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The NMR properties of the '**W spin system have been measured in the nonstoichiometric com-
pound Na,Ta,W,_,0;, 0<x,y <1. This material, called a bronze, undergoes a metal-insulator
(M-I) transition at x —y =0.18 while maintaining a cubic-crystal phase. The '¥*W NMR proper-
ties measured include the Knight shift, the line shape, the spin-lattice relaxation time T, and the
spin-spin phase memory time T,. The measurements were made in a field of 6.0 T at temperatures
of 4.2 and 77 K. As the sample composition is varied from metallic to insulating, the recovery
curves of the W nuclear magnetization at 4.2 K evolve smoothly from an exponential curve with a
T, of a few seconds to a dramatically nonexponential curve with a distribution of relaxation times
ranging from seconds to days. The combination of the small moment of '®*W and wide, inhomo-
geneously broadened NMR lines inhibits spin diffusion so that spins relax at a rate determined by
their immediate electronic environments. The distribution of T',’s thus probes the distribution of lo-
cal electronic environments in this disordered material.

I. INTRODUCTION

The nonstoichiometric compound Na, WO; 0O<x < 1),
often called a tungsten bronze, undergoes a transition
from semiconducting to metallic behavior as x is in-
creased through a critical x value of about 0.17 (Refs. 1
and 2). On the metal side of the transition (x> 0.2), a cu-
bic perovskite crystal structure is stable, but as x is
lowered below 0.2, a series of structural phase transitions
occurs, obscuring the metal-insulator ( M-I) transition.>*

Although details of the M-I transition remain obscure,
a fairly complete picture of the physics of cubic, metallic
Na, WO; has emerged over the years.> The conduction
band is made up of tungsten 5d and oxygen 2p orbitals.
Sodium atoms act as donors of conduction electrons, with
each sodium contributing one electron to the conduction
band but not drastically altering the wave-function char-
acter of the band. The exact extent to which the sodium
atoms change the conduction-band shape (i.e., whether a
rigid-band model has any validity) is a subject of contro-
versy. In any case, the band picture must be incomplete
in the vicinity of the transition. A band model can
predict a M-I transition only by emptying a band. Conse-
quently, any band model incorrectly predicts that the
transition occurs at x=0.

In 1978, Doumerc and co-workers®’ discovered that the
tantalum-doped bronze Na,Ta,W,;_,0; also undergoes a
M-I transition but maintains a cubic phase on both sides
of the transition. The transition occurs when the compo-
sition parameter x —y is about 0.2. Doumerc proposed
that, on the metal side of the transition, the conduction-
electron concentration goes as x —y. In Doumerc’s view,
sodium atoms act as donors, as in metallic Na, WO;, and
tantalum atoms act as acceptors. His argument is simple.
Tantalum is one place to the left of tungsten in the
Periodic Table; it has one less electron. So when Ta sub-
stitutes for W, it must accept an electron from the con-
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duction band in order to complete the covalent bonds with
its oxygen nearest neighbors. Although there exists com-
pelling qualitative evidence for Doumerc’s x —y model of
simple compensation,® there exists no direct confirmation,
such as Hall-coefficient measurements.

Here we report the results of a nuclear-magnetic-
resonance (NMR) study of the M-I transition in cubic
Na,Ta,W,;_,0;. We have prepared a series of clean,
homogeneous samples which span the M-I transition and
have measured the following !'*W NMR properties:
Knight shift, line shape, spin-lattice relaxation time T,
and spin-spin phase memory time T,.

Most experimental probes of M-I transitions, such as
transport property and tunneling conductance measure-
ments, provide information on some global property of
the system under study. In contrast, NMR experiments
provide a local probe of the electronic structure. The
NMR properties of Na, WO; have been studied by several
groups.”~'** However, because the cubic phase of this
material is stable only in metallic samples, no one has
been able to follow its NMR properties through the tran-
sition. In the tantalum-doped bronze Na, Ta,W;_,0;, we
have a system which can be studied on both sides of the
transition, allowing us to correlate changes in the conduc-
tivity, a global property, with changes in those features of
the local electronic structure which are revealed by NMR.

Doped semiconductors, such as Si:P, represent similar
but more intensively studied systems. An important
difference between the classic impurity systems in Si and
Ge and the bronzes is the relative impurity concentration
at which the M-I transition occurs. The large Bohr ra-
dius of shallow impurities in Ge and Si leads to critical
donor concentrations of 10'7—10' cm~3. For Na, WO;,
the critical sodium content, x=0.2, corresponds to a
donor concentration of 4x10*' cm~3. For the bronzes,
effects associated with the atomic granularity of the lat-
tice are surely important, whereas for Ge and Si the ra-
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dius of the bound-state impurity wave function is much
larger than a host crystal lattice constant, leading to a pic-
ture of impurity atoms randomly occupying positions in a
continuum. Comparison of the properties of these rather
different materials, doped semiconductors and the
bronzes, may help determine which features of the M-I
transition are universal and which are system dependent.

II. SAMPLE PREPARATION AND ANALYSIS

The samples are prepared in two stages in a procedure
which adds refinements to those of several previous work-
ers.”>~17 First, by the process of fused-salt electrolysis,
we grow large single crystals about a centimeter on an
edge. The starting materials in the electrolytic growth are
sodium tungstate, Na,WQ,, tungsten trioxide, WO;, and
tantalum oxide, Ta;0s. In this way, we can make metallic
samples with compositions in the range 0.55 < x <0.85,
0<y <0.18. Then, to make weakly conducting and insu-
lating samples, we must shatter the electrolytically grown
single crystals and diffuse some of the sodium out of re-
sulting debris by a process that involves baking at high
temperatures. The final product is a chemically uniform
powder with particle size of 30—100 um. The same batch
which produces a powder sample for NMR measurements
also produces a few small single-crystal chips of nearly
the same composition. These chips, with dimensions of
less than a millimeter, are used for conductivity measure-
ments. The samples are quite homogeneous with varia-
tions in sodium content x less than 0.002 and variations in
tantalum content y of about 0.005.

