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Absorption and emission of radiation by plasmons in two-dimensional electron-gas disks
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The theoretical formalism of Ritchie et al. is used to characterize the electromagnetic properties
of plasma oscillations in two-dimensional electron-gas disks, such as those produced lithographically
in the GaAs-Al„Gal „As semiconductor heterojunction system. The disks are treated as very thin,
oblate spheroids of free-electron gas on the surface of a high-dielectric-constant substrate, and the
resonant frequencies are obtained for modes symmetric about the plane of the disk, particularly the
lowest-order (dipole) mode. The plasmon fields in this quasi-two-dimensional system are quantized
in order to calculate the interaction between the plasmons and the photon field. Closed-form expres-
sions are obtained for the photon absorption cross section and the radiative contribution to the decay
width, and the results are compared with those from recent relevant experimental work.

I. INTRODUCTION

The observation of two-dimensional behavior for elec-
trons in modulation-doped GaAs-Al„Gai „As structures
grown by molecular-beam epitaxy' has encouraged ex-
tensive theoretical and experimental re earch on these ma-

terials. Because of their high electron mobilities, these
structures should exhibit well-defined, collective electronic
excitations (plasmons}. In fact, such plasmons have been
observed in heterojunction superlattices and in single
modulation-doped heterojunctions; their observed charac-
teristics correspond to theoretical predictions.

Much less work has been done on plasmons in confined
geometries than in infinite geometries in these high-
mobility structures. Plasmons in confined geometries are
of practical interest because they can couple directly to
the radiation field. In contrast, a periodic perturbation '

must be imposed on plasmons in infinite geometries to
satisfy wave-vector conservation in radiative processes.
Allen et al. used far-infrared absorption measurements
to observe plasmons in two-dimensional electron-gas disks
(Fig. 1} formed by etching circular mesas into the surface
of a single modulation-doped GaAs-Al„Gai „hetero-
junction. They calculated the oscillation frequency of the
lowest symmetric mode in these disks by taking the disk
limit of the depolarization factor for oblate spheroids. '

Ritchie et aI. gave a general theoretical formalism for
treating surface plasmons in any coordinate system in
which Laplace's equation is separable and the surface of
interest is described by a constant value of one of the
coordinates. This formalism includes quantization of the
plasmon field as well as other fields (e.g., photons} with
which the plasmons interact. Recently, this formalism
has been applied to studying the interaction of light with
plasmons in ellipsoidal silver particles. '

In this paper, we describe our application of the formal-
ism of Ritchie et al. to plasmons in two-dimensional
electron-gas disks of the type described by Allen et al.
To treat disks, we consider the limit of oblate spheroidal

particles as the semiminor-to-semimajor axis ratio of the
particles becomes very small. Effects of a polarizable sub-
strate are taken into account with an image-charge
method that gives a simple analytic correction in the disk
limit to the resonant frequencies of modes that are sym-
metric about the plane containing the disks. In addition
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FIG. 1. Geometry for the experiment reported by Allen et al.
I,'Ref. 7) (a) Top view showing periodic array of disks with

period d. {b) Side view of a single disk of radius a, composed of
a GaAs/Al„Gal „As heterojunction on a GaAs substrate. A
two-dimensional electron gas is formed at the

GaAs/Al„Gal „As interface.
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to calculating the resonant frequencies, we consider the
interaction of plasmons with the radiation field in a
dielectric medium and describe both plasmon and photon
fields by R second qllailtlzatloil foflllRllsin. We also calcu-
late explicitly the absorption cross section and the radia-
tive contribution to the resonant linewidth for the lowest
frequency symmetric mode in the electric dipole approxi-
mation and compare our results with previous theoretical
results and available experimental data.

in the particle will lead those of the image by a finite
phase. If the imaginary parts of ei and e2 are negligible
compared with their real parts, this phase angle is negligi-
ble, and we shall ignore it here. This approximation is ap-
propriate for the materials and frequencies considered
here. The particle itself is described by a complex,
frequency-dependent dielectric function e(co).

