obscured by
the symmetry-required delocalization of the one-electron
orbitals and one is frequently left with little more than the
symmetry of the state, orbital eigenvalues, and the charge
density from which to infer information. Interpretation
of the wave function by investigating the forms of the or-
bitals of such wave functions is usually ignored.

For many years, the concepts of localized bonds in mol-
ecules have been found to be extremely useful and power-
ful tools in the interpretation and prediction of molecular
structure.”’ The fundamental principles so useful in
understanding molecules should be no less valid when ap-
plied to solids and certainly a great deal of insight could
be gained from the judicious application of simple chemi-
cal and physical concepts. For example, the nature of the
driving force for the trigonally distorted ground-state
geometry of substitutional nitrogen in diamond or silicon,
attributed to either an unspecified strong chemical-
rebonding effect in a self-consistent Green’s-function
study of on-center nitrogen in diamond® or to a pseudo-
Jahn-Teller effect in a recent molecular-orbital cluster cal-
culation of nitrogen in silicon,?! is surely due to nitrogen’s
tendency to form only three bonds and leave two electrons
in a lone pair.2* This viewpoint not only suggests that the
nitrogen will distort, but it also predicts the direction of
the observed distortion. Computational studies which em-
phasize energetics and neglect interpretation of the wave
function lack this predictive power, and must search the
potential energy surface to determine whether a distortion
from tetrahedral symmetry will occur and the direction
that distortion is likely to take.

Consider the two cases of the nitrogen and oxygen sub-
stitutional defects in silicon. Within a one-electron pic-
ture, trigonal (111) and tetragonal (100) symmetry-
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lowering distortions need to be considered on an equal
footing for both cases; there are no a priori theoretical
grounds for the preference of one over the other. Nitro-
gen is observed to distort trigonally?® from the tetrahedral
geometry while oxygen has a ground-state geometry
tetragonally distorted from the tetrahedral geometry.?%?’
After investigating both possible distortion modes, the
molecular-orbital (MO) theory is able to reproduce the
correct behavior for both the nitrogen and oxygen defect
systems,?! but is unable to explain why the two cases
should be different. What appears to be a mystery when
viewed from conventional one-electron approaches
emerges from a more bond-oriented picture (rather than
MO or band-oriented) to be a natural consequence of the
chemical nature of the impurities involved: oxygen will
form two bonds instead of three and will move off in a
(100) direction so as to accommodate this tendency.
This point is elaborated upon in later sections.

The approach that we apply to address the deep-level
defect problem is the perfect-pairing form of the general-
ized valence-bond (GVB-PP) method.® The GVB-PP
method is an ab initio approach in which the forms of the
orbitals are obtathed from fully-self-consistent calcula-
tions. It goes beyond mean-field theory to include elec-
tronic correlation (many-body effects) in a systematic and
well-defined fashion. The incorporation of correlation
into the calculation proves very important in the qualita-
tive interpretation of the resulting wave function and may
lead to qualitative differences in the physics obtained
from the calculations.

Unlike the doubly occupied delocalized orbitals that re-
sult from mean-field calculations, the incorporation of
correlation in the GVB-PP calculation variationally
causes the GVB-PP orbitals to localize into structures
readily identified as bond pairs, lone pairs, and dangling
bonds, concepts ill defined in a mean-field theory. In
mean-field theories, any unitary transformation of the oc-
cupied orbitals, changing their shape and therefore the
description of the bonding, leaves the energy invariant. In
this correlated theory the forms of the orbitals are varia-
tionally determined using an energetic criterion; changing
their shapes will change the energy. This allows for a
unique interpretation of the wave function not possible in
an uncorrelated mean-field approach. The qualitative
difference in the resulting wave functions results from the
incorporation of correlation. The predictive power af-
forded by such an analysis of the wave function makes
this method ideally suited to the description of a large
class of defect systems such as those mentioned above.

The purpose of this paper will be twofold: First, to il-
lustrate the usefulness of this conceptual viewpoint and
secondly to present a detailed application to a particular
example, the nitrogen substitutional defect in silicon, us-
ing a method that captures the essential features needed to
make contact with that viewpoint. The outline of the
remainder of the paper is as follows. In the next section
we provide the computational details of the calculations.
Section III will expand on the nature of the GVB-PP
wave function and its properties in order to make more
familiar the concepts crucial to the development of the ar-
guments we present. The method we apply requires the
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use of a cluster approximation. Given the obviously im-
portant limitation of not treating the host lattice explicit-
ly, we devote Sec. IV to the justification of the validity of
the cluster approach, the development of the particular
cluster model we use, and the tests of how well the cluster
model chosen reproduces bulk characteristics. The results
obtained are compared with alternative cluster-
termination methods suggested by other investigators.
The results for substitutional nitrogen in silicon are
presented in Sec. V. The discussion of Sec. VI reviews the
results, discusses the generalization of the method to other
defect systems, and assesses the benefits and the limita-
tions of the current approach. We present our conclusions
in Sec. VIL

II. COMPUTATIONAL DETAILS

A. Cluster model

The model used to represent the local environment of
bulk silicon is a SisH*;, cluster, depicted in Fig. 1. It con-
sists of the central silicon, its four tetrahedral nearest-
neighbor silicon atoms, and a set of twelve terminating
atoms to saturate the dangling bonds. The terminating
“H*” atoms are hydrogen atoms with basis sets (Sec. II C)
specially modified to simulate the presence of the absent
host crystal. Our defect models then simply involve re-
placing the central silicon atom with the desired impurity,
e.g., the substitutional nitrogen defect is modeled by a
NSi,H*,; cluster. The Si-Si separation used is 2.35 A with
the H* located 1.73 A from the silicon atoms for all but
the calculations which study the effect of nitrogen dis-
placement in a rigid cage. In that case, the Si-H* distance
used is 1.50 A.

B. Wave functions

All the calculations employ ab initio methods in which
the forms of all the orbitals are solved for self-

@ = TERMINATING ATOM

FIG. 1. The SisH*|, cluster used to simulate the environment
about a single lattice site.
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consistently. The ten core electrons (1522s22p®) of the sil-
icon and phosphorus atoms are replaced by effective po-
tentials?® (ab initio pseudopotentials), except in those cases
where hyperfine calculations require detailed information
about the wave function near the nucleus; in such cases
the core electrons are included in an all-electron calcula-
tion. The results presented include Hartree-Fock (HF)
and GVB perfect-pairing calculations.?® For substitution-
al nitrogen, the self-consistent solution of the GVB equa-
tions yield wave functions of symmetry lower than the nu-
clear Hamiltonian. For fully quantitative results in this
event, a total wave function having the proper symmetry
is constructed by taking a linear combination of the bro-
ken symmetry GVB-PP solutions. This approach of mix-
ing nonorthogonal wave functions was first applied in the
case of molecular systems and called the resonating gen-
eralized valence-bond method (R-GVB),* so labeled be-
cause it represents the theoretical embodiment of the
chemical idea of resonance. These wave functions will be
referred to as R-PP below in order to be more specific
about the component wave functions of the total wave
function.

For the familiar case of the HF (or MO) wave function,
the electrons are distributed in a pairwise manner into
orthogonal one-electron orbitals ¢; such that the resulting
wave function can be written as a single Slater deter-
minant. The HF wave function for the defect cluster
described above, with either 32 or possibly 33 valence
electrons, can be written as

Wpp=2[®,(1,2) - - - D14(31,32)¢,(33)a(33)], (1)
|
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where .7 is the antisymmetrization operator and

P,(2i —1, 20)=¢;(2i —1)¢;(20)a(2i —1)B(20) . ()

This is the simplest form of wave function used in this
study.

Within the perfect-pairing form of generalized valence-
bond theory, the restriction that two electrons be placed in
one orbital is lifted. The form of the wave function Wpp
(we will use the labels GVB-PP and PP interchangeably)
is similar to that of Wyg in Eq. (1), except that each of the
two electrons in a pair are allowed to have their own orbi-
tal (neglecting normalization):

(I),- =[¢'i,l( 1 )z[;,-,z(2)+1/1,-,2( 1 )Il}i,l(z)]a( 1 )B(Z) ’ (3)

where the perfect-pairing orbitals ¥; ; and y; , overlap and
are coupled into a singlet spin state. The special case in
which the spatial functions ¥; ; and ¢; , are forced to have
unit overlap is a possible solution for this wave function;
in this case Eq. (3) reduces to Eq. (2) and the HF result is
obtained. Ordinarily, though, the two electrons take ad-
vantage of the additional variational flexibility to “corre-
late” their motions and thereby reduce the repulsions be-
tween them.

The orbitals of the GVB-PP calculation, overlapping
within pairs, are kept orthogonal between pairs (the
“strong-orthogonality” constraint). Computationally, it is
more convenient to transform the PP orbitals into an
orthogonal natural orbital representation:

i (DY 2(2)+ 0, (DY 1(2) =5 {[Ai58i6(1) + A aia (DA 50 5(2) —A; 00 0 (2) ]+ (1)(2)]
=As8i6(1;4(2)—Aladia(1;a(2) @)

where ¢; , and ¢; , (the natural orbitals of pair i) are now
orthogonal to each other (and to all other natural orbitals).
A GVB-PP wave function with N pairs can be written as
a product of N of these terms in a CI expansion. Hence,
the calculation is a self-consistent multiconfiguration cal-
culation with 2V configurations. Mean-field calculations
consist of only one configuration and assign pairs of elec-
trons to particular orthogonal orbitals. While formally a
multiconfigurational method, GVB-PP also retains a
single-particle interpretation within the nonorthogonal PP
orbital representation of Eq. (3) or (4), where one electron
is assigned to each orbital.

For the cluster calculations, two levels of perfect-
pairing correlation were used: those in which all 16 pairs
of valence electrons were correlated using 16X2=32
natural orbitals, denoted PP(16/32), and a simpler wave
function, denoted PP(4/8), which correlates only the four
pairs of electrons (with two natural orbitals each) that
have self-consistently localized into orbitals that can be
associated with the four pairs of electrons about the nitro-
gen. The 24 silicon-terminator bond electrons are treated
at the Hartree-Fock level in this situation. For varying
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geometries, the PP(4/8) results gave approximately the
same relative energies as the PP(16/32) results. Thus, for
computational simplicity, the PP(4/8) wave function is
the one primarily used.