Samples are analyzed by a combination of electron-
probe microanalysis (EPMA) and precise lattice-constant
measurements. Brown and Banks'® discovered a linear re-
lation between the lattice constant and the sodium content
x in Na,WO,. This relation allows one to determine x
from Debye-Scherrer x-ray powder patterns. Samples of
Na, WO; with x determined from lattice-constant mea-
surements are then used as sodium standards in EPMA
analysis of tantalum-doped samples. Because tungsten
and tantalum are adjacent in the Periodic Table, W can be
used as an internal standard for the analysis of Ta in
Na,Ta,W,_,0;. With this procedure, we can determine
x and y with absolute accuracies of +0.01 and +0.005,
respectively.

The issue of sample homogeneity is central to any ex-
perimental study of the electronic structure of disordered
systems. If the scale of inhomogeneity is large, say, mi-
crometers, as in a percolating network of micrometer-
sized metallic particles in a dielectric medium, then classi-
cal percolation is a valid model. If the inhomogeneity is
truly microscopic, as in a doped semiconductor, then
quantum effects are dominant, and one must seek quan-
tum models: Anderson localization, interaction effects,
etc. We believe that the samples of Na, Ta, W,_,0O; stud-
ied here are systems with truly microscopic disorder; that
is, the sodium and tantalum atoms are distributed among
the available sites in the atomic lattice at random. The
evidence for homogeneity comes from the appearance of
polished surfaces, EPMA scans, x-ray linewidths, and
NMR absorption line shapes. We discuss the first three

of these clues here. Discussion of the significance of the
NMR line shapes is given in Sec. VI.

The color of the bronzes varies. dramatically with com-
position. As the parameter x —y varies from 0.9 to 0.1 in
Na,Ta,W;_,0;, the color changes from a yellow-green
for 0.9 to gold for 0.75, red for 0.6, purple for 0.5, blue
for 0.4, dark royal blue for 0.3, and a blue-black below
0.2. Small variations in the color of a smooth, polished
surface indicate composition variations. EPMA scans of
inhomogeneous samples show that variations in x or y as
small as 0.01 are easily seen as color variations on flat sur-
faces. The uniform color of our samples indicates that
they are homogeneous on the scale of visible light, name-
ly, 1 pm.

In those samples which undergo a sodium-dilution
bake, the final sodium content must be homogeneous on a
microscopic scale since a concentration gradient could not
persist at the high temperatures reached during baking.

An upper bound on the inhomogeneity in the Na con-
tent is set by the width of the lines in x-ray powder pat-
terns. According to the Brown-Banks relation mentioned
above, any variation in the sodium content x would show
up as a variation in the lattice constant. If we assume
that the observed linewidth in our samples is due entirely
to variations in the lattice constant, then x is constant
throughout the samples to within about 0.015. This is al-
most certainly an overestimate, however, because the ob-
served linewidth is near the limit of instrumental resolu-
tion. The sensitivity of the x-ray linewidths to variations
in the Ta content is not sufficient to allow useful bounds
to be set on the Ta inhomogeneity.

III. NMR INSTRUMENTATION

This section describes the experimental apparatus and
procedures used for pulsed NMR measurements of the
"W spin system in Na,Ta,W;_,0;. Knight shift, ab-
sorption line shape, spin-lattice relaxation time 7', and
spin-spin phase memory time T, were measured in a field
of 6.0 T at a temperature of 4.2 K. Some measurements
were also made at 77 K.

183W has spin 3 and a natural abundance of 14.3%.
The other naturally occurring isotopes of W all have spin
zero. W has one of the smallest magnetic moments of
all spin-% nuclei. Its moment is 0.115 nuclear magnetons,
about 5; of the moment of the proton. The small mo-
ment, along with a low natural abundance, makes
tungsten NMR very difficult and places stringent require-
ments on our pulsed NMR spectrometer.

The 6.0-T field is produced by an Oxford Instruments
superconducting magnet. At that field, the '®*W reso-
nance occurs at 10.6 MHz. The field variation over the
sample volume is about 0.050 G, and the field drift is less
than 1 part in 107 per day. This excellent field stability is
essential for our measurements of very long spin-lattice
relaxation times—measurements which often required
days of signal averaging.

Sample temperatures of 4.2 and 77 K are established by
immersing the sample directly in liquid helium or liquid
nitrogen.
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Much of the NMR electronics used in this study came
to us compliments of Clark. The transmitter, a venerable
unit built by Clark while a graduate student, is a class-C,
tuned rf amplifier which can deliver about 2 kW of out-
put power during a pulse.!*? The tank circuit and asso-
ciated matching circuits follow a design by Clark and
McNeil.2! The preamp is a broadband, low-noise, high-
input impedance amplifier also designed and built by
Clark.

Because the magnetic moment of tungsten is so small
and because the tungsten linewidths in our bronze samples
are so large (see Sec. IV), a very large rf field H, is re-
quired in order to keep the lengths of our 7/2 pulses short
compared to the spin-dephasing time T5. Our Clark
spectrometer produces an H, of about 240 G in the sam-
ple coils used in this experiment. During a pulse, the peak
voltage across the tuning capacitor of the tank circuit is
6000 V. Because of the high voltage, the tuning capaci-
tor, an air-core capacitor with a plate separation of 2.5
mm, had to be painted with several coats of a high-
breakdown-voltage dielectric in order to prevent arcing.

Each NMR sample consists of 6 g of bronze powder
mixed with 1 g of tungsten-metal powder and dispersed in
a block of paraffin wax. The tungsten metal is used as a
Knight-shift reference.?? Dispersion in wax makes the
samples nonconducting, ensuring good rf penetration and
minimizing eddy-current losses in the tank circuit.

