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The strong negative quadrupolar coupling in the isoelectronic pseudobinary PrAg& „Cu„com-
pounds has been ascribed to a lattice instability of the cubic (CsC1) phase, which gro~s with increas-

ing x and culminates in a transformation to an orthorhombic (FeB) phase at x =0.5. To probe the
basis of this instability, the chemical binding of these compounds is modeled with Lennard-

Jones —like potentials for the A-S, A-A, and S-S pair interactions (A =Pr, S =Ag or Cu). The
numerical coefficients of the potentials are determined by minimizing the tota1 binding energy with

respect to the seven structural parameters of the orthorhombic phase. The SS potential is found to
be negligibly weak, and the calculated AS and AA potentials, when applied to the cubic phase, re-

veal that the strong short-range A—S and A —A bonds are stretched and compressed, respectively.
This structural frustration grows as x exceeds 0.5 and the cubic lattice parameter is allowed to de-

crease as Ag is further replaced by smaller Cu atoms. The pair-binding potentials are then used in

determining the dynamical matrix of the cubic phase. The calculated phonon dispersion curves

show that as x exceeds 0.5 there is a rapid softening of the TAi (C~) mode, especially at the M
( 2 2 0) point. This zone-boundary phonon softening is shown to derive directly from the structural

frustration and is consistent with the dominant internal static distortions involved in the cubic-to-
orthorhombic transformation. It also supports the lattice-instability rationale for the strong antifer-

roquadrupolar coupling. However, it contrasts with the M-point softening of the TA2 (C') mode

previously observed in the isomorphic (but not isoelectronic) LaAgl „In„system, where the underly-

ing mechanism is probably quite different.

I. INTRODUCTION

The CsC1-structured intermetallic compounds RAg,
where 8 is a light rare-earth metal (La, Ce, or Pr), are
known to have an appreciable lattice instability. In LaAg,
inelastic neutron scattering experiments have revealed a
partial softening of zone-boundary phonons, ' while in
CeAg and PrAg, ultrasonic velocity measurements indi-
cate some softening of the same TAz(gO) mode. ' More-
over, as the Ag in LaAg is progressively replaced by In, it
was observed that the phonon softening increases, cul-
minating (when the replacement reaches 0.1) in a cubic-
to-tetragonal lattice transformation. ' A similar transfor-
mation has been seen in CeAgt „In and PrAg& In„at
low values of x. ' However, the In substitution for Ag is
not isoelectronic and thus may produce significant
changes in the binding-electron density of states, which
could well enhance the structural instability.

In the case of PrAg, high-field magnetization measure-
ments above the antiferromagnetic Neel temperature have
disclosed the existence of a large negative (antiferro) qua-
drupolar coupling. s' lt was also founds that the strength
of this coupling is essentially unchanged when the Pr in
PrAg is partially replaced by nonmagnetic La and the bi-
linear exchange interactions are thereby reduced. Hence,
it was concluded that the quadrupolar coupling does not
derive from higher-order exchange and that a probable al-
ternative mechanism is a virtual phonon exchange pro-

cess+ driven by a lattice instability. This reasoning was
later extended to the isoelectronic compounds
PrAgi „Cu„, for which similar magnetic measurements
showed that as x is raised the negative quadrupolar cou-
pling increases rapidly in strength while the bilinear ex-
change slowly diminishes. "' Consistent with the possi-
bility of a growing lattice instability, these changes were
seen to continue until, at x =0.5, a transformation takes
place upon cooling from the cubic CsCl-type structure to
an orthorhombic FeB-type structure, as determined by
neutron diffraction. "

A detailed comparison of the two crystal structures of
PrAgo 5Cuo 5 revealed that the cubic-to-orthorhombic
transformation may be regarded in terms of certain sets of
alternating static displacements of parallel atomic
planes. " These atomic displacements, if considered as
dynamic phenomena, would correspond to zone-boundary
phonons of appropriate wave vector to produce, via virtu-
al phonon exchange, the strong negative quadrupolar in-
teractions found in cubic PrAg~ „Cu„of lower x. More-
over, as we mill describe later, the symmetry of these hy-
pothetical phonons at —,