From the R-PP calculations, we obtain the total wave
function

Wrpp= > c;¥pp s (5)
I

from the perfect-pairing wave functions ¥; (dropping
the PP label) by solving the secular equation
det|H—ES| =0, where H;;=(¥;|H|¥;) and
S;;=(W¥,;|¥,;) gives the overlap matrix. Since the wave
functions ¥, are, in general, nonorthogonal, this is a non-
trivial calculation and therefore only the coefficients ¢,
are solved for, i.e., the orbitals of the ¥; are not reopti-
mized. In a sense, this may be thought of as simply a CI
among nonorthogonal basis states. Such a calculation was
performed for the broken-symmetry PP solutions for the
nitrogen impurity cluster. Again, for computational sim-
plicity, only the PP(4/8) wave functions were used as the
basis states for this calculation, resulting in R-PP(4/8)
wave functions.
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C. Basis sets

Standard valence double-zeta (VDZ) or full double-zeta
(DZ) Gaussian basis sets®! were used on all atoms. The
terminating H*-atom basis function consisted of three s
Gaussians contracted into a single Slater-function-
simulating function,’!® denoted (3s/1s), with a scale fac-
tor of 0.5154. For the nitrogen atom we used a
(95 5p /3s 2p) VDZ basis set*'® in a majority of the calcu-
lations and a (9s5p/4s2p) DZ basis set’® to better
describe the Fermi contact term in the hyperfine calcula-
tions. The silicon and phosphorus cores were usually re-
placed by effective potentials and a (3s53p/2s52p) basis
used to describe the valence electrons.”’ In the cases
where it was necessary to treat the core electrons explicit-
ly, a DZ (1157p/6s4p) basis set was used.’'® For real
hydrogen atoms, a (55 /2s) basis set’!'® with a scale factor
of 1.2 was used. In some calculations, basis functions of
higher-angular-momentum (polarization functions) or
more diffuse Rydberg functions were added to the basis
set. They consisted of single Gaussians; the type of func-
tion and the values of their exponents are presented in
Table I.

III. THE NATURE OF THE CORRELATED
WAVE FUNCTION

What distinguishes the current approach from most
previous impurity and defect studies in semiconductors is
the explicit inclusion of electronic correlation (many-
body) effects. The only previous attempts to incorporate
correlation effects have involved simple models such as
the defect molecule of Coulson and Kearsley. The GVB
method, however, has been applied with considerable suc-
cess to semiconductor surface problems.’>~3 Although
Surratt and Goddard?? applied a related CI method to the
silicon vacancy, such an approach was not pursued fur-
ther for bulk defect studies. The current study is the first
that attempts to present a correlated wave-function ap-
proach to treat point defects in general. A simple exam-
ple of the properties of a perfect-pairing wave function
will clarify the principles which will be used later.

A. The hydrogen molecule and a bonding
pair of electrons

The simplest system for discussing the effect of corre-
lating a pair of electrons is the hydrogen molecule. In the
MO wave function Wy, two electrons are placed in the
bonding orbital ¢, one spin up (a) and one spin down

(B):

TABLE 1. Basis-function exponents for polarization and

Rydberg functions.
Basis-function type
Polarization Rydberg

Atom d s p

N 0.8 0.028 0.025

Si 0.3247 0.017 0.014

P 0.020 0.027
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Yyp=[$;aB] , (6)

while in the perfect-pairing wave function, each electron
occupies its own orbital:

Ypp=o[(Y]¢;)(aB—Ba)]
=[P +vlvHaBp)] . 7

Using a single-zeta basis, Fig. 2(a) presents the resulting
H-H binding curves for the two wave functions, ¥y¢ [Eq.
(6)] and Wpp [Eq. (7)], as a function of internuclear separa-
tion. Note that as the internuclear distance increases, the
difference in energy of the two methods increases, as
shown in Fig. 2(b). The PP wave function dissociates to
the correct limit while the HF one does not. The source
of the error is well known and is simply illustrated by
viewing the orbitals generated by the HF and PP wave
functions as the atoms are separated (Fig. 3). Figure 3(a)
presents the contour plots of the Hartree-Fock one-
electron orbital ¢,, seen to delocalize onto both atoms at
all separations. The contour plots of Figs. 3(b) and 3(c)
show the two PP bond orbitals i; and 1, of the PP wave
function and demonstrate that this PP wave function ap-
proaches the correct bond-dissociation limit, H+H?, of
noninteracting atoms as infinite separation is approached.
One orbital, 1, localizes predominantly on the left-hand
atom, while the other orbital, ¢,, localizes predominantly
on the right-hand atom. This allows us to use the
valence-bond diagram of Fig. 3(d) to schematically
represent the PP wave function for the hydrogen mole-
cule.

B. Localization and transferability of orbital pairs

The added computational complexity of the GVB-PP is
offset by the conceptual advantages gained from the use
of the localized orbitals that result from the inclusion of
electronic correlation in the wave functions. Take, for ex-
ample, the case of the ammonia molecule. Intuitively, one
expects to see three nitrogen-hydrogen bonds and a nitro-

60

PP (1/2)

ENERGY (eV)
b
=

Il 1
02 06 1.0 1.4 1.8 22 26 30
Ru-n (R)

FIG. 2. Energy curves for a H—H bond using a simple single
s basis function on each atom. (a) Bonding curves for the
Hartree-Fock and GVB perfect-pairing wave function. (b) The
difference of the two results, illustrating that the correlation er-

ror in a bond increases with increasing separation.
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FIG. 3. The contour plots of the orbitals of the self-

consistent Hartree-Fock and perfect-pairing wave functions at
three successive distances: 0.40, 0.85, and 2.00 A @ ¢, of the
Hartree-Fock wave function; doubly occupied. (b) and (¢) ¥
and ¢, of the perfect-pairing wave function. Each is occupied
by a single electron and the two are singlet coupled. (d)
Schematic depiction of the perfect-pairing wave function.

gen lone pair, as shown by the valence-bond diagram of
Fig. 4(a). For the perfect-pairing calculation, there are
four pairs of valence electrons which can be correlated to
obtain a PP(4/8) wave function. Upon calculation, the PP
orbitals localize and three pairs describing three
equivalent N—H bonds result, a representative one being
shown in Fig. 4(c), and the single lone pair of Fig. 4(d)
emerges. The wave function has self-consistently adopted
the form represented by Fig. 4(a), as valence-bond ideas
would suggest, though it is not a priori required that this
be the case. There is often a one-to-one correspondence
between the GVB-PP wave function for a system and a
simple valence-bond diagram. Extending this picture to
the water molecule, one expects to find two bonds to hy-
drogen atoms and two lone pairs as in the depiction of
Fig. 4(b). The self-consistent PP(4/8) calculation pro-
duces orbitals (not shown) that indeed represent a one-to-
one correspondence with the valence-bond diagram. The
orbitals of the lone pairs of H,O resemble those of the sin-
gle lone pair of NH; and the O—H bond-pair orbitals
resemble their counterparts in NH;, though perhaps they
are more polarized. The qualitative description of the
bonds is transferable between these systems.
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FIG. 4. Valence-bond representation of simple molecules. (a)
The schematic depiction of a perfect-pairing wave function for
ammonia. The shaded orbitals are plotted in (c) and (d). (b) The
schematic depiction of the perfect-pairing wave function of the
water molecule. Two lone pairs (not shown) which resemble the
lone-pair orbitals of (c) and two O—H bonds [resembling the
N—H orbitals of (b)] result from the perfect-pairing calculation.
(c) The two perfect-pairing orbitals of one of the three symme-
trically related nitrogen-hydrogen bond pairs of a self-consistent
PP(4/8) wave function. The other two bond pairs are obtained
by a C; rotation about the z axis (vertical). (d) The in-out corre-
lated lone pair of the same wave function.

The transferability of bonds and bonding behavior will
play a key role in the arguments we will make below, but
first we will illustrate how it can be useful in the develop-
ment of a model of the silicon lattice. Consider the se-
quence of model systems SiH*,, Si,H*;, and Si(SiH*;),.
The “hydrogen” atoms H* used are our specially modified
terminators, located 1.73 A from silicon atoms. Progres-
sively, we include more and more silicon atoms in the dia-
mond structure and correlate each pair of valence elec-
trons. The three systems have different numbers of atoms
and electrons, and belong to two different point-group
symmetries. The canonical orbitals that result from a
mean-field calculation (HF, MO, or any one-electron cal-
culation) will show little if any resemblance among the
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three systems. This is due to the tendency of these orbi-
tals to delocalize over the entire system, compatible with
the molecular symmetry. The PP orbitals of the three
systems, on the other hand, bear a striking resemblance to
one another. The orbital contour plots of selected orbitals
of these systems can be found in Fig. 5. For the SiH";
moiety, we obtain four equivalent silicon-terminator
bonds. The disilane-analog PP(7/14) calculation produces
six equivalent silicon-terminator bonds and a silicon-
silicon bond. The last system produces four equivalent
Si—Si bond pairs and twelve Si—H* bond pairs in a
PP(16/32) calculation. The Si—Si bond-pair orbitals of
Si,H* and SisH*,, (see Fig. 5) are very much alike, even
though in one case the silicon atoms are coordinated with
three terminator atoms, while in the other case one silicon
atom is coordinated with three other silicon atoms. This
similarity results because of the very similar environments
which the electrons of these two bonds experience. The
silicon atoms are all fourfold coordinated into covalent
bonds. Hence, it is only natural to expect that the form of
the localized bond orbitals of two Si—Si bonds should
resemble one another. The Si—H* bond orbitals of all
three systems are also almost identical to each other, the
orbitals for the two larger systems being shown in Fig. 5.
What is more surprising at first glance is the degree to
which the silicon-terminator bond orbitals resemble the
silicon-silicon bond orbitals, particularly near the silicon
atom. However, given that the H®s have been modified

FIG. 5. Illustration of the transferability of bond pairs be-
tween different systems that have similar local environments.
Considered are the perfect-pairing orbitals of three different
clusters: (a) SiH";, (b) Si;H%s, and (c) SisH*;,. The schematic di-
agrams serve as a summary of the basic features of the many-
electron wave function. (d) Contour plots of the Si—Si and
Si—H" bond orbitals for the Si,H*s system, shown as the shaded
orbitals of (b). (e) Contour plots of the Si—Si and Si—H* bond
orbitals for the SisH*|, system, the shaded orbitals of (c). We
note that the Si—Si bond orbitals of the two systems are very
similar, as are Si—H* bond orbitals for all three systems [the or-
bitals of (a) are not shown].
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to simulate silicon atoms, this is perhaps not too surpris-
ing after all, but further serves to confirm the approach
(described below) which determined the terminators. That
these bond orbitals seem almost perfectly transferable be-
tween these systems indicates that the local behavior and
properties of these localized bonds should also be transfer-
able.