Because of the high power of the transmitter, ringdown
noise lasting as long as 0.5 msec is seen by the receiver
following a pulse, in spite of the fact that the sample coil
is potted in 1266 Stycast (made by Emerson and Cuming,
Inc.) to minimize magneto-acoustic ringing. The broad
NMR lines of the samples, with T’s as short as 50 usec,
generate free-induction decays (FID’s) which are always
obscured by ringdown noise. For this reason all of the
NMR measurements are made on spin echoes. For the
bronzes, T, is typically 10 msec, and so it is possible to
separate the spin echo from the last pulse by 1 or 2 msec
without significant loss of signal.

Standard pulse sequences are used in the measurements
of Knight shift, T, and T,. For these measurements,
signal averaging is required. This is accomplished with a
Nicolet series 1170 signal-averaging system with a 1-MHz
digitizer. Unfortunately, the Nicolet machine, like most
digital electronics, produces so much rf noise that it can-
not be connected directly to the NMR spectrometer
without completely scrambling the tiny nuclear signal.
To solve this problem, the trigger input of the Nicolet is
isolated from the pulse generator of the NMR spectrome-
ter by an opto-isolation switch, and the signal input of the
Nicolet is isolated from the receiver by a unity gain in-
strumentation amplifier. With these buffers in place, sig-
nals can get into the Nicolet, but no noise can come out.

The absorption line shape is measured by the Clark
method.'” In the Clark method a boxcar integrator is
used to perform an analog Fourier transform of the FID.
Briefly said, the gate of the boxcar is set to cover the en-
tire spin echo, and the integrated area of the echo is mea-
sured as the field is swept through resonance. The echo
area versus field, or the equivalent frequency, is the ab-
sorption line shape.

IV. EXPERIMENTAL RESULTS

Figure 1 is a plot of the conductivity versus tempera-
ture for several different samples of Na,Ta,W,_,0;.
The location of Mott’s minimum metallic conductivity®*
O min is indicated on the figure. The value of op,;, is calcu-
lated from the relation

O min=(0.025)e%/%a . (1)

The mean distance between scattering centers, a, is taken
to be

a=n1", 2

where n, is the critical conduction-electron concentration.

The conductivity of the x=0.34, y=0.16 sample has a
remarkable temperature dependence. Its conductivity is
proportional to temperature over the whole range studied
(1.6< T<300 K). In a previous paper,’* we discussed
these data in some detail and concluded that this sample
has a composition which puts it very close to the M-I
transition. (We should mention that although the conduc-
tivity of the x =0.27,y=0.16 sample appears to be ap-
proaching a nonzero value as T—0, we nevertheless re-
gard this sample as an insulator since its low-temperature
conductivity is at least 6 orders of magnitude below o pip. )

Figure 2 shows the '®*W magnetization recovery curves
at T=4.2 K in a field of 6.00 T for four Ta-doped sam-
ples that span the M-I transition. (NMR sample numbers
and compositions are listed in Table 1) The amplitude of
the spin echo, which is proportional to the nuclear mag-
netization, is plotted versus the time following a satura-
tion comb which sets the nuclear magnetization to zero.
The data have been scaled so that equilibrium magnetiza-
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FIG. 1. dc conductivity vs temperature for several samples of
Na,Ta,W,;_,0;.
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FIG. 2. '3W magnetization recovery curves for four samples
spanning the M-1 transition. The lines through the data are fits
to the expression for multiple relaxation-time recovery, Eq. (3).

tion corresponds to an echo height of 1.0.

Sample 2, a relatively good metal, shows nearly perfect
exponential recovery. The solid curve drawn through the
data for that sample is a pure exponential recovery curve
with T =3.0 sec. The other samples cannot be character-
ized by single relaxation times because their recovery
curves are nonexponential. That these curves are nonex-
ponential can be seen from Fig. 3, which displays ex-
ponential recovery curves with four different time con-
stants along with experimental data for sample 9, the in-
sulator. One should note that on this linear-log plot all
exponential curves have the same shape. They are simply
translated along the time axis. By comparing the data for
the insulating sample with the exponential curves, one can
see that the insulating sample is properly described by a
distribution of relaxation times.

In order to extract the distribution of relaxation times,
the recovery curves for each sample were fitted to an
equation of the form?*
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FIG. 3. Exponential magnetization recovery curves and data
for the nonexponential recovery of the insulating sample (sample
9) at T=4.2 K.

where the T}’s are fixed at 1,10,100, . .., 100000 sec. The
A;’s are the fitting parameters. A; is interpreted as the
fraction of the nuclei with relaxation times near T;. The
fits are plotted in Fig. 2 and the A;’s are displayed in Fig.
4. Also shown in Fig. 4 are the A4;’s resulting from a fit
to the recovery curve for sample 4 (x =0.26, y=0). For
this sample an excellent fit resulted from fixing the T;’s
in Eq. (3) at 1, 3, 10, 30, 100, and 300 sec. Estimated un-
certainties in the A; values lie in the range 0.02—0.04.
These error estimates are confirmed by the reproducibility
of the A; values of samples 7 and 8, which have nearly
the same composition (data for sample 7 not shown here).

From Fig. 4 we see that samples near the transition and
on its insulating side are characterized by a wide distribu-
tion of spin-lattice relaxation times, with the distribution
broadening and shifting toward longer times in the more
insulating samples. In samples 8 and 9, the most insulat-
ing samples, approximately 10% of the nuclei relax in
seconds—a relaxation-time characteristic of metallic
environments—while the other nuclei relax in minutes or
hours, characteristics of spin-% nuclei in insulators.