Inside the particle, the electrostatic potential is given
14

~imp(l)PI (4)QI (Cp) Ylm( 0 '(( )

In the following discussion of plasma resonances, we
assume that the spatial extent of a disk is small compared
with the wavelength of light it radiates. In this way, the
electrostatic approximation can be used to determine the
resonant frequency (i.e., retardation is neglected), and per-
turbation theory can be used to describe radiative process-
es. The wave-vector dependence of the dielectric func-
tions used in the calculations is ignored also.

A. General formulation for oblate spheroidal particles

Figure 2 shows the system under consideration. The
two-dimensional electron-gas disk is approximated by an
oblate spheroidal particle, which is characterized by the
semimajor axis length a and the semiminor axis length b.
The particle rests on the surface of a semi-infinite sub-
strate whose frequency-dependent dielectric function is
ei(co). The upper half space outside the spheroid is as-
sumed to have a dielectric function ez(co). A second
spheroid (dotted curve), shown below the substrate sur-
face, represents the image of any charge densities that ap-
pear on the particle. Fields in the upper-half region due
to polarization charges on the surface of the substrate will

appear to arise from this image. ' In real materials, the
dielectric function is complex, and oscillations of charge

where Pl (i g) and Ql (i g) are Legendre functions of
imaginary argument, Ff~(rl, g) is the real spherical har-
monic, ' and g, rl, and P are generalized radial, polar, and
azimuthal oblate spheroidal coordinates. The particle sur-
face is represented by gp, which is related to the ratio of
the semiminor and semiminor axes by

6/a
[I—(b/0) ]'~

The expression in Eq. (1) is summed over the integers
/ =1,2, 3, . . . , m =0, +1,+2, . . . , +I, and p =+1, the
various components of multipole moments of the charge
distribution. Outside the particle (and above the sub-
strate), the potential can be written as a superposition of
the fields due to the particle and its image:

@'"'= g Biml (r)Pi (Cp)Ql (4)~(~(n 4»)
l, tel, p

Cl q (t)Pi (i gp)Qi (&'g; ) Yi (rl;, p; ),

(3R)

whereas within the substrate itself the potential is

4'" = g Di~p(t)Pi (imp)Qi (ig)Yf~(il, g),
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where the coordinates with subscript i belong to an oblate
spheroidal coordinate system whose origin is at the center
of the image spheroid (see Fig. 2).

In considering the boundary conditions, we anticipate
the fact that solutions to the equations of motion are
sinusoidal in time, which allows us to use the frequency-
dependent dielectric functions. If we require the potential
and the normal component of the displacement vector to
be continuous at the substrate boundary, we obtain

~i(p~) —&i(pi)
Cl~p ( t) = ( —1 )'+ Bl p(&)

e2(pl)+el(cp)

—=S'l Bi i(r»
FIG. 2. Geometry used in the calculations. An oblate

spheroidal particle of dielectric function e(co) rests on the sur-
face of a semi-infinite substrate of dielectric function e&(~). The
medium surrounding the particle has a dielectric function e2(co).
At a point outside the particle, the electric potential is a super-
position of contributions arising from charges on the particle
and from image charges in the substrate. The t~o-dimensional
electron-gas disk is obtained in the limit as the ratio of the
semiminor axis b to the semimajor axis a approaches zero.