That the transferability of bonds and bond properties is
not just idle speculation is supported by drawing on ther-
mochemical data to compare bond energies in the limits
of bulk and molecular systems. The experimental binding
energy of the silicon lattice amounts to 4.68 eV/unit cell
or 2.34 eV/bond.>® The heats of atomization of silane and
disilane are 13.18 and 21.79 eV, respectively.*® The first
figure implies 3.29 eV/Si—H bond, and subtracting six of
these from the second figure (six Si—H bonds) leads to a
Si—Si bond energy of 2.02 eV, or only ~0.3 eV /bond dif-
ferent from that of bulk silicon. Table II presents the re-
sults of analogous arithmetic for a few elemental
tetrahedral semiconductors. The energy of formation of
diamond, bulk silicon, and bulk germanium are all rather
well approximated. If instead of using thermodynamic
data to estimate®’ the H;C—CHj bond strength, spectro-
scopic information pertaining to H;C-CH; dissociation is
used to obtain the bond strength, the agreement between
the bulk bond energy and the molecular bond energy be-
comes even more pronounced. While the cohesive energy
of the diamond lattice implies a C—C bond energy of
3.67 eV/bond, the spectroscopic dissociation of ethane
into two CH; fragments yields a C—C bond energy of
3.64 ev.®

The bond energy is not the only characteristic of bonds
that is common between the bulk and molecules. The en-
ergy of stretching those bonds is similar in the bulk and
the respective H;X-XH; molecules. The X-X force con-
stant from the H;X-XH; molecules and the values derived
from the bulk moduli for diamond, silicon, and germani-
um*® agree to within 7—25%. The lattice constants for
diamond, silicon, and germanium®® can also be approxi-
mated quite well (to within 1—2 %) by using the values
for X—X bond distances in the respective H;X-XH; mole-
cules.® In the case of silicon, estimates of the bulk
ground-state lattice constant, bond force constant, and
cohesive energy can be obtained with an accuracy of 1%,
7%, and 14%, respectively, by using values taken from
the H;Si-SiH;3 molecule. Thus, the properties of these lo-
cal bonds do appear to be transferable between different
systems. We will take advantage of this transferability of
bonds and bond characteristics, demonstrated by this
analysis, to develop our model for the bulk and defect sys-
tems.

TABLE II. Comparison of bulk and molecular bond energies
(eV) for simple semiconductors.

Element Carbon Silicon Germanium
Lattice bond 3.67 2.34 1.94
H;X—XH; bond 3.36 (3.56%) 2.02 1.83

2Bond energy when hydrogens are replaced by chlorines.



34 VALENCE-BOND THEORY OF OFF-CENTER IMPURITIES IN SILICON: ... 2539

IV. THE CLUSTER APPROXIMATION

A. Qualitative discussion

The similarity of orbitals among different systems dis-
cussed above is a consequence of the similarity of the lo-
cal environments. Thus, the PP wave function for the
Si(SiH*;), cluster can be qualitatively described in terms
of the orbitals of the PP wave function for the Si,H*q
cluster. Extrapolating from the SiH*,, Si;H*, SisH*;, se-
quence through progressively larger structures, the elec-
tronic ground state for a tetrahedral semiconductor such
as silicon would be well described by a many-electron
wave function consisting of localized correlated valence-
bond orbitals between neighboring silicon atoms, much
like the bond orbitals associated with the silicon-silicon
bonds described above. It was Slater*® who first suggested
that such an approach would be appropriate for the
description of the electronic structure of a covalent solid
such as silicon. The formalism for just such a description
of an infinite solid by a multiconfigurational method such
as GVB within the perfect-pairing approximation has
been developed,*! but has yet to be implemented. The hy-
pothetical infinite solid many-electron wave function, con-
centrating on the local vicinity of the silicon atom in Fig.
1, can be written as

Youk=L[ - ®,PpPcPp- -], (8)

where the perfect-pairing orbitals ¥4, and ¢ 4, of ®, cor-
respond to the two orbitals which make up the localized
covalent single bond from the central silicon atom to a
neighboring silicon atom.

There exists a fundamental difference in the outlook be-
tween a mean-field description and a correlated electron
approach such as the generalized valence-bond theory
description of the solid. The conventional mean-field ap-
proach takes the one-electron band states as the primary
focus in the discussion of solid-state electronic structure
and bonds are, at best, inferred. In a correlated wave-
function approach such as valence-bond theory the bonds
of the solid are the primary focus and the bands are in-
ferred. It is not necessary within this approach to repro-
duce the band structure in order to achieve a proper
description of the ground state of a semiconductor. In a
correlated approach such as the GVB-PP, which results in
localized overlapping bond orbitals between neighboring
atoms, the total wave function for the system, Eq. (8), has
all the physically required symmetry properties, i.e., the
individual electronic orbitals need not satisfy Bloch’s
theorem. The customary use of the Bloch states in the
description of the ground state is a mathematical by-
product of the mean-field approximation and is not an
essential part of the physics. A discussion of the treat-
ment of the excited states of the solid from the local bond
viewpoint, i.e., the determination of the band structure
will be presented elsewhere.*” We merely note here that
the nature of these excited states is rather different than
that of the ground state.

The challenge is to model the environment about a sin-
gle site and an important question inherent to any cluster
approach is how to terminate the cluster so as to accom-

plish this. Within the GVB-PP, the valence electrons of
the infinite solid ground state are represented by the local-
ized orbitals of the many-electron wave function of Eq.
(8). Consider the PP cluster wave function

\I’clusterz .2{[([)“.(1)'/4 (DIB q)'C(D’D ] s 9)

such that the orbitals of &', —®} are the Si—Si bonds
about the central silicon atom and ®,, takes account of
the orbitals involved in truncation of the cluster. En-
couraged by the near universality of bond properties illus-
trated in the analysis above, we strive to reproduce the lo-
cal electronic structure about one lattice site, i.e., the ob-
ject is to develop -a cluster termination such that orbitals
of &', —®} in the cluster wave function [Eq. (9)] take the
same form as the orbitals of &, —®, in the bulk [Eq.
(8)]. Within this framework lies a justification for the use
of the cluster approximation, a justification more difficult
to rationalize from a mean-field framework. The
perfect-crystal mean-field wave functions involve maxi-
mally delocalized one-electron Bloch states that nominally
make no contact with the cluster mean-field one-electron
states. The criteria for the quality of the reproduction of
the local environment by the cluster calculation are un-
clear. The local nature of the PP orbitals in the ground
state for the bulk and cluster wave functions makes direct
contact between bulk and cluster possible. It does not re-
quire reproducing the entire band structure; instead, one is
concerned only with describing the local ground-state
electronic structure about the defect of interest, which will
be very similar in the solid and in a cluster.

The PP orbitals, if the cluster is well designed, will bear
a direct resemblance to their counterparts in the infinite
solid wave function. The electronic structure of the sys-
tem upon the introduction of a point defect should be well
modeled by this procedure, especially when the electrons
associated with the defect are very localized in nature, as
is often the case, as demonstrated by electron paramagnet-
ic resonance (EPR). Examples include such impurities as
substitutional oxygen and the case we consider in detail:
substitutional nitrogen in silicon.

B. Quantitative analysis

To obtain a reasonable description of the properties of a
defect in silicon by modeling the infinite solid by a finite
cluster requires that the treatment of the surface of that
cluster be done with care. A common approach in cluster
methods is to include as many bulk atoms as possible and
to tie off the dangling bonds with hydrogen atoms. The
model we adopt for our study is the XSisH*), cluster.
There have been numerous approaches to terminating this
sort of cluster: with the hydrogen atoms at Si-H equilibri-
um distance, 1.48 A, or at “bulk” separation, 2.35 A, or at
some suitable compromise in between. One of the most
prominent drawbacks associated with this stratagem
derives from hydrogen being more electronegative than
silicon, leading to a skewed electron distribution. A re-
cent twist is to modify the hydrogen basis set so that the
electronegativities of the specially modified hydrogen
atoms (MHA’s) and the silicon atoms they model are ap-
proximately the same.’? This approach was first applied
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by Redondo et al. in the study of the oxidation of silicon
surfaces.>> Using a single-zeta basis set, £=0.2944, on
the terminating MHA and placing them at silicon bulk
positions, a self-consistent calculation for a terminated Sis
cluster results in an electron distribution that leaves the
central silicon atom approximately neutral. We have
adopted a strategy similar in spirit though different in de-
tail for the development of our cluster model.

A nearly ideal electron distribution, within 0.1% of
four valence electrons per silicon in a Mulliken analysis,*
was obtained in a PP(16/32) calculation for the SisH*|,
cluster using terminating hydrogen atoms with single-zeta
basis sets, £=0.5154, located 1.5 A from the silicon
atoms. If possible, however, it is advisable to have ter-
minating atoms at equilibrium distances to avoid some
difficulties associated with how to treat atomic relaxations
upon the introduction of a defect. Optimal bond dis-
tances were calculated with varying levels of correlation
included in the wave function. The optimal silicon-silicon
distance for the silicon cluster model SisH*;, using a
PP(16/32) wave function was 2.345 A, while the silicon-
terminator distance was optimal at 1.755 A. Correlating
only the Si—Si bond-pair electrons (treating the electrons
associated with the silicon-terminator bonds at the HF
level) results in a slightly longer Si—Si bond (2.35 A),
while the Si-H* distance decreases to 1.73 A. The cluster
optimization using a Hartree-Fock wave function yields a
Si-H* distance of 1.727 A and a moderately shortened
silicon-silicon bond distance of 2.326 A.* The PP(4/8) is
the wave function used in the geometry optimizations in
the nitrogen defect system; hence the model chosen for
those calculations had the terminators located 1.73 A
from the silicon atoms. . .

In using this cluster (R ,,=1.73 A instead of 1.50 A)
the electron distribution for the PP(16/32) wave function
has deviated from ideal by only 1% (see Table III), which
is more than adequate considering the imprecise nature of
the Mulliken analysis. The bond-stretch force constant

TABLE III. Silicon Sis4,, cluster models:
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Mulliken populations.

34

for a correlated Si—Si bond is calculated to be 10.1—10.5
eV/A depending on the cluster and whether neighboring
bonds are correlated also. This is in good agreement with
the corresponding bulk value?® of ~10.2 eV/A2 The
value for an uncorrelated Si—Si bond is 20% higher. The
silicon-terminator bonds reproduce rather well the
silicon-silicon bonding which they are supposed to simu-
late. Figure 6 illustrates this with a plot of the energy
curves of a typical correlated Si—Si bond with an un-
correlated Si—H* bond. The fact that the silicon-
terminator curve is shallower is reflected in a weaker force
constant of 8.5 eV/A2 For our full geometry optimiza-
tions of the nitrogen defect geometry, we opt to keep the
terminators fixed at the PP(4/8) equilibrium position in
the SisH*|, cluster while allowing the five inner atoms to
relax. This relieves us of the need to choose another,
perhaps more arbitrary, procedure dealing with the ter-
minating atoms. The weaker Si—H* force constant can
be rationalized as accounting for the effect of more dis-
tant bulk atoms relaxing in response to the motion of the
atoms free to move in the cluster.

We calculate a cluster “valence-band width” of ~12.2
eV, the more bound state being s-like in character, the less
bound being p-like. Although we cannot expect a finite-
cluster calculation to reproduce the absolute values of the
bulk ionizations, the fact that the results are consistent
with the bulk I'-point width of 12.5 eV (Ref. 45) is very
encouraging.