We will argue in Sec. VI that the.'®*W nuclei are com-
pletely uncoupled from one another, i.e., that there is no
nuclear-spin diffusion. If this is the case, then each nu-
cleus relaxes at a rate determined entirely by its immedi-
ate electronic environment, and the distribution of relaxa-
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FIG. 4. Distribution of spin-lattice relaxation times resulting
from fits of the data in Fig. 2 to Eq. (3). Note that the bin size
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tion times senses the distribution of local electronic envi-
ronments.

Figure 5 displays the correlation between the conduc-
tivity and the distribution of relaxation rates. Both the
Ta-doped and the undoped samples follow a common
trend. As the conductivity is decreased through the M-I
transition, the distribution of rates widens continuously.
Note that the fastest-relaxing nuclei in all of the samples,
both metallic and insulating, have T,’s of a few seconds.
Also note that no sudden change in the distribution of lo-
cal relaxation rates marks the M-I transition. This last
property is characteristic of second-order phase transi-
tions. Examined locally, the system evolves smoothly in
the vicinity of the transition and gives no hint of the dras-
tic conductivity changes occurring on a global scale.

Some T; measurements were made at T=77 K as well
as at T=4.2 K. Figure 6 shows the magnetization
recovery curves for sample 5 (x =0.24, y=0) at 4.2 and
77 K. Also plotted are the 77-K data artificially shifted
to times that are longer by a factor of 77/4.2. We see
from the coincidence of the shifted 77-K data and the
4.2-K data that each T, in the distribution of T’s is pro-
portional to 1/7T. In Fig. 7 we see the same behavior in
sample 6 (x =0.43,y=0.16). Sample 6 is a dirty metal
with a conductivity at or near o.;, The relation
T, < 1/T was derived by Korringa for the case of clean
metals,?® and it is perhaps surprising to see this relation
obeyed in such a dirty system.

Table I lists peak Knight shifts, spin-lattice relaxation
times T, and spin-spin phase memory times T, for the
bronze samples. The peak Knight shift is the shift of the
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FIG. 5. Distribution of relaxation rates vs conductivity for
several samples of Na,Ta,W,_,0;. The solid circles indicate
1/T}, where T is the time required for the nuclear magnetiza-
tion to reach 1—1/e of its equilibrium value. The bars give a
measure of the width of the distribution of relaxation rates.
About 20% of the nuclear population have relaxation rates out-
side the bounds marked by the bars. 10% have faster rates;
10% have slower rates.
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FIG. 6. Magnetization recovery curves for sample 5

(0=~ 100,,) at T=4.2 and 77 K. 77-K data are also shown ar-
tificially shifted to times that are longer by the factor 77/4.2.

peak of the absorption line. All samples exhibited inho-
mogeneously broadened lines and so are properly charac-
terized by a distribution of shifts rather than a single shift
(see Fig. 8). Monoclinic tungsten trioxide, WO;, is taken
as the Knight-shift reference. For samples 4—9, which
exhibit nonexponential relaxation, 7', is defined as the
time required for the magnetization to reach 1—1/e of its
equilibrium value.

Also listed in Table I are the spin-lattice relaxation
times of the insulators, tungsten trioxide, WO;, and sodi-
um tungstate, Na,WO,. No signal was seen in the
Na,WO, sample even after it was allowed to relax in a
field of 6.0 T at T=4.2 K for 16 h. This null result sets a
lower limit of 160 h for the T, of '33W in sodium tung-
state. In WOs, no signal was seen after 1 h of relaxing,
but a weak signal was seen after 18 h. On the basis of this
single data point, we calculate a T; of 60x10 h in WO,.
Note that these times, 160 and 60 h, are longer than the
time required for full relaxation of the most insulating
bronze samples ( ~24 h).

We have computed T, for '**W in the bronzes due to
W-Na and W-Ta nuclear-dipole—dipole coupling® and
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FIG. 7. Magnetization recovery curves for sample 6

(0~0nmin) at T=4.2 and 77 K. As in Fig. 6, 77-K data are also
shown shifted to times that are longer by the factor 77/4.2.
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TABLE I. NMR properties of Na,Ta,W;_,0s.

Sample x y T (K) K(WO0;) T, (sec) T, (msec)
1 0.60 0 4.2 —0.23(2)% 2.3240.07
2 0.61 0.17 4.2 —0.19(1)% 3.0 0.1
3 0.60 0.16 4.2 —0.20(2)% 3.5 £0.2
4 0.26 0 42 —0.086(5)% 16*
5 0.24 0 4.2 —0.045(5)% 17 14.2+0.4
77 —0.100(2)%
6 0.43 0.16 4.2 + 0.012(5)% 127
77 —0.004(5)%
7 0.32 0.16 42 + 0.016(1)% 1870
8 0.33 0.16 4.2 + 0.014(5)% 1740 9.0+0.4
9 0.26 0.16 4.2 + 0.012(2)% 4920 8.4+0.4
WO; 0 60110 h
Na,WO, ? >150 h

2Samples 4—9 exhibit nonexponential relaxation. For these, T, is defined as the time required for the
magnetization to reach 1—1/e of its equilibrium value.

find good agreement with the measured values listed in
Table I. The contribution to T, from W-W nuclear-
dipole coupling is negligible.

In Fig. 8 are displayed the peak Knight shifts and full
linewidths at half maximum (FWHM) for selected sam-
ples. The metallic samples exhibit very wide, inhomo-
geneously broadened lines with overall negative Knight
shifts. Our results for metallic samples are consistent
with those of Weinberger's NMR study'® of metallic
Na, WO;. The negative Knight shift indicates that core
polarization is the principal mechanism contributing to
the shift.?’” The wide line is caused by a distribution of
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FIG. 8. '®W Knight-shift spread vs conductivity in

Na,Ta,W,_,0s. Solid circles indicate the position of the peak
of absorption line. The dashed lines give the FWHM linewidths
of the “fast relaxers,” those with T';’s <30 sec. The solid lines
give the FWHM linewidths of the full nuclear population, both
slow and fast relaxers.