2e'2(lp)
Dl (t) = Bl (t),

eq co +@i co

which are the appropriate generalizations of the usual

point-image expressions to an extended charge distribu-
tion. In deriving Eqs. (4a) and (4b), we have used the re-

fiection symmetry of F~~ as well as the fact that g; =g,
g; = —il, dg; Idz = dgldz, and deal; Idz =—drlldz at any
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point on the substrate boundary.
The potentials in Eqs. (1) and (3) are subject to the

boundary conditions that, for (=('0, the potential and the
normal component of the displacement vector must be
continuous. Applying these boundary conditions —noting
that the two sets of functions Yim(g;, p;) and Yim(Ii, p)
are not orthogonal to each other —we obtain a condition
for the dielectric function of the particle that must be sa-
tisfied to obtalil llornlal-Illode osclllatlolis. This co11dltloI1
can be written (after much tedious algebra) as

Pi (40)[QI (Co)]'

Qi (Co)[PI (Co)]'

N =Qi (iko) BImp(I)Pl (Co)[QI (40)]

+ g gi Bi (I)PI (Iko)~i p'

el(Cd)+61(Cd)

D 2el(Cd)
(10)

for even values of l+m. The modes with l+m even
represent charge-density distributions on the particle that
are symmetric about its plane of symmetry. These distri-
butions do not tend to cancel out as the two surfaces of
the particle come together, i.e., as the particle becomes
very flat. Because the antisymmetric (l+m odd) modes
have much higher resonant frequencies than the sym-
metric modes in the disk limit, they are not of interest in
this work. Since N/D represents the correction factor
due to the substrate, we see that a disk lying on the sur-
face of a substrate responds as if it were embedded in a
medium of effective dielectric function

el(Cd ) +ei(Cd )
&eff=

2

B. Resonant frequencies in the disk limit

It can be shown' that in the limit of a disk-shaped par-
ticle ((0~0), the modes decouple, i.e., the off-diagonal
terms in the sums in Eqs. (6) and (7) vanish. Thus, the
factor N/D in Eq. (5) approaches the simple expression

D =[Qi (CO)]' Bimp(&)PI (gO)QI (go)

+ g gi Bimp(t)Pr (igo)II

and where

Iimp
p —f did f dp Yip (Il,p)

X[Qi (ig;)YIP, (Il;,P;)]g g,

1Ji~™ =f dI)t f dP Yi (g,P)

(8)

which is the average of the two dielectric functions. It is
easy to show that this simple result also holds for the case
of an infinite, two-dimensional electron gas bounded by
two different dielectric media.

We can now find the resonant frequencies for the sym-
metric ( l +m even) modes on a disk by combining Eq. (5)
with Eq. (10). For a free-electron gas of volume density
n„embedded in a polarizable medium whose dielectric
function is e (cd), the dielectric function of the particle
has the form'

2

e(cd)=e (cd)— Cop

Cd Cd+I I
(12)

where cdp is the bulk plasma frequency of the electron gas
in a vacuum:

1/2
4mn„e

X[QI ( 0)YI'

A term of the form [Qi (igo)]' indicates the derivative of
Qi (i() with respect to g' evaluated at /=go. The expres-
sion N/D in Eq. (5) is the correction factor for the
resonant value' of the dielectric function due to polariza-
tion charges induced on the surface of the substrate. In
general, the integrals I and J in Eqs. (8) and (9) must be
evaluated numerically.

The potentials given by Eqs. (1) and (3), together with
the conditions (4) and (5) determined by the boundary
conditions, satisfy Laplace's equation everywhere in space
and all boundary conditions. Therefore, they constitute a
unique solution to the problem. Because of the summa-
tion over all different multipole modes Bimp in Eqs. (6)
and (7), solutions to the resonant condition, Eq. (5), are
generally superpositions of these modes. In the disk limit,
however (as we shall see), the symmetric (l+m even)
modes decouple completely.

with m ' the effective mass, e the electronic charge, and I
the relaxation rate. If we define

Pi (go)[QI (40)]
Aim = —11II1 0

&0-0 Ql (40)[PI (i40)]'
(14)

then the relation that determines the resonant frequencies
becomes, for small I",

2
koCdp

~be =
&effhbn

(15)

for the symmetric modes. If e,rr is independent of fre-
quency, Eq. (15) is a direct solution for the resonant fre-
quencies; otherwise, it must be solved as a transcendental
equation. For the symmetric dipole mode (l =1, m =1),
All 4/n, and subst—i—tuting Eq. (13) into Eq. (15) yields
the result
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(re n, b
QP)] =

EzgQ
(16)

resonant frequencies], it allows much greater simplifica-
tion than a rigorous treatment of the photon field in two
joined dielectric media.

where we have used the limiting value of gp b——/a from
Eq. (2) as b/a~O. In this limit, a is the radius of the
disk.