The development of a new method of termination was
motivated by the previously stated desire to reproduce
bulk properties as well as possible. Toward this goal, we
critically examined several options that had been used in
other studies. Table III provides a summary of a few sim-
ple properties calculated for clusters terminated with (a)
hydrogen atoms at 1.48 A (Si—H equilibrium bond dis-
tance) and 2.35 A (silicon bulk position), (b) with specral
terminating MHA'’s (Ref. 32) located at silicon bulk posi-
tions, and (c) our choice of terminators.

Population in terms of valence

electrons: neutral silicon will have a population of 4.0.

Mulliken populations Si—Si bond
Terminating Rsi.4 Wave Central First-shell Terminating dipole
atom (A4) (A) function silicon silicon atom moments®
Ideal 4.0 4.0 1.0 0.0
Hydrogen® 2.35 PP(16/32) 4.19 4.25 0.90 —1.11
1.48 PP(16/32) 4.47 3.73 1.05 + 0.46
MHA 2.35 PP(16/32) 4.01 4.82 0.73 + 0.12
PP(4/8) 3.93 4.90 0.71
This study H* 1.50 PP(16/32) 4.00 4.00 1.00 —0.38
1.73 PP(16/32) 4.05 4.03 0.98 + 0.01
PP(4/8) 4.01 4.10 0.97
HF 4.06 4.09 0.97

?In units of debye, directed from the central silicon of the cluster toward the {111) silicon. Calculation
is for the two electrons in this bond, about the midpoint of this bond.

®Scaled zeta =1.2.
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FIG. 6. The potential curves for a typical Si—Si bond [from
the PP(7/14) calculation for Si,H*;] and Si—H* bond (taken
from a HF calculation for SiH*;) to illustrate how the termina-
tor bond behaves in comparison to the silicon-silicon bond that
it models.

The use of hydrogen atoms at either bulk or equilibri-
um positions results in Mulliken populations which are
highly unbalanced, due to the differences in electronega-
tivity. Replacing the hydrogens with the special terminat-
ing MHA'’s gives an excellent electron population for the
central silicon atom, but less satisfactory values for the
nearest neighbors. The populations derived from the
fully-self-consistent calculations using our new termina-
tors do rather well in comparison to the other options we
considered. This result might have been anticipated from
inspecting the almost perfectly symmetric forms of the
orbitals of Fig. 5 from the cluster using the new termina-
tors. The Mulliken population is one means of judging
the quality of the termination, but the local orbital
description provides yet another measure. The electronic
dipole of the two electrons of a single bond about the
bond midpoint should be zero by symmetry, in the ideal
case. The calculated bond dipole moments for a silicon-
silicon bond pair using the various clusters are listed in
Table III. The new terminators fair quite well by this
measure, also. The real hydrogen-terminated clusters
have bond dipoles which indicate that the local environ-
ments are not being very well reproduced. The Si—Si
bond-dipole result using MHA terminators seems to indi-
cate that the Mulliken analysis may be unduly maligning
the actual efficacy of this termination. The result using
the new terminating atoms is very good.

The cluster model developed here measures up very well
to a number of criteria and appears to reproduce the local
environment about a silicon atom very well. The overall
quality of the results demonstrate that it is not necessary
to reproduce the excited-state band structure to obtain a
valid description of the local ground-state environment of
a single site in the lattice. The formal justification for
this strategy provided above is supported by the analyses
which verify that the Mulliken populations, lattice con-
stant, bond-stretch force constant, bond-dipole moment,
and a valence-band width calculated for the cluster all

closely approximate the values in the bulk. We are now
ready to address the defect problem.

V. SUBSTITUTIONAL NITROGEN IN SILICON
A. Qualitative discussion

The simple nitrogen substitutional defect has been iden-
tified through EPR experiments by Brower.”> The neutral
defect exhibits a C;, symmetry with the unpaired electron
localized primarily on a single silicon atom with some
small amplitude on the nitrogen atom. According to his
analysis, the wave function for the extra electron, ¢,, is
approximated by a simple LCAO molecular orbital:

be= 2 M:(; Wi ns +BiYinp) » (10)

summing over valence s and p orbitals at atom sites near
the impurity. From this analysis, it was deduced that
73% of the wave function was on only one of the neigh-
boring silicon atoms (12% s and 88% p), while 9% was
located on the nitrogen atom (28% s and 72% p). Stress
measurements reveal the character of the orbital to be an-
tibonding between the silicon and the nitrogen. The nitro-
gen defect has an electronic donor level in the gap, and
when the defect loses an electron, the nitrogen presumably
goes on center and the defect regains tetrahedral symme-
try.

The behavior of nitrogen is distinctly different from
that of its neighbors in the Periodic Table: carbon, which
remains tetrahedral,*® and oxygen, which displaces off
center in a (100) direction from the tetrahedral site to
have a ground-state C,, symmetry.?%?’ The cause of this
distortion is a source of some controversy.'®!°=2! The
source of the difference in the behavior of these different
impurities is an interesting and largely ignored problem.
Why nitrogen displaces in a (111) direction and oxygen
in a (100) direction is a mystery so far unexplained.

The motive force for the nitrogen distortion becomes
immediately apparent within a local bonding picture.
Figure 7 schematically depicts the expected electronic
configuration about the nitrogen atom in this defect,
analogous to the bonding expected for ammonia [see Fig.
4(a)]. The nitrogen atom, as in ammonia, will form three
covalent bonds with neighboring silicon atoms (Sig—Sip),
while the presence of the lone pair of electrons on the ni-
trogen and the dangling-bond electron on the remaining
silicon atom (Si,) precludes the formation of a fourth
bond. The unpaired electron will have some amplitude on
the nitrogen atom, but will be antibonding in nature so as
to remain orthogonal to the lone-pair orbitals. The nitro-
gen atom will move off in the [111] direction in order to
achieve a more reasonable Si—N bond distance and to
reduce the repulsion between the lone pair and the dan-
gling electron. Thus, the principal experimental observa-
tions regarding this defect in silicon can be fully account-
ed for in advance of any calculations.

B. Results: The unrelaxed system

The above qualitative description is confirmed by the
results of the cluster perfect-pairing calculations. The
wave function of the PP calculation, even in the high-
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FIG. 7. The schematic depiction of the generalized valence-
bond wave function expected for the substitutional nitrogen de-
fect in silicon. The nitrogen will form three equivalent bonds to
silicon (Siz—Sip) while the fourth bond to the (111) silicon
(Si4) is prevented by the lone pair. The C;, symmetry of this
wave function resembles that of ammonia (cf. Fig. 4) and drives
the observed C,, distortion.

symmetry T, geometry, has broken symmetry, hinting at
the preferred distortion mode. The symmetry of the wave
function is C3, with the axis of symmetry being the [111]
axis. The parallel between the bonding here and that of
the ammonia system of Fig. 4 is readily apparent. The or-
bital contour plots of the PP(16/32) wave-function orbi-
tals are exhibited in Fig. 8. Figure 8(c) presents one of
three equivalent N—Si bond pairs; C; rotations about the
[111] axis will bring them into coincidence with one
another. A fourth pair of electrons has localized into a
lone pair on the nitrogen [Fig. 8(b)], the unpaired electron
localizing to occupy the dangling-bond orbital of the
remaining silicon atom (Si, of Fig. 7). The perfect-
pairing orbitals of the PP(4/8) wave function about the ni-
trogen differ negligibly from the corresponding orbitals in
the PP(16/32) wave function. The Si—H* bond electrons
have been treated at the HF level, but this does not sub-
stantially affect the result in the inner region. The com-
plete removal of perfect-pairing correlation in the calcula-
tion results in a HF calculation in which the orbitals have
now delocalized throughout the cluster. The theoretical
one-electron orbital ordering that has a singly occupied a,
orbital below an unoccupied ¢, orbital'>~?! is confirmed
in this calculation. Besides the energetic difference [the
HF wave function is 4.16 eV higher in energy than the
PP(16/32) wave function, while the correlation in the
PP(4/8) wave function makes it 2.20 eV lower in energy
than the HF wave function], what is lost in going from
the more general perfect-pairing wave function to the
Hartree-Fock wave function is the ability to interpret the
orbitals of the wave function in terms of the nature of the
bonding (cf. Fig. 7). In the T, site the qualitative
behavior of the nitrogen defect is already anticipated by
the perfect-pairing result, in contrast to the lack of any
such hint in the HF calculation.

(c)

FIG. 8. The orbital contour plots of key orbitals that result
from a self-consistent PP(16/23) calculation for the T, unre-
laxed NSisH*|; cluster. Notice how clearly the features predict-
ed and schematically represented in Fig. 7 are reproduced in the
calculation. (a) The dangling-bond paramagnetic orbital ¢, on
the (111) silicon (Si,); (b) the lone pair opposite it, in-out corre-
lated; (c) one of three equivalent Si—N bond pairs (here Siz—
N).

The PP wave function has Cs, symmetry, already in ac-
cord with the observed behavior. In the rigid tetrahedral
cage, however, the total wave function must transform ac-
cording to some irreducible representation of the T, point
group. The perfect-pairing wave function we have ob-
tained is not unique, as it could be aligned such that the
dangling-bond orbital is located on any of the four
nearest-neighbor silicon atoms, Sis—Sip. Thus, there are
four distinct, symmetrically related PP wave functions
¥, —W¥p, each defined by the location of the dangling-
bond orbital. To obtain a total wave function of the prop-
er symmetry, it is necessary to take a linear combination
of these symmetrically equivalent PP wave functions to
form a R-PP wave function:

WR_pp=aA\PA +a3‘l’3+ac\PC+aD\l’D . (11

In the tetrahedral geometry, this mixing produces one to-
tal wave function (a4 =ag=ac=ap) of A; symmetry,
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and three degenerate total wave functions of T, symme-
try. The R-PP(4/8) calculation for tetrahedral nitrogen
finds a ground state of 4, symmetry that is stabilized by
0.75 eV with respect to the PP(4/8) wave function. The
mean-field result also finds an A4, state below a T,
state.”%2! The nature of the many-electron R-PP wave
function is quite distinct, though; the character of the
bonding about the nitrogen atom remains three bonds and
a lone pair. Forcing the PP(4/8) wave function to have
four equivalent Si—N bonds and a delocalized a, electron
(as in the mean-field description), so that it transforms as
A, in T; symmetry, significantly raises the energy. Thus
the proper description of the many-electron wave function
is given by Eq. (11). The correlation effects here are sub-
tle, and very important, calling the efficacy of any simple
mean-field approximation into question.