'
—,
' 0 is that of the TAi (C44) mode

rather than the TA2 (C') mode which softens in
PrAgl „In„. Hence, the lattice instability in
PrAg& Cu„may be quite different, and this interesting
possibility needs to be checked by inelastic neutron
scattering experiments when single-crystal samples of suf-
ficient size become available.
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Pending such experiments, we considered the alterna-
tive strategy of fully exploiting all the available structural
information on the orthorhombic and cubic phases of
PrAgo 5Cuo 5 in order to determine theoretically approxi-
mate phonon dispersion curves for cubic PrAg~ „Cu».
As a first step in this determination, pair-binding poten-
tials of simple assumed form can be deduced for the
orthorhombic phase of PrAgo 5Cuo 5 by free-energy
minimization with respect to each of its seven structural
parameters, whose values are known experimentally. "
Since the cubic-to-orthorhombic transformation of this
compound involves essentially no change in volume and
presumably only very small changes in the self-consistent
muffin-tin potentials for the electronic band structure, ' it
can be assumed that the pair-binding potentials also are
relatively unaffected by the transformation. Secondly,
since the PrAg

& „Cu, compounds of various x are
isoelectronic, simple modifications of the binding poten-
tials can be made for different compositions, taking into
account only the variation of the cubic lattice parameter,
resulting from the different atomic sizes of Ag and Cu.
The phonon dispersion can then be calculated from the
binding potentials for the different compositions in order
to reveal any significant trends towards a lattice instabili-

ty in cubic PrAg~ „Cu„.
We have followed this procedure and, in Sec. II, our re-

sults are presented for the binding potentials determined
for PrAgt „Cu„, first for x =0.5 and later extended to
other compositions. Within the virtual-crystal approxi-
mation (where the Ag and Cu atoms occupying the same
type of lattice sites at random are treated collectively), it
is found that the Ag(Cu}—Ag(Cu) bonds are negligibly
weak and that, in the cubic CsCl-type structure, the Pr-
Ag (Cu) and Pr—Pr bonds are stretched and compressed,
respectively, constituting a "structural frustration" which
grows with increasing x. In Sec. III we present our calcu-
lated phonon dispersion curves for cubic PrAg&, Cu„
which reveal that as x increases beyond 0.5 there is a
rapid softening of the TA~(g'0) mode, especially at the M
( —,

'
—,'0} point. It is shown that this lattice instability

derives from the structural frustration and that it is con-
sistent with the internal atomic displacements that accom-
pany the transformation to the orthorhombic FeB-type
structure. Some concluding remarks are given in Sec. IV.

II. PAIR-BINDING POTENTIALS

In obtaining pair-binding potentials for PrAg~ Cu,
we first consider the x =0.5 compound which undergoes
a cubic-to-orthorhombic transformation upon cooling.
The cubic CsQ-type and orthorhombic FeB-type struc-
tures of this compound, as determined by neutron diffrac-
tion, "are displayed in Fig. 1. They are drawn to scale for
the lattice and internal parameters indicated and are pro-
jected on the (110) and ac planes, respectively. In these
projections, all the atoms lie on alternating equally spaced
levels of two kinds and are so designated by the large and
small circles. In the orthorhombic unit cell, the four dif-
ferent sites occupied by Pr (shaded circles) are labeled
A,B,C,D and the four different sites occupied randomly
by Ag or Cu (open circles) are labeled a,b,c,d; this labeling

PrAgo 5Cuo 5
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FIG. 1. Orthorhombic FeB-type and cubic CsCl-type struc-
tures of PrAg05Cuo~, with lattice parameters as shown. The
internal parameters of the FeB-type (Pnma), involving atomic
degrees of freedom in the ac plane, are for Pr in 4c sites,
x& ——0.179 and z~ ——0.136, and for Ag or Cu atoms in 4c sites,
xq ——0.034 and zq ——0.641. The y~ and yq parameters are fixed
at ~ by symmetry. Other features are described in the text.

is carried over to the corresponding sites in the cubic
structure. In the latter, the arrows shown represent alter-
nating displacements of three sets of parallel atomic
planes normal to the (110} plane, whose sum (plus uni-
form distortions) succeeds in converting the CsCl-type
structure to the FeB-type structure. As pointed out previ-
ously, "' if any of these sets of static displacements are
regarded as dynamic, they would represent zone-boundary
phonons, whose softening may well describe the lattice in-
stability of the CsCI-type structure. This observation will
later be shown to be confirmed by our phonon-dispersion
calculations.