Knight shifts corresponding to a distribution of local elec-
tronic environments in these disordered materials. As we
move through the M-I transition, the peak Knight shift
falls to nearly zero, and the distribution of shifts collapses
around that zero.

The linewidths for the more insulating samples, those
with a distribution of relaxation times, are difficult to
characterize because nuclei with different relaxation times
were found to have different line shapes. Those nuclei
that relaxed quickly (seconds) had a broader line shape;
those that relaxed slowly (hours) had a narrower line.
Two linewidths are shown in Fig. 8 for each of the more
insulating samples. The larger linewidth (shown by a
dashed line) is that of the “fast relaxers” (those nuclei that
relax within about 30 sec) and is measured by the Clark
technique described in Sec. III (Ref. 28). The smaller
linewidth (shown by a solid line) is that of all the spins
(slow as well as fast relaxers) and was determined from
the spin-echo shape at long times.

V. REVIEW OF ELECTRON-NUCLEUS
COUPLING MECHANISMS

In preparation for a discussion of the NMR results that
were presented in Sec. IV, we list the different interactions
which couple electrons to spin-+ nuclei in solids and
which are responsible for the Knight shift and the spin-
lattice relaxation rate in metals. Among the most impor-
tant mechanisms are the following:

(a) The contact interaction with unpaired electrons at
the Fermi surface.

(b) Core polarization, the contact interaction with
closed-shell electrons which have a nonvanishing spin
density at the nucleus as a result of an exchange interac-
tion with polarized electrons at the Fermi level.

(c) The orbital interaction between the nuclear moment
and the orbital moment of electrons in partly filled shells.

(d) The nuclear-spin—electronic-spin dipolar interac-
tion.
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There are at least two other possible spin-lattice relaxation
mechanisms: spin diffusion to paramagnetic impurities
and coupling to nuclei of another species. In clean metals,
the relaxation rates due to these mechanisms are negligi-
bly small, but because we will be considering extremely
long T'\’s in samples near the M-I transition, we cannot
ignore any mechanism. In Sec. VI we will argue that im-
purity relaxation is negligible in our samples. With regard
to coupling to other nuclear species, we have estimated
the '33W spin-lattice relaxation rate due to '*W-2’Na di-
pole coupling in Na,WO; (Ref. 8) and find that it is
smaller than 10~7 sec™!. This rate is 2 orders of magni-
tude smaller than the smallest rate seen in any of our sam-
{Jles and thus small enough to be negligible. The
$3W-181Ta coupling is expected to yield a comparable re-
laxation rate and so can also be safely ignored. Coupling
to 0, the only naturally occurring isotope of oxygen
with nonzero spin, is negligible because of its low natural
abundance (0.04%).

The contact interaction is usually the dominant cou-
pling mechanism in metals of low atomic number. If the
nearly-free-electron approximation is valid, the contact-
interaction-induced Knight shift K and spin-lattice relax-
ation time T'; obey the Korringa relation®

KT\ T =(y, /v, hi/4mk =5 . ()

T is the temperature, ¥, and ¥, are the electronic and nu-
clear gyromagnetic ratios, respectively, and k is
Boltzmann’s constant. § is called the Korringa constant.

The core-polarization (CP) interaction is often impor-
tant in d-band metals and causes a Knight shift K, that is
negative; i.e., the induced local field subtracts from the
external field.

Using band theory, Yafet and Jaccarino?’ showed that
the CP-induced Knight shift X; and spin-lattice relaxa-
tion time T4 obey a Korringa-like relation

KiT\,T=8/q, (5)

where 8 is the Korringa constant and g is a parameter
which lies between % and —;— and depends on the propor-
tion of ¢,, d orbitals in the electronic wave functions at
the Fermi surface. For a metal whose conduction band is
made up primarily of ¢,, orbitals, g is near +. According
to band-structure calculations,”3° Na,WO; is such a
metal.

The orbital interaction produces a Knight shift K.,
and a spin-lattice relaxation time Ty o in p- and d-band
metals.’! Because the orbital Knight shift is a second-
order effect, no Korringa-like relation analogous to Egs.
(4) and (5) holds for the orbital interaction.

The dipole interaction produces no shift in metals of
cubic symmetry and an anisotropic shift in metals of
lower symmetry.3? The spin-lattice relaxation rate due to
the dipole interaction can be expressed as a fraction of the
rate due to the orbital interaction.’! For d-band metals
the fraction is about 0.1. We will assume that the dipolar
interaction is negligible in the bronzes.

In the transition metals, contact, core-polarization, and
orbital interactions can all contribute significantly to the
total Knight shift and spin-lattice relaxation rate. The to-

tal relaxation rate and shift can be written
/T, =(1/T)s+(1/T)g+(1/T ) » (6)
K=K;+K;+Kom - @)

Note that the rates always add, but that the shifts can
cancel because the core-polarization shift is negative.

The contributions of the different rates depend on the
relative size of p;(Er) and py(EF), the s- and d-orbital
contributions to the density of states at the Fermi level.
In general,® (1/T,), < TpXEf) and (1/T})g, (1/T})om
o« Tp3(Ep). The nuclei are relaxed through spin-flip col-
lisions with conduction electrons. However, because an
electronic moment is so much larger than a nuclear mo-
ment, simply flipping spins in the external field will not
conserve energy. The electron must have an empty elec-
tronic state nearby in energy to scatter into in order to
take up the energy difference. Only states within kT of
the Fermi surface have such empty states available. For
this reason, none of these mechanisms can relax spin-—;-
nuclei in band-gap insulators. In such systems the dom-
inant relaxation process is usually spin diffusion to
paramagnetic impurities.3* If the material is very pure,
T, can be unmeasurably long—days or months.