The two-dimensional limit of Eq. (16) is obtained by re-
lating the factor n, b (as b~0) to a sheet charge density
n, . In the case of a planar electron-gas slab, we define
n, =n„t, where r is the thickness of the slab [which ap-
proaches zero in the (two-dimensional) 2D limit]. Howev-
er, the sheet charge density obtained by projecting a uni-
formly charged oblate spheroid onto a disk varies as a
function of distance from the center of the disk. (In this
respect, the model chosen„ that of a thin oblate spheroid,
does not accurately represent a uniformly charged disk. )

Therefore, we must define an average sheet charge densi-

ty, given by

n„V
ns=

where Vis the volume of the ellipsoid (4ma b/3) and A is
the disk area (na ). The quantity n, would be the surface
charge density if the charge were uniformly distributed
over the disk. Thus, in Eq. (16) we can replace n„b by
3n, /4. For the lowest symmetric mode, we then obtain

2
3m n, e

67~& = (18)
4fPl 6'~gQ

III. INTERACTION OF PLASMONS
KITH THE RADIATION FIELD

To characterize the interaction of the collective oscilla-
tions in the two-dimensional electron-gas disks with the
radiation field, we first describe the second quantization
of both the plasmon field and the photon field and then
calculate the matrix element for absorption or emission of
a photon for the lowest symmetric disk mode in the elec-
tric dipole approximation. Finally, we determine the ab-
sorption cross section and the radiative decay rate for this
mode. In considering plasmon interactions with the pho-
ton field, we treat the photons as if they were immersed in
a medium whose dielectric function is e,ri, as given in Eq.
(11). While this approximation is quite crude [it does not
follow naturally, as does Eq. (11) in the context of

[bl p bl p]=~((b happ
',

[bl p»( p]=[b( p bl

In terms of theset, he plasmon Hamiltonian becomes

(19)

+pl = g i ~lm(blmpblmp+blmpblmp»
l, m, p

(20)

where A is Planck's constant divided by 2m. The vector
potential for the photon field in a medium whose dielec-
tric function is,e r(fco) can be written' as follows:

' 1/2
V

A(x) =g (c(ve'"'"+cg e '"'")ei

(21)

where the sum is taken over wave vectors k and polariza-
tions j=1 and 2, e(j"k=O, mk is the frequency of a pho-
ton with wave vector k, V is the quantization volume, and

e~j and ckj are photon creation and annihilation operators
obeying boson commutation relations similar to those in
Eq. (19). The photon Hamiltonian is given by

0ph
—g i

TRPB�(

cgj c j(j+c kjcgj ) (22)
k,j

The interaction Hamiltonian for coupling between the
plasmons and the radiation field is given by'

H =— JAdx,1 3

C

where J is the plasmon current density operator. In Eq.
(23), the integration extends over all space; i.e., J arises
not only from charge fluctuations on the particle itself but
also from the time-varying polarization charge induced in
the medium in which the particle is immersed. Equation
(23) can be converted into a surface integral and expressed
in terms of the creation and annihilation operators, i.e.:

A. Second quantization formalism

The formalism that we use has been described in detail
elsewhere ' we present only a summary here. %'e can
introduce the plasmon creation and annihilation opera-
tors, bl+mp and b(mp, which satisfy the usual boson commu-
tation rules:

' 1/2

k,j 1 m, p

X(b(mp b(mp) f dS.R(J Y( —(rj,g)(ci je'" "+cq~)e '" '*), (24)

where the integral is taken over the surface of the particle (dS points along the outward normal to the surface), and
~here"

Sm ( I —m )!(r((p(

i (1+m)!(a b)' P( (imp)Q—( (imp)



RICHARD P. LEAVITT AND J. %. LI& ILK 34

8. Matrix element for photon emission

The state consisting of one ( Imp) m-ode plasmon and no photons is given by bI p I
0) and that for a single photon with

wave vector lt and polarization j by ckj I
0). Therefore, the matrix element for decay of a plasmon into a photon is given

by

(0
I ckJH,„,bI, I 0) M, —

' 1/2

Sec

Zlmp = kj~)~ '9s (27)

Thus, Eq. (26) produces the following result for the ma-
trix element for emission from the lowest symmetric
modes:

The matrix element, Eq. (26), occurs in the expressions for
the absorption cross section and the radiative-decay rate,
and it has been calculated previously in closed form for a
general oblate spheroid without further approxima-
tion. ' ' For our purposes, it is easier to evaluate it expli-
citly for the lowest symmetric mode in the dipole approxi-
mation. We assume that the wave vector of the light It
has angular coordinates (f,X) in a spherical coordinate
system centered about the particle and then consider the
two orthogonal polarizations s and p, for which the unit
polarization vectors are given by

8k =x slnX —$'cosX,

e'kp = —x Cos'lp COSX —$ COSQ SillX+ z Sing ~

If we express dS in oblate spheroidal coordinates and ap-
proximate e '"'*

by unity, the integral given in Eq. (27)
can be evaluated easily; in this limit, it is nonvanishing
only for dipole (/ = 1) modes. The results for these modes
are as follows:

—simX, s -polarization

cosf cosX, p -polarizationabX '

cos+, s "polarj, zatlon
' 1/2

cosl( sinX, p -polarization
(29a)

0, s -polarization
' 1/2

3 sin1(, p -polarization

where a and b are the semimajor and semiminor axes of
the ellipsoid.

As discussed earlier, the (l =1, m =0) antisymmetric
mode is not of interest here. For the lowest symmetric
mode (I = 1, m =1), we obtain

e leo irI (I+( )'
M

go 2aeok V[(1+go)cot '40 —fol

' 1/2
kj

Z11p o

where Z ihip is defined in Eq. (29).

M,b, —— vn M,*—m, (33)

where n is the number of photons in the incident beam.
The transition probability per unit time is given '

by
Ferxni's golden rule number 2, or

w,~ —— g I
M te I g (eok col )—=2~ 2

I, m, p

(34)

where we have replaced the usual 5 function by a line-
shape function g (co), normalized so that

g N N=1 . (35)

The absorption cross section is given by the transition
probability per unit time divided by the incident flux of
photons (= cn jVez for photons incident from the top in
Fig. 2). We assume the linewidth is sufficiently narrow
that the sum in Eq. (34) includes only the terms I = 1,
m = 1, p =+1. %e thus obtain

2~V&2'/2

g I M.m I
'g(eok F011) .

p =+1

Applying the results of Eqs. (29) and (32) to Eq. (36), we
find

C. Absorption cross section

Suppose we have incident on the particle a mono-
chromatic beam of photons of frequency cok. It may be
easily shown that the matrix element M,b, for absorption
of one of the photons and creation of a plasmon is related
to the matrix element M, described above by

«—&.rr)~ i (Co)Q i (Co)= ——&.rr,
2E

0
(30)

2~ &cree'z voila g(~k —~ii)1/2 3 3

c~kf(40)

using Eqs. (5) and (10) and the explicit forms for the
Legendre functions. Furthermore, from Eq. (25) we ob-
tain

s -polarization
X '

coslg, p -polarization

4M' i i(1+$0)'~
11 2a [(1+(0)cot 'go go]— f(x)= —,(1+x )' [(1+x )cot 'x —x] .
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The result of Eq. (37) (with e,fr= 1 and ez ——1) agrees with

that obtained by a different method by Kennerly et al. '