C. Nitrogen displacement in a rigid cage

The wave function derived in the T site indicates that
the likely mode of distortion, if there is to be any, is a C3,
distortion. Acting on this, we consider [111] displace-
ments of the nitrogen atom at three levels of approxima-
tion: HF, PP(4/8), and R-PP(4/8). The cluster results
described in this section employ the termination distance
of 1.50 A since we do not consider silicon relaxations.*’
Figure 9 presents the energy curves as a function of nitro-
gen [111] displacement for the three types of wave func-
tions. The HF calculation discloses a very shallow
(<0.02 eV) on-center minimum, but with a much deeper
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FIG. 9. The potential curves for moving the nitrogen along
the [111] direction inside of a frozen unrelaxed silicon cage.
The Hartree-Fock result has a shallow on-center minimum and
a deeper 0.17-eV minimum at 0.52 A from the center in the
[TTT1] direction. The PP(4/8), calculation yields a 0.16-eV
minimum at 0.24 A for the wave function with the lone-pair
dangling bond  oriented along the [111]  axis.
PP(4/8)5—PP(4/8)p represent calculations with the dangling
orbital not along the [111] axis of nitrogen displacement. The
R-PP(4/8) calculation finds no off-center minimum.
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minimum of 0.17 eV with the nitrogen displaced
0.52 A from the tetrahedral position in the [T171] direc-
tion. This places it only 0.26 A above the plane of the
three silicon (Sig—Sip) atoms, giving a Si—N—Si bond
angle of 118.6°. The PP(4/8) wave function ¥, yields a
minimum with the nitrogen atom displaced only 0.24 A
from the tetrahedral site with a depth of 0.16 eV. There
is no on-center minimum. If the silicon were truly rigidly
clamped at bulk positions, this would represent excellent
agreement with the experimentally observed reorientation
barrier of 0.11 €V.?® Denoting the three PP(4/8) wave
functions not aligned along the displacement axis by
W —W¥,, (defined by the location of the dangling-bond or-
bital in the wave function), it is apparent that these will
no longer be symmetrically equivalent to V4 as the nitro-
gen is displaced from tetrahedral, though they remain
symmetrically related to each other. For a balanced treat-
ment, however, these must be considered for the distorted
systems as well as for the T -symmetric system in the R-
PP wave function. The R-PP(4/8) wave function finds an
on-center minimum, albeit a very shallow one. At the
PP(4/8) optimal nitrogen displacement of 0.24 A, the R-
PP(4/8) wave-function energy has risen to only 0.06 eV
above the energy at the tetrahedrally symmetric site.
Therefore our results predict that if the nitrogen was lo-
cated in a rigid silicon cage the stable geometry would be
tetrahedral.

Clearly, the clamping of the silicon atoms in place con-
stitutes an unphysical restriction. It is instructive, howev-
er, to root out the source of the differences between the re-
sults of the various wave functions. The Hartree-Fock
calculation suffers under a pair of difficulties, the most
pronounced of these being its inability to describe the
stretched bonds that exist here. The unrelaxed N-Si dis-
tance is just the bulk Si value of 2.35 A. This distance is
reduced to 2.23 A for the optimized [111] nitrogen dis-
placement in the Hartree-Fock calculations. One would
expect the optimum Si—N bond distance to be ~1.73 A,
found to be the equilibrium distance in crystalline Si;N,
(Ref. 48) and in the N(SiH;); molecule (Ref. 49). Thus a
silicon-nitrogen bond length of 2.23 A falls in the region
where the bonding curve should begin flattening out, but
the HF bonding curve continues to rise sharply (cf. Fig. 2,
the H, curve). The HF wave function therefore overesti-
mates the driving force for shortening these three bonds
and the nitrogen is driven planar. This problem is allevi-
ated by the use of the PP(4/8) correlated wave function
that allows these bonds to stretch properly. The optimum
nitrogen displacement is much smaller for the PP(4/8)
calculation and there is no barrier to the displacement.
Another deficiency in this HF calculation lies in its inabil-
ity to describe the C;,—planar—C;, inversion about the
nitrogen correctly using this basis set. Using a VDZ basis
set, the calculated HF inversion barrier for ammonia is
only 0.02 eV, the experimental inversion barrier of 0.25
eV (Ref. 50) being underestimated by 0.23 eV. This sug-
gests that the HF minimum found for the defect is a false
one, the minimum being practically fully compensated for
by the error in describing the inversion about the nitrogen
as it approaches the planar geometry. Including polariza-
tion functions in the ammonia calculation yields a more
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reasonable barrier’! and it might be anticipated that in-
cluding them in the defect calculation might eliminate the
HF minimum. Using a PP(4/8) wave function with a
VDZ basis for the NH; molecule a barrier of 0.08 eV is
obtained. However, the necessity to describe the inversion
barrier properly is less important for the PP wave func-
tion because a much smaller displacement is found [also,
the Si—N-—Si bond angle only changes from the
tetrahedral 109.5° to 114.5° at the PP(4/8) minimum].
With this in mind, polarization functions are not included
in the calculation. This underscores, however, the need to
exercise extreme care in these geometry optimizations; po-
tentially large errors can be incurred due to basis-set or
wave-function®? limitations.

The primary difference between the PP result and the
R-PP result derives from the R-PP being a wave function
that transforms according to the correct T; symmetry,
while the individual PP components which constitute the
R-PP wave function [Eq. (11)] do not. The coupling be-
tween the nitrogen atom and the nearest-neighbor silicon
atoms is small due to the long bonds. Hence, the tenden-
cy of the PP wave function to induce a displacement of
the nitrogen in order to improve the N—Si bonds is over-
come by the tendency of the R-PP stabilization to keep
the nitrogen on center. When the symmetry is broken, the
R-PP stabilization is reduced.

D. Geometry relaxation

1. Symmetric relaxation of nearest-neighbor
silicon atoms

One anticipates that the silicon atoms should relax in-
wards from the lattice positions judging from the charac-
ter of the orbital plots of Fig. 8 and from the fact that the
nitrogen atom is much smaller than the silicon atom it re-
places. The rigid-cage Si—N bond distance of 2.35 A is
0.6 A larger than an equilibrium Si—N bond distance
(noted above). The relatively large energy gain obtained
upon correlating the inner bonds [HF—PP(4/8)] is anoth-
er clue that the bonds are very stretched. As pointed out
in the H, example of Sec. III, increasing correlation ener-
gy occurs with increasingly extended bonds [see Fig. 2(b)].
We next consider the radially symmetric relaxation of the
silicon atoms about the nitrogen to test this idea. The sil-
icon atoms contract inwards at all levels of approxima-
tion, as seen in Fig. 10. The steepest gain is recorded,
naturally, for the HF waye function, where the silicon
atoms are drawn in 0.34 A with a corresponding gain of
2.82 eV. The silicon atoms are drawn in somewhat less
with the PP(4/8) and R-PP(4/8) wave functions, 0.32 A,
gaining 1.95 and 1.62 eV, respectively, from the unrelaxed
cage. The energy differential between the PP(4/8) and
HF wave functions has been reduced from 2.20 to 1.33 eV
upon inward relaxation. The difference reflects the corre-
lation error made by the HF calculation in attempting to
describe the stretched bonds of the unrelaxed system; the
radially relaxed new Si-N distance of 2.01 A is much
nearer equilibrium and therefore is relatively better
described at the HF level. The orbitals of each of the
wave functions, however, have not changed their qualita-
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FIG. 10. The effect of the symmetric relaxation of the four
silicon atoms radially inwards on the energy of the three types
of wave functions. All values scaled to zero at the unrelaxed
cluster.

tive forms upon the inward relaxation of the silicon
atoms.

2. Full geometric relaxation of nitrogen
and its nearest neighbors

So far we have not considered symmetry-lowering dis-
tortions together with silicon-atom relaxations. We turn
now to a discussion of a limited geometry optimization
using the PP(4/8) wave function, which investigates dis-
tortions of C;, symmetry that the C3, symmetry of the
PP wave function and bonding considerations predict to
be the symmetry of the optimum distortion. The energy
of the PP wave function ¥, drops very quickly as the ni-
trogen and the (111) silicon atom (Si, of Fig. 7) are
separated, clearly indicating the repulsive interaction of
the lone pair and the dangling-bond electron. The other
basis states of the R-PP(4/8) calculation, the three
PP(4/8) wave functions Wz—W¥), became very unstable
solutions upon distortion. In comparison to ¥ 4, their en-
ergy rises substantially and their contribution to the R-
PP(4/8) wave function diminishes as the primary PP wave
function ¥, becomes a better approximation to the total
wave function. The (111) silicon atom returns to an ap-
proximately bulk position in the best geometry. The ni-
trogen moves a total of 0.55 A off center, yielding a N-
Si, distance of 2.9 A, reducing the Pauli repulsion be-
tween the lone-pair and the dangling-bond electrons great-
ly. The lone pair and dangling bond are well separated, as
a glance at the orbital contour plots of Fig. 11 indicates.
The other silicon atoms, Sig—Sip, have moved 0.3 A
from their bulk positions and are now within 1.88 A of
the nitrogen atom to which they are bonded (Fig. 11).
The energy gained in the perfect-pairing correlation of the
inner four pairs is now 1.54 eV as compared to the 2.20
eV of the original unrelaxed geometry. The broken-
symmetry PP(4/8) solution is 0.82 eV more stable than
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FIG. 11. The PP(16/32) wave-function orbitals at the opti-
mized geometry. The wave function remains qualitatively simi-
lar to the PP(16/32) results for the unrelaxed cluster (cf. Fig. 8),
where (a), (b), and (c) show the dangling-bond—orbital,
nitrogen-lone-pair, and nitrogen-silicon—bond contour plots,
respectively.

the equivalent solution for the tetrahedrally relaxed
geometry. There is no energy gained from the R-PP cal-
culation at the broken-symmetry geometry, while at the
tetrahedral geometry 0.41 eV was gained from mixing in
Yp—W¥,. The net R-PP result is a total lowering upon
symmetry breaking of 0.82—0.41=0.41 eV. If the barrier
to reorientation were to involve going from one (111)
orientation to another through the tetrahedral site
geometry, this result would overestimate the observed bar-
rier to reorientation of 0.11 eV.?> However, it is certainly
possible that reorientation takes place through a C,, path-
way rather than through the high-symmetry T site. In
fact, this possibility appears quite reasonable as the T,
pathway involves stretching all three bonds, while the C,,
route would involve only the stretching of one bond while
keeping the other two relatively constant. The search for
a C,, minimum, however, was not attempted here. A fur-
ther consideration is the fact that the R-PP calculation is
not fully-self-consistent, and this would incur a larger er-

ror in the symmetric site energy than in the broken-
symmetry site energy. For the C;, optimum geometry,
the PP(4/8) wave function is an excellent approximation
to the R-PP(4/8) and little stabilization energy from mix-
ing in the other PP(4/8) wave-function components is ob-
tained.

The true HF minimum for this model should be well
approximated by the HF energy at the optimum PP
geometry. Assuming a reorientation through the
tetrahedral geometry, the HF reorientation barrier is cal-
culated to be at least 0.7 eV. This is larger than the value
obtained for the correlated wave functions and greatly
overestimates the observed value.