VI. DISCUSSION OF RESULTS

A. NMR properties of the metallic bronzes

We begin our discussion of the interpretation of the
NMR results by considering samples with high values of
x —y. In these good metallic samples, we expect the for-
mulas in Sec. V, developed within the approximations of
band theory, to be valid. The peak Knight shifts in these
samples are negative. Evidently, core polarization makes
the dominant contribution to the shift. We might hope
that core polarization also dominates the relaxation rate.
Band-structure calculations? for NaWO; indicate that the
conduction band is made up almost entirely of tungsten
5d(t5,) and oxygen 2p orbitals, with very little tungsten
6s character, and so we have some reason to expect that
the contact interaction is small. If CP is the only mecha-
nism at work, then Eq. (5), the CP Korringa relation, is
valid. Taking ¢ =+, as the band-structure calculations
indicate, Eq. (5) yields

(KT T)cp=4.6X10"* secK .

Table II lists Korringa products, KT, T, for each of
four metallic samples. In these samples, the peak Knight
shift varies from —0.25% to —0.19% and T, (at 4.2 K)
varies from 1.6 to 3.0 sec, yet the Korringa product is

TABLE II. Values of K2T,T for some metallic samples of
Na,Ta,W,_,0;. Data for the first two samples shown are from
Weinberger’s work (Ref. 13).

x y KT, T (1073 secK)
0.84 0 4.7+0.5
0.74 0 5.21+0.8
0.60 0 5.1+1.0
0.61 0.17 4.61£0.6
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constant within experimental errors and equal to about
5% 1077 secK.

The experimental value of K?T,T is a factor of 10
smaller than the theoretical value obtained by assuming
that CP is the only coupling mechanism. This discrepan-
cy could be due to a contact interaction, either with W 6s
or O 2p orbitals. The band-structure calculations indicate
that O 2p is the more likely suspect.

Narath gives a Korringa-like relation between the total
shift and relaxation rate when the contact and CP interac-
tions are the only coupling mechanisms present.3 If we
can ignore the orbital interaction, Narath’s formula allows
us to compute the relative contributions of contact and
CP interactions to the total shift and relaxation rate. The
results are®

Ky/K,=—1.8, (1/T))q/(1/T});=1.1.

(Following a common convention, the subscript s refers to
the contact interaction even though the interaction may,
in this case, arise from the O 2p orbitals.)

If the orbital interaction was significant in the bronzes,
then we would not expect K27, T to be a constant. This
is because, as mentioned in Sec. V, the orbital shift and re-
laxation rate do not obey a Korringa relation.

We conclude that the contact and core-polarization in-
teractions are the dominant electron-nucleus coupling
mechanisms in the metallic sodium tungsten bronzes. Or-
bital and dipolar interactions are insignificant. The CP
Knight shift is about twice the contact shift, and the con-
tributions of the two mechanisms to the total relaxation
rate are about equal.

The line shapes for three metallic samples (all with
O >>0in) are shown in Fig. 9. As mentioned in Sec. IV,
the wide, inhomogeneously broadened lines are due to a
distribution of local Knight shifts arising from a distribu-
tion of local electronic environments. We would like to
know what feature of the local electronic environment
determines the shift. Sundfors and Holcomb,? in consid-
ering doped Si, argued that the local conduction-electron
concentration n, determines the local shift. In the case of
Na, Ta,W,_,0;, we are faced with the problem of com-
puting n, given the (presumably random) local configura-
tion of sodium donors and tantalum acceptors. The prob-
lem is further complicated by the presence of two
Knight-shift contributions of competing sign. We will
simply ignore this last complication and assume that the
Knight shift K is negative and that K «n,. The fact that
the transition occurs near x=0.2 in Na,WQO; (which is
approximately the value for first-nearest-neighbor per-
colation) indicates that the local physics is dominated by
nearest-neighbor (NN) interactions.’® Therefore, we sug-
gest, as a crude first approximation, that n, and K at a
particular tungsten site are proportional to the number of
first-NN sodium atoms minus the number of first-NN
tantalum atoms (NN Na’s—NN Ta’s). In Fig. 9 we plot
the probability distribution of NN Na’s— NN Ta’s for the
three samples whose measured line shapes are shown.
The distributions, which are normalized to unit peak
height for ease of comparison, are computed assuming
random, uncorrelated placement of sodium and tantalum
atoms.

normalized probability
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FIG. 9. Normalized probability distributions of number of
nearest neighbors in Na,Ta,W,_,O; (see text) for three dif-
ferent compositions (top) and measured line shapes for samples
with the same three compositions (bottom).

We see a qualitative similarity between the two plots.
(But note well that the origin and the scale of the x axes
have been adjusted for best comparison.) The asymmetry
in the measured line shape of the (x=0.24, y=0) sample
appears in the model. The model also correctly predicts
the relative positions of the peak Knight shifts in the
(x =0.60, y=0) and (x =0.60, y=0.16) samples. Howev-
er, the predicted linewidth of the undoped sample is too
large compared to that of the tantalum-doped sample.
Also, by design, the model cannot explain the positive
Knight shifts seen in parts of the (x =0.24, y=0) line.
The positive and negative Knight shifts in the
(x =0.24, y=0) sample as well as in more insulating sam-
ples (see Fig. 8) arise from the competition between the
contact and core-polarization interactions. Evidently, in
the more insulating samples the local wave-function char-
acter fluctuations from site to site in the lattice—here
more s-like with a positive shift and there more d-like
with a resulting negative shift.