Our interest at this stage, however, is in hom the
CsC1~FeB transformation of PrAgo &Cuo ~ translates
quantitatively into changes in the interatomic spacings.
Using the experimental values for the lattice parameters
(and the internal parameters of the FeB-type structure}, as
given in Fig. 1 and its caption, we have calculated the
separation distances between a Pr or Ag (Cu) atom and its
various neighboring atoms in both structures. The inter-
atomic distances are displayed in Fig. 2, where those for
the FeB structure are linked to those for the CsCI struc-
ture (out to third nearest neighbors), following the atomic
correspondences indicated by the labeling in Fig. I. These
distances, to which all our calculations mere subsequently
restricted, are specified more exactly in Appendix A.
Qualitatively, regarding the interatomic separations of
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FIG. 2. Interatomic distances (in A} in the FeB-type and
CsCl-type structures of PrAg05Cu05. The number of neighbors
at the same (or nearly the same) distance from a Pr or Ag or Cu
atom is indicated.

short range, it is clear from Fig. 2 that the cubic-to-
orthorhombic transition produces a reduction of the aver-

age Pr—Ag (Cu) distance (except for one greatly increased
pair separation) and an enlargement of the average Pr-Pr
distance, while the Ag(Cu) —Ag(Cu) distances show no
predominant direction of change.

We will now assume that the A-8, A-A, and 8-8 pair
interactions (where A =Pr, 8=Ag or Cu) can be ade-

quately represented by spherically symmetric potentials of
a Lennard-Jones —like form, such that the total low-

temperature binding energy can be written as

M

~ P4

gl

t t

( )

4.5

equal to unity, leaving only five variables

(E~,Ess, (res, og'g, ET' ) to be evaluated.
The problem vvas given to the IBM 3801K computer at

the University of Illinois at Chicago via a nonlinear least-
squares-fitting program, whereby solutions for the five
variables were sought, for which gkFk is minimized, the

Fk in Eq. (2) being treated as a residual quantity. A seri-
ous difficulty was encountered almost immediately, re-

gardless of the values assumed for m; and n; (generally
near 12 and 6, respectively}. Due to their pronounced
nonlinearity, the secular equations produce many local
binding-energy minima in the five-dimensional solution
space, and the computer program is unable to discrim-
inate among them very effectively. However, independent
of the local solution being converged upon, the value ob-
tained for ass was consistently about 2 orders of magni-
tude smaller than those for sos or e~. The unavoidable
conclusion is that the Ag (Cu) —Ag (Cu) interactions are
relatively very weak —which is refiected in the widely
dispersed changes in the Ag (Cu) —Ag (Cu) separation dis-
tances that accompany the cubic-to-orthorhombic transi-
tion (Fig. 2). Interestingly, this conclusion is similar to
that recently drawn' for Li-Li interactions in LiA1, where
monovalent Li and trivalent Al may be quite analogous to
Ag (Cu) and Pr in PrAgo. sCuo. s

Thus, me were able to set e~q ——0, thereby also removing
ass (as well as ms' and nss) from the secular equations,
which reduces the number of solution variables to three

(aqua, crqs, o~). This reduction resulted in a much im-
proved computer capability for the job at hand, and we
proceeded to obtain solutions corresponding to various as-
sumed values for the m s and n s. Since the solutions

where i refers to the atom pair type (A8, 8A, AA, or 88).
R,

&
is the interatomic distance of the jth member of the

ith pair type and is a function of the structural parame-
ters gk. Whereas the cubic CsC1-type structure has only
one g» (its lattice parameter a ), the orthorhombic
Fe8—type has seven gi, 's (three lattice parameters a, b, c
plus four internal parameters xz,zq, x~,zs). Hence, if we
minimize U for the latter structure with respect to each

gk, we obtain seven secular equations of the form,

Fk ——ge; R,J '[m;(cr;/R, J) ' n;(erg/R, q) ')=0-.
EJ l l IJ I i EJ

Q i

3.78—

3.70

For PrAgo sCuo s, each R,J (and M,J lBgk) is known nu-

merically from its dependence on the experimentally
determined gk's, as shown in Appendix A. Hence, with
assumed values for the exponents m; and n;, the seven
equations (2) can be solved simultaneously for the E s and
o s; in fact, for convenient normalization we set

3.66—
I

FIG. 3. Results from binding-potential calculations for {a)
the residual-squared sum in arbitrary units and {b) the cubic lat-

Q

tice parameter in A„as functions of n» for different n~.
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were seen to be fairly insensitive to m; values near 12, we
set mAB ——mAA

——12 (the standard Lennard-Jones value)
and focused on the effects of different values for nAB and