The removal of an electron from the Cj, system allows
the fourth bond to form, causing the atoms of the ionized
defect to relax and bring the nitrogen on center. The cal-
culated stable geometry for the ionized nitrogen impurity
has full tetrahedral symmetry using both the HF and the
correlated PP wave functions. Upon recapture of an elec-
tron, the neutral defect relaxes back to the neutral Cj,
ground-state geometry. The energy of the atomic relaxa-
tion of the ionized defect to the tetrahedral geometry and
the complementary relaxation of the neutralized defect
from the tetrahedral to the C;, optimum geometry need
not be the same. In fact, the relaxation of the ionized de-
fect to the PP(4/8) optimum 7T, geometry (Rgin=2.02
A) is calculated to be 1.43 eV, while the relaxation of the
neutralized defect returns only 0.41 eV.

The calculated ionization energy for a cluster cannot be
directly equated to levels in the fundamental gap in sil-
icon. The calculation does not include the electron affini-
ty of the conduction band with respect to vacuum, es-
timated from experiment to be ~4.0 eV.*? Also neglected
is the polarization of the lattice in response to the change
in charge state. The calculated nitrogen defect cluster-
ionization energy of 6.1 eV (including atomic relaxation)
does not include these effects. From comparison with
other defect calculations which indicate that a shallow-
level defect ionization costs 4—5 eV, we can deduce that
the nitrogen level in the gap will be deep, most likely
closer to the valence-band than to the conduction-band
edge. What is unambiguously demonstrated by this calcu-
lation is the large charge-state dependence of the atomic
relaxation energies. This provides one plausible source of
the difficulty in experimentally locating this elusive level.
Clearly, extreme care must be taken in the interpretation
of experimental data when it is possible for such atomic
relaxation energies to exceed the band-gap energy.

E. Hyperfine calculations

Electron paramagnetic resonance provides some of the
most detailed knowledge about deep-level defects in semi-
conductors.>** Fortunately, such information is available
for the case of the nitrogen defect, and, in fact, constitutes
our major knowledge of this defect. The anisotropic spec-
trum labeled SL5 that emerges for the neutral substitu-
tional nitrogen in silicon?> can be described by a simple
spin-+ Hamiltonian:

H=pzHES+ JI-A;S, (12)
j
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with § =-;—, I; are the nuclear spins, H is the magnetic
field, and pp is the Bohr magneton. The components of
the hyperfine tensor A; are given by>?

)
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+§3£W"(0)'28”l , 1)

2
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Ak‘y=ge.uB#N(F‘j/Ij) r5

where y; is the nuclear magnetic moment and r is the dis-
tance with respect to site j. The dominant contributions
come from the s and p character of the orbital at a given
atomic site, so it is convenient to divide this into two
parts: the isotropic part due to the s occupation and the
anisotropic part deriving from the p character. In an axi-
ally symmetric spectrum, the axial and perpendicular
components of the hyperfine tensor are trivially related:

87Tg A',_ +2A',l
Aj,iso:Ti#B.UN(,u,-/lj)lu‘;e(O) | 2._.1H_31 ,
(14a)
4g, A —A;
A"““:*si“‘*”fv‘“f”f)“/?f)="%J'—l (14b)

Conventionally, in the analysis of the experiment for a
single paramagnetic electron, it is assumed that the char-
acter of the wave function can be described by the single
molecular orbital of Eq. (10) and one attempts to fit the
parameters 11]2-, a,z-, and Bf (total amplitude on atom, per-
cent s, and percent p, respectively) with the approxima-
tions

| 4(0) | 2= | ¢;,,(0) | 2nla}

and
(re—3>=(rf,_ni)’712512 .

The atomic valence orbital values |;,,(0) | and (rjf,,;)
are taken from results tabulated from Hartree-Fock atom-
ic calculations. With this analysis, it is possible to deter-
mine in great detail the character of the paramagnetic or-
bital. Brower?® analyzed his data in this manner to deter-
mine that the paramagnetic orbital is located 73% on the
(111) silicon atom (Si, of Fig. 7), 12% s and 88% p in
character, and 9% (28% s and 72% p) on the nitrogen.

A Mulliken analysis provides the simplest means of
comparing the results of the calculations with experiment.

For the unrelaxed geometry, the broken-symmetry
PP(16/32) solution already exhibits the correct qualitative
behavior (see Fig. 8) with 63% of the electron on the sil-
icon (14% s and 86% p), but yields a net negative popula-
tion on the nitrogen [a deficiency in the Mulliken analysis:
this negative population is belied by the obvious ampli-
tude that the orbital has on the nitrogen in the contour
plot of Fig. 8(e)]. When the nitrogen is allowed to move,
but with the silicon atoms still fixed in place, the electron
localizes strongly on the silicon so that 86% of the orbital
lies on the silicon atom in a Mulliken analysis for the
perfect-pairing wave functions at-the optimal nitrogen
displacement. Furthermore, this has a Si s-p distribution
in good agreement with experiment: (12+2)% s,
(88+2)% p. This is a clue that the silicon atom will
remain at approximately its bulk position since the s-p
balance is very sensitive to the atom location. As the sil-
icon atoms are drawn in symmetrically, the ratio changes,
increasing the s character at the expense of p character, so
that at a silicon-nitrogen distance of 2.04 A (inward
0.31 A) the orbital has 23% s and 77% p character on
Si . This behavior of a threefold-coordinated silicon
atom with a dangling-bond electron is the same when cal-
culated for the dangling orbital on the (111) silicon sur-
face.® The optimal location for the (111) silicon atom,
as described above, is approximately the bulk position.
Table IV presents the Mulliken analysis of the
paramagnetic orbital for the perfect-pairing and Hartree-
Fock wave functions in the equilibrium cluster geometry.
Once the stretched bonds are relaxed, the HF represents a
more satisfactory approximation. This is reflected in how
closely the HF paramagnetic orbital mimics the results of
the PP calculations. As experimentally observed, the ma-
jority of the electron amplitude is in the silicon dangling
bond for these calculations and the 15% s/85% p ratio
compares favorably with experiment. Unfortunately, the
Mulliken analysis still gives a net zero result for the nitro-
gen population, which is clearly contradicted by the
paramagnetic orbital’s amplitude on the nitrogen seen in
Fig. 11. The problem originates from the character of the
orbital on the nitrogen. The atomic valence occupation of
the nitrogen atom is 2522p> and these orbitals are fully sa-
wrated in the defect system by the three bond pairs and
the lone-pair electrons. The paramagnetic orbital is re-
duced to partially occupying the “3s” and “3p” orbitals, a
situation that the valence Mulliken analysis cannot handle
properly due to the node introduced into the valence re-
gion. To remedy this problem and to simultaneously

TABLE IV. Mulliken analysis over paramagnetic orbital from the self-consistent wave function cal-
culated at best geometry with the NSi,H";, cluster. Distribution of paramagnetic electron in percent.

Wave (111) silicon Nitrogen
function Total % s % p Total %o s % p
Expt. 73% 12 88 9% 28 72
PP(16/32) 91.9 14.3 85.7 1.2 ~0 100
PP(4/8) 90.1 15.1 84.9 1.1 ~0 100
HF 88.8 15.1 84.9 1.1 ~0 100




VALENCE-BOND THEORY OF OFF-CENTER IMPURITIES IN SILICON: ...

TABLE V. Hyperfine parameters | 4(0) |2 and (r~*) calculated for valence orbitals of isolated sil-

icon and nitrogen atoms. All entries in 10**/cm>,

Si? N
| ¥35(0) ]2 (ry | ¥25(0) | 2 (ry)
After Brower® 25.84 13.68 32.51 20.38
Double zeta® 25.58 12.13 32.25 16.39
DZ + Rydberg sp 25.60 12.12 32.25 16.40
Si 11s4p/N 9s5p 25.16 12.13 30.52 16.39
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3§ state (s'x!y'z!) calculated.
®See Ref. 14.

*DZ=Si(11s7p/6s4p) and N(9s 5p /4s 2p). See Sec. II and Ref. 25.

gauge the accuracy of the Mulliken analysis on the silicon
atom, we treated the core electrons of the {(111) silicon
explicitly (leaving the other silicon atoms with effective
potentials). Using a full double-zeta basis set or better for
both this silicon and the nitrogen to assure adequate
basis-set flexibility, we calculate these parameters
[ |4¥(0)|? and (r~*)] more directly from the wave func-
tion.

For reference, Table V presents the calculated atomic
values with the basis sets we used for the atoms. For the
nitrogen atoms, the state from which the parameters were
calculated was the Hartree-Fock *S(1s22s%2x!2y'2z")
ground state. The reference state used for the silicon
atom was the >S(core 3s'3x '3y '3z!) high-spin state rather
than the silicon ground *P state; this was done to reflect
the nominal sp® hybridization of the silicon atom in the
lattice. The effect of changing the basis is seen to be
small. We can calculate |¢(0)|? and {(r~®) from the
wave function, and compare them with the atomic values
to obtain proportions of atomic populations or can apply

Eq. (14) to calculate the hyperfine terms directly. Table
VI contains a summary of results from the calculations.
For simplicity of presentation, the calculated values are
recorded as percentages of atomic-orbital populations.
The first part of the table contains the results from the
simple, full double-zeta calculation in the optimum
geometry, including both the Mulliken analysis and direct
calculation of the occupations. Notably, the results on the
silicon atom do not greatly vary, indicating an occupation
that is 90% of the atomic occupation for both calcula-
tions. The s-p proportion of ~14% s and ~86% p in
the Mulliken analysis and ~19% s and ~81% p in the
direct calculation are both in excellent agreement with the
experimentally observed 12% s/88% p ratio. A signifi-
cant difference between values calculated from Mulliken
analyses and those obtained directly from the wave func-
tion is noted for the nitrogen atom, however. While the
Mulliken analysis suggests a zero occupation, the direct
calculation derives a figure that represents ~7% occupa-
tion on the nitrogen atom with approximately 20% s and

TABLE VI. Hyperfine values for the paramagnetic orbital from self-consistent wave functions. For the nitrogen atom and the
(111) silicon atoms, all electrons are considered: for the other silicon atoms effective potentials are used. As described in the text,
the results are scaled using values obtained for the valence orbitals of the isolated atoms. Values in parentheses represent results from
a Mulliken analysis. Distribution of paramagnetic electron in percent.