The disk limit is represented by x =0 [f(0)=3m/4], and
the sphere limit is represented by x = 00 [f( ao ) =1]. If
we assume a I orentzian line profile:

g(~)= I (39)
2~[a) +(I /2) ]

Eq. (37) gives the following result for the peak cross sec
tion for normal incidence (independent of polarization):

cIf ($0)
(40)

where we have assumed that the linewidth I is small

compared with co, i. Using Eq. (18) for co», we find in the

disk limit

4mfl, ,e e2
1/2

PT C I
(41)

According to Fermi's golden rule number 2, the radia-
tive lifetime of a plasmon is given by

'

ri = Q IKrl'&(~i ~i »
kj

(42)

where the sum is taken over all modes of the radiation
field. To be consistent, the 5 function in Eq. (42) should
be replaced by the normalized line-shape function g, as
in Eq. (34); however, for sufficiently sharp resonances
(I"«cubi ), Eq. (42) is sufficient. We can convert the sum
over k into an integral in the usual fashion (keeping in
mind that coq ——ck/e, (i ):

y=-~, fdk
(2m )

3/2«off 2d (cosg)dX Qpgdcog .
(2mc)

(43)

We may now use Eqs. (29), (32), and (43) in Eq. (42) and
perform the integrations to obtain the limiting result for
the radiative lifetime of the lowest symmetric mode:

5/2 3 4

(44)
2E+g a QP]]

3c f((o)
which, in the limiting case of a disk, becomes

'" ' 4 ~3m'/2n2e4a86cff Q 6)» & Keg nze 0

9+C 2m C

where we have used Eq. (18) for the resonant frequency.

IV. DISCUSSION

The preceding results have been examined for their ap-
plication to collective excitations of the two-dimensional

where os" =ma is the geometrical cross section of the
disk. This expression (with ei ——1 for vacuum) leads to
the result for the peak sheet conductivity given in Ref. 7.

D. Radiative lifetime

electron gas formed at a GaAs-Al„Gai „As heterojunc-
tion. Our purpose is to determine, among other things,
whether the I = 1, m = 1 plasmon can be coupled strongly
to the radiation field„given present technological limita-
tions on the radii of the disks and the density of the 2D
electron gas.

Figure 3 shows a plot of the frequency ( =~/2m) of this
mode versus disk radius a for several values of the sheet
density n, . These were calculated from Eq. (18) by as-
suming a substrate dielectric constant e~ of 12.86 (ap-
propriate for GaAs in the millimeter-wave region) and
an exterior dielectric constant ez of 1 (vacuum). The ef-
fective mass for electrons in GaAs is taken as 0.0665. We
see that the same frequency can be obtained by changing
the sheet density or the disk radius. (This could be done
also by changing the dielectric constant ez of the exterior
medium. ) In the experiment of Allen et al
n, =5.5X10"/cm and a =1.5 p,m, yielding a frequency
cu/2m =614. GHz, which differs from the observed value
of 575 GHz by only 7%. In contrast, a frequency of 709
GHz is obtained with the theoretical formula of Ref. 7
and our values of m ' and e,rr. [Our results disagree with
the theoretical results of Ref. 7 because that work did not
properly consider the averaging procedure leading to a
factor of —', in Eq. (18). In addition, Ref. 7 apparently
neglects an additional factor of —,

' .]
The primary loss mechanisms considered in the present

work are radiative decay and scattering. In terms of the
mobility p, the momentum relaxation time is

Pl P,
~mr

e
(46)