» Fig. 3(a), we show gkFk for the calculated solu-

tions as a function of n„B for various values of nAA

Clearly, gkFk is almost independent of nAB but de-

creases rapidly with increasing nzz. %'e then invoked
another criterion, which is especially relevant to this
study —namely, the lattice-parameter (a) values for the
cubic phase of Pl'Agp sCup 5 deduced by minimizing (with
respect to a) the binding energy expressed in Eq. (1), in
which the assumed values for n„B and nAA and the corre-
sponding values for the solution variables have been in-
serted. The values for a for various nAB and nAA are
shown in Fig. 3(b), where it is seen that a goes through
the same minimum at the same value of nAB for any
value of nAA. Since the minimum value of a happens to
agree very closely with the experimental value of 3.66 A,
the position of the minimum is taken to give n„B—4. We
then set n„A ——6 (the other standard Lennard-Jones value),
for which Fig. 3(a) shows a reasonably low gkFk We.
are thus ignoring the continued decrease of gkFI, at
higher n„„,which is caused in part by the fact that the
binding energy ( U) itself decreases in magnitude as nAA is
allowed to approach mAA( =12).

With the solution variables calculatel for these ex-
ponent values, the expression we obtained for the total
binding energy per formula unit of PrAgp &Cup 5 as a sum-
rnation over the A-8 and A-A interatomic distances
(where A =Pr, 8=Ag or Cu) may be written as

U=2 g UAB(RAB)+ g UAA(RAA},
Rz„

where

UAB(RAB ) eAB[(+AB ~RAB } (&AB ~RAB) ]

(3)

UAA(R AA ) =&AA[«AA~RAA )"—«AA~RAA )']
0

in which eAB ——1 (as normalized), crAB ——2.716 A,
eAA ——0.55, and oAA ——3.485 A. In Fig. 4, UAB(RAB) and
UAA(RAA) are displayed graphically to scale. Since these
potentials were essentially derived from the atomic posi-
tions in the orthorhombic FeB-type structure, it is not
surprising that their minima at 3.116 and 3.912 A occur,
respectively, very near the short-range A-8 and A-A in-
teratomic spacings in this structure (see Fig. 2). That the
minimum of U„B is deeper than that of U„„ is consistent
with the simple fact that the compound is chemically or-
dered.

In Fig. 4, the solid circles on the solid curves are locat-
ed at the interatomic distances for the first, second, and
third nearest neighbors in the cubic CsCl-type structure of
PrAgp5Cup&. These distances are for the experimental
lattice-parameter value of 3.66 A which, as described
above, is also the value of a that minimizes U in Eq. (3)
when applied to the cubic structure. For this structure
Eq. (3) gives a binding energy (U) that is slightly ( —,%)
lower than that for the orthorhombic structure, consistent
with the transformation evidence that the two structural

R (L)

-
I

&.2- I

&.8-

l

( a=8. BSL)

8. 585k&

FIG. 4. Calculated curves for A-8 [Pr—Ag(Cu}j and A-A
(Pr-Pr) pair-binding potentials (in arbitrary units) versus inter-

0
atomic distance (in A) for PrAg& „Cu„. Circled points indicate
atomic positions in the CsC1-type structure for two different 1at-
tice parameters —for which U&~ is different but U~& is the
same, as shown.

phases of this compound have about the same relative sta-
bility. Note that for the first- and second-nearest-
neighbor distances in the cubic structure, the points in
Fig. 4 are, respectively, to the right of the UAB(RAB)
minimum and to the left of the UAA(RAA) minimum.
Thus, regarding these strong pair interactions„ the Pr-
Ag(Cu) bonds are stretched and the Pr—Pr bonds are
compressed, relative to their preferred binding distances.
This confiict of interest, to which the material accommo-
dates as best it can within the cubic structure, constitutes
a "structural frustration" —analogous to the spin-
orientational frustration in magnetic systems such as spin
glasses.

Although PrAgi Cu, of x ~ 0.5 is orthorhombic
FeB-type, ' it is pertinent to consider the consequences of
artificially retaining the Cu-rich compounds in the cubic
CsC1-type structure. Since the PrAg& „Cu„compounds
of different x are isoelectronic, an increase of x may be
regarded primarily in terms of the reduction in the cubic
lattice parameter that results from the continued replace-
ment of Ag atoms by smaller Cu atoms. Hence, it is
reasonable to assume that as x increases the binding ener-

gy continues to be expressed by Eq. (3) with the same con-
stants except for lowered values of crAB. Considering
specifically the reduced lattice parameter, a =3.535 A (a
critical value for the phonon properties, as described
later}, we find that for U to be minimized at this value of
a, the value of o.AB must be lowered to 2.517 A. As
shown in Fig. 4, this change produces a scaled shift of the
U„B(R„B) curve to lower values of RAB, while the
UA„(RAA} curve remains fixed. The interatomic spacings
in this reduced cubic cell are represented by open circles,
and it is clear from the slopes of the curves at these (and
the solid circles) points that the tensile and compressive
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forces on the A-8 first nearest neighbors and the A-A
second nearest neighbors, respectively, have both grown
significantly in magnitude. Thus, the structural frustra-
tion has increased and, as we will show, this has impor-
tant consequences for the phonon spectrum.