The great increase in the linewidth of a metallic bronze
upon addition of tantalum can be understood qualitatively
in the following terms. A tantalum atom in the bronze
matrix has a net charge of — e (it is an acceptor). Friedel
oscillations in the electronic charge density appear around
the tantalum site as the conduction electrons attempt to
screen out the charged impurity. This variation in the to-
tal conduction-electron charge density leads to a variation
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in the local Knight shift. This mechanism has been in-
voked to explain the broad Knight-shift distributions that
are seen in a variety of alloys.>’

B. NMR properties of the barely metallic
and insulating bronzes

An unusual feature of the NMR properties of the
bronzes is the appearance of dramatically nonexponential
spin-lattice relaxation in the more insulating samples. In
most systems of spin-% nuclei in solids, the nuclei ex-
change energy among themselves (through dipole-dipole
coupling, etc.) faster than they give up energy to the lat-
tice. In such a case, the spin system remains in rough
internal thermal equilibrium (with a well-defined spin
temperature distinct from the lattice temperature), and the
nuclear magnetization relaxes exponentially.

We now argue that, in contrast to the usual situation
just described, !®3W spin diffusion does not occur in
Na,Ta,W,;_,03, at least not in the more insulating sam-
ples. In the tungsten bronzes the combination of the ex-
tremely small moment of '¥*W and a wide spread in local
fields kills spin diffusion and makes establishment of a
spin temperature impossible. Each nucleus relaxes at a
rate determined by its immediate electronic environment.
There is no single time constant for the whole spin sys-
tem, and nonexponential relaxation is the result.

There are at least two internucleus coupling mecha-
nisms which can produce nuclear spin diffusion: the
direct dipole-dipole interaction and the Ruderman-Kittel
interaction, an indirect exchange coupling between nuclei
mediated by conduction electrons.’® In order for spin dif-
fusion to occur, the dipole- or exchange-field-coupling
nearest-neighbor nuclei must be greater than any variation
in the local fields at the two nuclei—a variation due to,
say, an inhomogeneous external field or a distribution of
local Knight shifts. If this condition is not satisfied,
energy-conserving mutual spin flips cannot occur, and
spin diffusion is inhibited. For the bronzes, the distribu-
tion of local Knight shifts indicates a huge spread in the
local fields—hundreds of gauss in the metallic samples
and 20 or 30 G in the most insulating sample. Compared
to this large inhomogeneous linewidth, the dipole field
due to a nearest-neighbor '33W nucleus is minuscule
(~0.01 G).

The magnitude of the exchange field in metals is diffi-
cult to estimate, but it is often larger than the dipole field.
For example, Dubson® measured the strength of the ex-
change interaction which couples nearest-neighbor %W
nuclei in W metal and found it to be about 5 times larger
than the strength of the dipole coupling. Even though the
exchange field in the bronzes may be much larger than the
dipole field, it is certainly not as large as the linewidth. In
any case, the exchange coupling only exists in the metallic
samples; it vanishes in the insulating samples. Since the
coupling is mediated by conduction electrons, as soon as
the electron mean free path is less than a lattice constant
(this occurs when o < o;,), the coupling fades away.

Our argument implies that spin diffusion is inhibited in
both insulating and metallic bronzes. However, samples
with o >>0,;, exhibit near-prefect exponential relaxation

[for example, sample 2 (x =0.60,y=0.16)]. Either our
argument breaks down for the metal samples (through the
appearance of a spin-coupling mechanism not included in
our simple picture) or the uncoupled nuclei all relax at the
same rate, a situation in apparent conflict with the spread
in hyperfine coupling strengths indicated by the broad
Knight-shift distribution.

We can reject two alternate interpretations of the
nonexponential recovery curves. The first interpretation
is that our samples contain magnetic impurities, such as
iron. Slow spin diffusion to paramagnetic impurities
might result in nonexponential relaxation.>* However, T
measurements in the insulators WO; and Na,WO, (see
Table I) indicate that our samples are clean. Any trace
impurities in the bronze samples probably came from the
starting materials, WO; and Na,WOQO,. (The Ta,O; used
in the bronze manufacture was of much higher purity
than the tungsten compounds.) Since impurity relaxation
is exceedingly slow in the starting materials, it seems safe
to assume that it is not the dominant relaxation mecha-
nism in the product.

A second possible interpretation of the nonexponential
behavior is that our samples are grossly inhomogeneous.
Suppose that the bronze samples were so inhomogeneous
that the Na (or Ta) atoms formed large, dense clumps, mi-
crometers in size, separated by large Na- (or Ta-) poor re-
gions. One could then regard the samples as consisting of
small metallic grains dispersed by insulating grains. In
that case, the observed distribution of relaxation times has
a simple explanation. The fast-relaxing nuclei are the
ones in the metallic grains, and the slow relaxers are in the
insulating grains. However, this clumping model is incon-
sistent with both the narrow x-ray linewidths seen in our
samples*’ and the narrow NMR linewidths of the insulat-
ing samples shown in Fig. 8. If the insulating samples
were granular, then we would see a very broad NMR line,
with the metallic environments producing the large
Knight shifts seen in the metal samples and the insulating
environments producing much smaller shifts.

To reiterate, since no spin diffusion occurs in this sys-
tem, the distribution of relaxation rates senses the distri-
bution of local electronic environments. In some sense,
the fast relaxers are in metal-like locales, while the slow
relaxers see insulating environments.

We would like to have a model which connects the local
relaxation rate to some feature of the local electronic
structure. Unfortunately, there exists no general theory of
NMR in solids near a M-I transition. In the absence of a
comprehensive model, we compare our results with the
predictions of the standard Korringa model, which is
strictly valid only for clean metals, and the Warren-
Gotze-Ketterle model*"*? of enhanced relaxation in dirty
metals. Both of these models assume the existence of a
spin temperature and single relaxation rate. :

We begin by noting a qualitative similarity between our
results and the behavior predicted by the Korringa model,
Eq. (4). In sample 6, which has a conductivity near
Mott’s oy, We find T proportional to 1/T for each T,
in the distribution of T;’s. From Fig. 8 we see that the
more insulating samples with the longer relaxation times
possess narrower distributions of Knight shifts. And
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within each sample, the fast relaxers have the broader dis-
tribution of Knight shifts, while the slow relaxers have a
narrower spread in shifts. We see a correlation between
the small shifts and long relaxation times just as in the
Korringa formula. A more detailed comparison with the
Korringa model is inhibited by the presence of at least
two electron-nucleus coupling mechanisms, core polariza-
tion and the contact interaction.