Cluster Wave (111) silicon Nitrogen
basis set function Total s/p proportion Total s /p proportion
Full PP(16/32) 91.0 17.1/82.9 6.64 20.8/79.2
(91.8) (13.7/86.3) (1.24) (all p)
Double PP(4/8) 90.3 18.7/81.3 6.02 19.9/80.1
(90.2) (14.6/85.4) (0.96) (all p)
Zeta HF 88.8 18.7/81.3 7.65 19.8/80.2
(88.8) (14.6/85.4) (2.25) (all p)
Si 11s4p PP(16/32) 91.0 17.0/83.0 6.64 20.8/79.2
POL (d’s) PP(16/32) 85.3 19.1/80.9 6.73 21.8/78.2
RYD (s,p) PP(16/32) 93.1 21.8/78.2 11.27 13.7/86.3
Extended cluster PP(16/32) (88.7) (13.4/86.6) 6.66 20.4/79.6
(111) SiH; in 0.1 A PP(16/32) 89.7 17.8/82.2 8.33 20.9/79.1
(111) Si in 0.1 A PP(16/32) 90.3 19.2/80.7 7.46 20.9/79.1
Experiment® 73% 12/88 9% 28/72

2 Reference 14.
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80% p, now also in very good agreement with experiment
(9%:; 28% s and 72% p).

To gauge the effects of some of the approximations of
our model, we alter the model slightly in order to investi-
gate the possibilities individually. The wave function used
throughout is the PP(16/32) in which all 16 valence pairs
are correlated. One of the first possibilities that might
come to mind is a deficiency in the basis set. The basis
set used so far in the calculations has included neither po-
larization functions nor Rydberg functions. Furthermore,
since the calculation is very sensitive to the wave function
very near the nucleus, it might be necessary to have a
more flexible basis set than even the DZ basis. The actual
basis used does not consist of Slater-type orbitals (STO’s),
but of Gaussians contracted to mimic STO’s, and this
could have an effect near the nucleus because of the cusps
in the atomic orbitals that are poorly described by the
Gaussians. This particular concern is already partially
addressed by quoting figures as proportions of the atomic
values calculated using an identical basis set, the premise
being that any error would scale properly. To determine
the possible magnitude of the effect, the 11s Gaussians of
the (111) silicon were completely uncontracted in one
calculation. The result, as seen in the table (Si 11s4p), is
identical to the result obtained using the contraction.
Adding d-type polarization functions (POL) on the (111)
silicon atom and nitrogen atom does reduce the popula-
tion on the silicon by 6%, but the overall description
remains very much the same. Adding Rydberg s and p
basis functions (RYD) on the five central atoms also has
little effect, mostly noticeable as a slight increase in the
amplitude at the nitrogen to 11% (22% s and 78% p).
The final result appears quite insensitive to the alteration
of the basis set employed here, a very encouraging sign,
suggesting that the DZ description is quite adequate.

Another possible source of error can be the limitation
imposed on the orbital due to the restricted cluster size.
In this instance, most of the paramagnetic orbital ampli-
tude is situated on the (111) silicon, an atom bonded to
three terminators rather than silicon, and it is reasonable
to suspect that the electron may be prevented from prop-
erly delocalizing onto these sites. To address this issue,
we replaced each of the terminators bonded to the (111)
silicon atom with SiH*; moieties. In this extended cluster,
the stoichiometry is NSi;H*;3 and has C;, symmetry.
The nitrogen atom was described using a full double-zeta
basis, but due to computational considerations the (111)
silicon core electrons were replaced by an effective poten-
tial. The use of the effective potential on the (111) sil-
icon has yielded values for the Mulliken analysis very
similar to those derived from all-electron calculations
(compare Tables IV and VI) for the dangling-bond orbital,
so this is not a severe restriction. Upon the self-consistent
calculation of the PP(16/32) wave function for the ex-
tended cluster, hyperfine parameters calculated for the sil-
icon and the nitrogen atoms do not differ significantly
from those obtained using the smaller cluster model (cf.
Table VI). The NSi;H*;, model is clearly sufficient to al-
low for the delocalization of this electron.

Yet another potential source of error relates to the ina-
bility of this model to account for lattice relaxation

TABLE VII. Direct calculation of the isotropic and anisotro-
pic hyperfine terms using the double-zeta NSisH*}, cluster. All
terms in 10~% cm~!, obtained from evaluation of Eq. (14).

(111) silicon Nitrogen
A iso A ani A iso Aani
Expt. 95.7 18.4 13.10 1.00
Calc. 174.9 19.1 7.09 0.66

beyond the first shell with great accuracy. The nitrogen
atom induces large displacements from bulk positions in
the silicon atoms to which it is bonded. While our termi-
nators do have midely weaker force constants than actual
silicon bonds to account for potential lattice relaxation,
the 0.35 A distance that the silicon atoms are calculated
to move from bulk positions strains the reliability of this
model. In order to assess the potential effect this restric-
tion has on the calculated hyperfine values, the relative
positions of the N(SiH*;); and (111) SiH*; moieties were
varied along the [111] axis. Moving the two moieties to-
ward each other (SiH*; in 0.1 A) increases the amplitude
on the nitrogen atom while decreasing the amplitude on
the silicon atom, bringing the results into closer agree-
ment with experiment. Moving the (111) silicon atom
0.1 A in along the axis toward the nitrogen atom 0.1 A
has roughly the same effect.

The isotropic and anisotropic values obtained without
scaling by the calculates atomic values |(0)|? and
(r—3) will not be fully reliable due to the inability of the
Gaussian basis set to model STO’s correctly near the nu-
cleus. Table VII illustrates this, presenting the hyperfine
terms calculated without any scaling. This and the atom-
ic values of Table IV seem to suggest that while the am-
plitude at the nucleus (Fermi contact) for the orbital is
reasonably well produced, the overall shape near the nu-
cleus (important for the anisotropic term) is not so well
reproduced. Scaling via the atomic-orbital values is there-
fore appropriate and the resulting general agreement of
theory with experiment is very good.

V1. DISCUSSION

A. Nitrogen impurity in silicon

The results of the generalized valence-bond cluster
model unambiguously confirm the qualitative picture dis-
cussed in Sec. VA using no more than simple chemical
and physical concepts. The inclusion of correlation has
played a key role in the interpretation of the wave func-
tions, giving the calculations a predictive capability absent
in a simpler mean-field methods. The driving force for
the C;, distortion has been clearly demonstrated to be due
to local bonding considerations, i.e., the nitrogen, as else-
where in nature (e.g., ammonia) attempts to form three
good bonds and one lone pair. For the neutral defect, this
dictates that the system will have an overall C;, symme-
try, with the nitrogen displaced in the [111] direction
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from the tetrahedral position to form those three good
bonds, while simultaneously relieving the repulsion be-
tween the lone-pair and the dangling-bond electrons on
the silicon atom. This argument finds support in studying
the evolution of the perfect-pairing wave function as one
goes from the unrelaxed tetrahedral system, to the relaxed
tetrahedral system, to the optimum C;,-symmetry
ground-state geometry. The use of the wave function to
calculate the hyperfine terms demonstrates that the wave
function self-consistently derived within this cluster ap-
proximation accurately represents the electronic structure
within the local vicinity of the defect. The fact that
minor modifications in the model do not significantly af-
fect the results is further testimony that this approach is
justified.

We have perhaps pointed out a danger in taking the in-
terpretation of EPR data in terms of proportions of atom-
ic populations too literally. In the example treated here,
the amplitude of the paramagnetic electron on the nitro-
gen does not involve the occupation of the “2s” and “2p”
orbitals in terms of which they are analyzed, but involves
partial occupation of the “3s” and “3p” orbitals. For a
silicon dangling-bond orbital, such an analysis is satisfac-
tory because the electron nominally occupies a valence or-
bital. This distinction between valence and excited orbi-
tals could, however, have profound implications for con-
clusions drawn about the degree of delocalization of
paramagnetic electrons in other systems, where the
amount of occupation on a more distant silicon atom is
determined as a proportion of the Si atomic 3s and 3p or-
bitals. To say that EPR records a value for the hyperfine
parameter that amounts to 1% of the atomic valence orbi-
tal value on a site is different from saying that 1% of the
electron is located there. The “3s” and “3p” orbitals of
the silicon atoms in the lattice are already nominally sa-
turated by the valence-band electrons. A further caution
must be mentioned about the reference values used in an
analysis. The appropriate atomic reference state for sil-
icon is the sp*3S state and not the s%p2 P ground state.

Finding that the substitutional nitrogen defect is satis-
factorily described, we go on to speculate about other sys-
tems. Nitrogen’s neighbors in the Periodic Table have
distinctly different behavior from nitrogen and each other,
as already noted. Nitrogen is a single deep donor with
C,, symmetry; substitutional oxygen is a single acceptor
that resides in a geometry of C,, symmetry. It has been
well characterized by infrared spectroscopy,?’ and while
the neutral defect has no net spin, the negatively charged
defect has a paramagnetic electron and has been studied
with EPR.?® The level has been clearly identified as lying
0.17 eV below that conduction-band edge. Carbon, on the
other side of nitrogen, retains the tetrahedral symmetry
and exhibits no electrical activity.*® Within a view point
that is grounded in one-electron theories, there is no a
priori reason to presume that they differ in their behavior
when located substitutionally for one of the silicon atoms.
When placed in the tetrahedral site, the one-electron wave
function for all three impurity systems will be nondegen-
erate, with the valence orbitals all fully occupied and ei-
ther O, 1, or 2 electrons in the highest occupied a orbital.
The next step in this line of attack is to determine if such
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a system should distort, and if so, why, and in which
direction. A calculation of a potential curve within the
one-electron theories may be capable of finding the
correct distortions, but one is often left without a truly
satisfying explanation of the cause of the distortion and
without any explanation why a particular distortion mode
should be preferable to another.

The observed behavior can be accounted for within the
conceptual framework that we have described. Figure 12
presents the valence-bond diagrams for the expected
behavior of nitrogen neighbors in the Periodic Table when
located substitutionally. Consider first the carbon impuri-
ty. Carbon fourfold-coordinates (as in methane) and trivi-
ally replaces the silicon atom in the lattice [Fig. 12(d)] as
in Fig. 12(a), forming the four bonds that the silicon left
behind. The defect retains T; symmetry. The nearest-
neighbor silicon atoms are drawn radially in toward the
carbon, for the same reasons detailed for the relaxation in-
wards of those silicon atoms towards the nitrogen impuri-
ty. No electrical activity would be expected: there are no
available orbitals out of which to eject an electron from,
or to capture an electron into, that would result in a level
in the gap. The neutral nitrogen defect case has been dis-
cussed in detail above. The relationship between the neu-
tral nitrogen and the positive ion state is analogous to that
between ammonia NH; and the ammonium ion NH,",
which is also tetrahedral. In the silicon lattice, the NSis*
defect center is very similar in its bonding characteristics
to the carbon-atom impurity.

The behavior of the oxygen “ A4 center” differs dramati-
cally. Atomic oxygen, which has two singly occupied or-
bitals, can form two bonds just as in the water molecule.