Thus, the total relaxation rate 1 [see Eq. (12)] is given by
—1 rl =&mr+Z» (47)

where y» is the radiative-decay rate given by Eq. (45).
For the parameters of Ref. 7, the radiative-decay width

y»/2m is 0.16 GHz, which is negligible compared with
the scattering width (2m', ) '=16.8 GHz for the report-
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FIG. 3. Resonant frequency of the 1owest symmetric mode
(dipole mode) of a two-dimensional electron-gas disk as a func-
tion of disk radius for various sheet number densities N, . (a)
n, =2)&10";(b) n, =5.5&10";(c) n, = 1 &(10'; (d) n, =2X10'
(all in units of cm ).
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cd mobility @=250000cm /Vs. Therefore, the observed
resonance linewidth of 50 GHz reported in Ref. 7 must
arise from other causes, such as electron scattering from
the edges of the disk.

An estimate of the edge-scattering contribution to the
resonant linewidth can be obtained from a simple classical
picture in which all electrons move at the Fermi velocity
uF ——i)I(2srn, )'~ /rn'. We first calculate the length s of a
chord passing through a randomly chosen point (x,y) on
the disk of radius a, where the angle between the chord
and the x axis is 8 (also chosen at random). By averaging
s over all allowed values of x, y, and e, we obtain the
mean free path for edge collisions as (s ) =16a/3sr, and
the mean time between edge collisions as r =(s)/uF.
From the parameters of Ref. 7, we obtain (2srr )

' =20.2
GHz; thus, the total resonance linewidth (momentum-
relaxation plus radiative-decay plus edge-collision contri-
butions) becomes 37.2 GHz, which is in much better
agreement with the experimental result than the
momentum-relaxation contribution alone. Further contri-
butions to the linewidth could result from variations in ra-
dius from disk to disk and from the noncircular disk
shapes observed in Rcf. 7.

It is of illtci'cst to consider disks witli a given sllrfacc
number density and to find the disk radius a that maxim-
izes the quality factor Q characterizing the resonance, de-
fined by

If we ignore the radiative-did;ay contribution (negligible
only for small disk radii) to the line width, we find that
the maximum Q occurs when the momentum-relaxation
and edge-scattering contributions to the line width are
equal. This condition holds approximately in the experi-
ment of Ref. 7. In contrast, for much larger disk radii,
the edge-scattering contribution is negligible, and the
radiative-decay rate can be made comparable to the in-
verse momentum-relaxation time. For example, for 45-
)tsm-radius disks at n, = 10'z/cm „ these contributions are

both equal to 16.8 GHz, and the resonant frequency is 150
GHz. In this case, radiation by the plasmons is a relative-
ly efficient process.

The transmission for a square array of disks separated
by a distance d is given by

T =exp( fU—'"), (49)
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where U '" is defined in Eq. (41) and f =ira /d is the
area filling factor. For the experiment of Ref. 7,
Um'"=2. 79 (we use the observed resonance linewidth) and
f=0.442; thus, the minimum transmission is 0.291, and
the resonance should be observable (which it is ). Quanti-
tative comparison in this case is not appropriate since the
disks do not act as independent scatterers when they are
spaced very closely together; consequently, Eq. (49)
overestimates the absorption (underestimates the transmis-
sion).

Thus, we have shown that the theoretical formalism of
Ritchie et al. can be used to describe plasma oscillations
in two-dimensional electron-gas disks. Calculations of the
resonant frequency, the absorption cross section, and the
radiative hfetime for the lowest-order symmetric disk
mode compare favorably with the experimental results of
Allen et al. , obtained in a GaAs-A1, Gai „heterojunc-
tion. For sheet charge densities of the order of 10'
electrons/cm2 and disks of the order of 45 )tsm in radius,
easily achievable with present-day GaAs technology, it
appears that a reasonable fraction of the energy of plasma
oscillations can be transferred to the radiation field at a
frequency of about 150 GHz. It remains to be seen
whether an efficient nonoptical mtxhanism (such as tun-
neling) can be devised to excite these plasma oscillations.
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