It is tempting to conclude that some kind of local Kor-
ringa relation is at work, that the local relaxation rate is
given by 1/T, ocp,zocal(Ep), where pjo., is a local density of
states, the density of those states that have appreciable
wave-function overlap with the nucleus. The notion of a
local Korringa relation in samples near a M-I transition is
not without precedent. Very similar behavior (nonex-
ponential relaxation with the spread in T,’s correlated to
the spread in shifts) has been seen in doped silicon and in-
terpreted in the same way.**~4°

Unfortunately, we have not been able to test one impor-
tant prediction of the Korringa model, the field indepen-
dence of the Korringa product K?T,T. We have data
only at H=6 T and T>4.2 K. At lower fields, poor
signal-to-noise ratios make measurements impossible with
our present apparatus.

Paalenen et al.* found a strong field dependence in the
relaxation rate of 2°Si in doped Si at millikelvin tempera-
tures near the M-I transition. Their results underscore
the need for field-dependence data to completely charac-
terize the spin dynamics in our system.

The suggestion that electron-nucleus spin-flip collisions
remain the dominant nuclear relaxation mechanism on
both sides of the M-I transition seems in conflict with the
picture of disorder-induced localization of electronic
states. Once the electronic eigenstates are localized, each
nucleus sees a discrete spectrum of states. One might ex-
pect this to drastically inhibit nuclear relaxation since
empty states at the Fermi level are needed in order for
energy-conserving spin-flip collisions to occur. Using a
density of states derived from Zumsteg’s®’ specific-heat
measurements in Na, WO;, we estimate an energy-level
spacing of about 20 meV for a region containing 100
atomic cells. The electron spin-flip energy 2ugH is only
0.7 meV at H=6.0 T. Thus, the conditions seem ripe for
inhibition of the nuclear relaxation rate as a result of
unavailable energy states. However, NMR studies of
small platinum particles (in which the localization length
is clearly the particle size) indicate no such inhibition of
the relaxation rate.*®*® So far as we know, the reason for
this behavior is not certainly known. Perhaps lifetime
broadening of the electronic levels produces the necessary
quasicontinuum.

Warren*! and Gotze and Ketterle*? have developed a
model for nuclear relaxation in dirty metals. The model
assumes the existence of a spin temperature and that the
contact interaction is the dominant electron-nucleus cou-
pling mechanism. The model predicts that as o is re-
duced below o,,;, and electron motion becomes diffusive,
the spin-lattice relaxation rate increases over the rate cal-
culated from the Korringa relation [Eq. (4)] using the
measured Knight shift. Roughly speaking, when electron
motion is diffusive, electrons linger near nuclei and the

spectral component of the fluctuating hyperfine field at
the Larmor frequency increases, leading to an enhanced
relaxation rate.

Because there at least two Knight-shift contributions of
competing sign in the bronzes, the simple Korringa rela-
tion is not valid, and we cannot test the Warren-Gotze-
Ketterle model directly. We do not see any clear indica-
tion of enhanced relaxation near the M-I transition.
Note, however, from Figs. 4, 5, and 8, that the fast re-
laxers in the insulating samples have much smaller
Knight shifts than the nuclei in the metal samples, and
yet both have relaxation times of a few seconds. If spin
diffusion did occur in this system, the fast relaxers in the
insulators might relax the whole nuclear population in
seconds, and one would see a considerable enhancement of
the rate over that expected on the basis of the smaller
Knight shift.

We conclude this section by noting that the Knight-
shift data in Fig. 8 and Table I offer no evidence for the
formation of local electronic moments on the insulating
side of the transition. Sufficiently far into the insulating
side, we expect to find a dilute system of isolated donor
sites which exhibit a Curie-law susceptibility. In a field of
6.0 T at 4.2 K, the electronic moments of such donor sites
would be nearly fully polarized. A population of mo-
ments of size u and concentration ¢ would produce a
mean internal field of size 4wcpu, leading to a shift in the
peak position of the NMR line toward higher frequencies.
However, as we move through the transition from metal
to insulator, the linewidth narrows continuously while the
peak of the line remains constant (compare samples 6—9).
We conclude that in our most insulating sample (sample
9) less than one sodium atom in 100 has a moment.

VII. CONCLUSIONS

To summarize, we have studied the NMR properties of
the '*W spin system in Na, Ta,W,_,0; on both sides of
the M-I transition. In contrast to the dc conductivity,
which changes dramatically at the M-I transition, the
NMR properties evolve smoothly through the transition.
Nuclear-spin diffusion is inhibited in this system by the
combination of a large distribution of Knight shifts and a
small nuclear moment. Consequently, no spin tempera-
ture is established, and NMR measurements provide a
truly local probe of the electronic environment. In weakly
conducting and insulating samples, we find a broad distri-
bution of local spin-lattice relaxation rates. In moving
through the transition from metal to insulator, the distri-
bution of T’s broadens and shifts toward longer times,
while the distribution of Knight shifts narrows about a
mean value that falls to near zero. Despite a complete
breakdown of the nearly-free-electron approximation, the
NMR properties of samples near the transition continue
to display Korringa-like behavior. In samples with
0 > Opmin, the relation T« 1/T is found to hold for each
T, in the distribution of T’s. And in all samples, there
is a correlation between large Knight shifts and large
spin-lattice relaxation rates. In the strong-scattering re-
gime, we find no clear indication of an enhancement of
the relaxation rate of the type described by Warren*! and
Gotze and Ketterle.? Finally, we see no evidence of
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local-moment formation on the insulator side of the tran-
sition.
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