IS |

FIG. 12. Schematic representation of the electronic wave
function expected for various atoms placed in the silicon site.
(a) Carbon, fourfold coordinated, retaining T, symmetry; (b) ni-
trogen; threefold coordinated, Cs, ground state results; (c) oxy-
gen, bonds to two silicon, with two weekly overlapping silicon
dangling orbitals forming tenuous bond, C,, ground state re-
sults; (d) silicon; (e) phosphorus, the electron is ejected into a
Rydberg-like orbital and four equivalent bonds formed to the
neighboring silicon, therefore retaining T, symmetry; (f) sulfur,
both electrons in Rydberg-like orbitals, allowing four equivalent
bonds and a T, ground-state geometry.
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To create two strong bonds while simultaneously reducing
the repulsion of the two oxygen lone pairs with the dan-
gling orbitals on the silicon, the oxygen strongly displaces
in a {(100) direction and has a ground-state geometry of
C,, symmetry. The two dangling bonds on the silicon
atoms weakly overlap and will form a tenuous, very
stretched bond. An electron entering this system will
enter (in one-electron terms) the antibonding orbital of
this bond. Because of symmetry, there will be no isotro-
pic hyperfine component on the oxygen, consistent with
EPR data.?® Furthermore, the oxygen will be rather far
removed from this weak Si—Si bond, so that the ampli-
tude of the extra unpaired electron on the oxygen would
be very small in any case. Effectively, the electron is in a
system that resembles half a silicon vacancy. That the
character of this system is very similar to that of the va-
cancy was noted by Watkins and Corbett.?® Simple
GVB-PP calculations for this system confirm the qualita-
tive picture just described, but a thorough study, such as
has been presented for the Si:Njg; described above, has not
yet been performed.

The phosphorus substitutional center is the canonical
shallow donor and should be, at best, only poorly
described by a cluster as small as the one used here. The
spin density is known to extend over 30—40 shells of sil-
icon atoms,*>*® while the cluster includes but the first
two. Conceptually, however, this system poses no more
difficult a challenge. Phosphorus remains tetrahedral, un-
like the nitrogen with which it is isovalent, because while
the nitrogen could distort to form good bonds and reduce
the lone-pair repulsion, the P—Si bonds are already near
equilibrium due to the comparable orbital sizes of the
atoms. Therefore, there is no need to displace the phos-
phorus atom to strengthen the bonds. Furthermore, the
barrier to inversion about the phosphorus is much higher,
also negating any significant distortion. The result is that
the repulsion of the lone pair and the dangling electron
drives the electron out into a Rydberg-like hydrogenic or-
bital, allowing the formation of a fourth bond, regaining
the T; symmetry of the center. The local configuration is
then that depicted in Fig. 12(e), in which the local wave
function is approximately described by four equivalent
Si—P bonds, with the nominally positive charge on the
phosphorus binding the Rydberg-like electron. The situa-
tion for sulfur [Fig. 12(f)] would be similar, except that
both extra electrons are bound into Rydberg-like states
while the sulfur is nominally doubly charged.

The PP calculation for Si:Pg; is somewhat hampered by
the extreme truncation of the paramagnetic orbital, but
still does rather well. As in the nitrogen case, there are
two types of perfect-pairing wave functions that could
conceivably describe this system: the description just of-
fered with four symmetrically equivalent bonds and a
Rydberg-like electron or, alternatively, a broken-
symmetry solution with three equivalent bonds, a lone
pair, and a dangling electron. While for the nitrogen case,
the T, PP wave function was prohibitively higher in ener-
gy than the C;, PP wave function, the two possibilities
for the phosphorus are separated by <0.1 eV [PP(16/32)],
the broken-symmetry solution still being the lower. A R-
PP(4/8) calculation finds the symmetric linear combina-
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tion ( 4, state) of the four equivalent PP(4/8) solutions to
be the ground state. Though not attempted, we expect the
P atom to remain on center just as for the case of the R-
PP result for the nitrogen case in the unrelaxed system
(Fig. 10), since in the phosphorus case the driving force is
to keep the phosphorus on center, the silicon-phosphorus
bond distance being already near equilibrium without any
relaxation. Perhaps the source of the discrepancy between
theory and experiment for the ground state of the phos-
phorus, commonly attributed to central-cell effects, is due
to just such subtle correlation effects. This illustrates that
the situation may be more complex than that of the sim-
ple qualitative description outlined above; the true picture
may not be amenable to a mean-field description of a sin-
gle electron above an occupied valence band.

B. Prospects and limitations of the method

It is extremely encouraging that the cluster model
developed above serves as a useful tool in the investigation
of simple defect systems. The pertinent ground-state bulk
properties are faithfully reproduced in this attempt to ap-
proximate the local aspects of the bulk wave function of
Eq. (8) with the cluster wave function of Eq. (9). The de-
tailed agreement of theory with EPR only serves as fur-
ther confirmation of the validity of this approach.

Manifestly, there are difficulties within a cluster
method. The formal treatment of the host lattice has been
traded for the ability to treat the local region of interest in
greater detail and in the process develop some conceptual
tools useful in the understanding of defect systems. In a
sense, all deep-level defect approaches, even the Green’s-
function methods, treat only a small number of atoms
rigorously and treat the presence of the host in some ap-
proximate manner. The most glaring problem of the
small-cluster approach is the current inability to precisely
locate the energy levels of the defect with respect to the
band edges. Computationally, the levels can only be in-
ferred, but not precisely calculated. Along this vein, how-
ever, even the best current Green’s-function approaches
can claim a computational precision of only +0.5 eV (or
the width of the gap) in the calculations.'* While the
cluster approach, in its current state of development, can-
not locate these levels, the potential precision with which
it can compare to EPR experiments, demonstrated by the
nitrogen hyperfine calculations of this study, stands as a
challenge to other methods.

In their simulations of the host, the terminators act as a
pseudopotential for the host. In principle, this concept
could be further refined, so that the approximation of go-
ing from the bulk [Eq. (8)] to cluster [Eq. (9)] wave func-
tion can be improved. Potential factors left out of the cal-
culation include (a) the response of the more distant lat-
tice sites to the strain about the center of the defect sys-
tem, (b) the polarization of the lattice in response to a
charge disturbance, (c) the location of the band edges, and
(d) truncation of the defect wave-function orbitals. The
problem of (a) is tempered by a judicious choice in the
truncation of the cluster and could be remedied by the use
of a Keating-type model®’ to account for the elastic
response of the lattice. Polarization effects can be ad-
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dressed by some dielectric model. Location of the band
edges is a more difficult task since the excited valence-
band and conduction-band states are by their very nature
delocalized. It could, perhaps, be parametrized, using
some cluster reference energy for the band edges. As
demonstrated for the nitrogen case, the electronic states
for many deep defects will be very localized in nature and
it will be possible to rank energies relative to one another.
The truncation of the wave-function orbitals that extend
greatly beyond the bounds of the first few shells of atoms,
such as the phosphorus shallow donor, will pose the larg-
est problem. Conceptually simple, they remain computa-
tionally out of reach due to computational limitations.
For most deep-level defect systems of interest, the wave
function remains dominantly localized, as in the case of
the nitrogen. Truncating any small amplitude outside of
the cluster should not be energetically significant.

The calculated wave function holds a great deal of in-
formation, in the calculation of the hyperfine terms and in
elucidating the nature of the electronic structure (i.e., the
bonding). The comprehensive study of the direct calcula-
tion of the hyperfine parameters as presented here is ex-
tremely rare. Comparisons to hyperfine values, if at-
tempted, usually involve using Mulliken populations of a
wave function or limit themselves to treating a single site
rigorously.>®

The concepts that we have introduced to describe these
defects stand independently of the technical details of the
calculations. The ability to predict the qualitative
behavior of a defect using simple bonding concepts
without calculations is a valuable tool, often lost in
theoretical studies of defect systems. The clear conceptual
picture presented provides relatively simple explanations
of the observed behavior of several simple defect systems,
explanations not possible within a mean-field approach.
Furthermore, this method possesses a natural generaliza-
tion to the study of defects in amorphous systems where
one-electron band states are not even a zeroth-order ap-
proximation to the electronic structure.

VII. CONCLUSIONS

The goals of this study were twofold. One was to justi-
fy and to demonstrate the utility of using local bonding
concepts as a framework within which to discuss and
predict defect behavior in semiconductors. The qualita-
tive descriptions presented in a previous work?* and ela-
borated on further here illustrate the advantages inherent
in such an outlook. The arguments, based totally on local
bonding considerations, have proven to be a highly suc-
cessful tool for understanding defect behavior. A useful
feature is the commonality of language when one goes
from defects in otherwise crystalline systems to defects in
amorphous systems.

The second goal of this study was to demonstrate the
viability of the localized bond model as the ansatz for a
workable computational scheme. We have demonstrated
that including the dominant correlation effects in covalent
systems, intrapair correlation, results in wave functions
that formally justify the use of the concepts that were
used. The approximation chosen, the perfect-pairing

form of the generalized valence-bond theory, is shown to
be suitable for use in this cluster approach. We provide a
new formal justification for the cluster approximation
within the strategy of mimicking the local electronic
structure of the bulk system, i.e., the local orbitals of Eq.
(8) by the electronic orbitals of the cluster wave function
of Eq. (9). We found that a specially developed terminat-
ing atom can produce just the desired characteristics in
the wave function and rigorous tests find that it repro-
duces the pertinent bulk properties very well.

The use of a small XSiyH*;, cluster was found suffi-
cient to describe a system such as the nitrogen substitu-
tional defect. Keeping the terminators fixed and allowing
the nitrogen and its neighboring silicon atoms to adjust,
the proper Cj, symmetry for the ground state was found
to naturally result. Using the calculated wave function
directly, an in-depth comparison to the most detailed ex-
perimental information about the wave function available,
EPR, produced excellent agreement, supporting the validi-
ty and accuracy of the cluster model and the type of the
wave function used. Unfortunately, in its current state of
development, the approach is unable to directly locate the
electronic energy level with respect to the band edges.
What the calculations do reveal is the extremely large role
that atomic relaxations play in the calculation of a level
position, anticipating the difficulty associated in experi-
mentally locating this level. The atomic relaxation of the
ionized defect from the threefold-coordinated site (op-
timal for the neutral defect) to the optimal ion tetrahedral
geometry involved an energy 0.2 eV larger than the funda-
mental gap. The complementary relaxation of the neutral
defect upon capture of an electron in the tetrahedral
geometry to the optimal neutral C,, geometry returned
only 0.4 eV, a full 1 eV difference. We have further con-
clusively demonstrated that, to describe the crucial local
relaxations properly, it is necessary to use a theory that
has demonstrated its ability to handle a regime where
stretched, broken, and reformed bonds are the norm, not
the exception. The comparison of the uncorrelated HF re-
sults with the perfect-pairing results, which account for
the minimum necessary correlation to describe the break-
ing of a bond, illustrates this point. Strained bonds are
the inevitable consequence of the introduction of defects
into systems where the neighboring host atoms are con-
strained by the lattice.

A final point that emerged is a note of caution against
drawing conclusions about the degree of delocalization of
paramagnetic electrons on the basis of EPR populations
derived from using atomic valence orbitals as a reference.
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