III. PHONON DISPERSIONS

With Eq. (3) for the total binding energy of
PrAg0 5cuo 5 applied to the cubic Cscl-type structure, we
proceeded to determine the spatial derivatives of Uzx and
Uzz that form the various force constants in the dynami-
cal matrix of this structure. For consistency, we again re-
stricted our analysis to interactions of atom pairs out to
(and including) third nearest neighbors. Since the primi-
tive unit cell of this structure contains two atoms, A

(=Pr) and 8 (=Ag or Cu), both of which are at centers
of inversion symmetry, the dynamical matrix ( D) is 6X6
and is real and symmetric. Moreover, D is composed of
four 3X3 submatrices representing the A-B, A-A, and
8-8 pair interactions separately, i.e.,

DAA DAB
D=-=

DaA Dao (4

where Dxz Dzx and——where, from our finding that the
8-8 interactions in PrAgo sCuo s are negligibly weak, D~x
is zero except for self-energy terms. The construction of
the D„g and Dzz submatrices from the force constants
and the eigenvalue solutions of the D matrix for the pho-
non normal-mode frequencies corresponding to the princi-
pal crystallographic directions of propagation are
described in Appendix B.

From the normal-mode solutions given analytically in
Appendix 8 and using the expressions for Uzx and U~
in Eq. {3) with the numerical coefficients pertinent to
PrAgo sCuo s, we computed the phonon dispersion for
each of the three cubic propagation directions, (00(),
(g0), and (g'g). Our results for the various phonon
branches are displayed (in arbitrary frequency units) in

Fig. 5. Broadly, they resemble the phonon dispersion
curves previously deduced from inelastic neutron scatter-
ing data on the Cscl-structured compounds: LaAg,
YZn, ' CuZn (P-brass), ' and CsBr, ' but there are in-
teresting differences. Of the various degeneracies exhibit-
ed by our calculated dispersion curves at special points [I
(000), X (00—,), ~ ( —, —,0), R ( —, 2 —,)], all but one are re-

quired by symmetry. The exception is the accidental de-
generacy of the LA and TO (00$) branches at X, at which
point an accidental degeneracy was also observed in YZn
and CuZn but between the TA and TO branches. For all
these other compounds, the LA branch at X was seen to
lie closely above or below the TO branch, indicating that
the degeneracy we find is quite coincidental.

Pertinent to the lattice instability of PrAgo &Cuo s is the
fact that the calculated TA(00() and TAi(g'0) branches
in Fig. 5 lie relatively low in frequency. This suggests
that the elastic constant C44, which is proportional to the
initial slopes squared of both these branches, may be
anomalously small. Moreover, in approaching the M
point, the TAi(g'0) branch goes through a shallow max-
imum, whereas the TAq(g'0) branch continues to rise
monotonically before leveling out. This contrasting
behavior is interesting in view of recent observations. As
discussed earlier, the cubic-to-orthorhombic transition in
PrAgo &Cu() & involves internal atomic displacements that
suggest that the cubic-phase instability corresponds to a
softening of zone-boundary phonons, which in the case of
(-,'-,'0) are those of the TA| mode, as seen in Fig. 1.
However, it is the TA2 mode that softens at the M point
in LaAg, especially when the Ag is partially replaced by
In, and this mode was also seen to soften near the I
point in PrAg. 4

Hence, we were motivated to learn how the TAi and
TA2 (gO) phonon modes change in PrAg&, Cu„as x is
raised above 0.5 while retaining artificially the cubic
structure —which is analogous to the strategy adopted for
the binding potentials. Specifically, for the extreme case
of x = 1 (i.e., PrCu), we considered several possible values
for the cubic lattice parameter (a), starting with and rang-

I i I S I I I I f1 i i 1 I 1 I I I I I I I I I j

0.2 0.3 0.4
0 j 1 I l I I

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.5
(I'} I (X} (I'} I (M} (I'} (R)

FIG. 5. Calculated phonon dispersion curves for cubic PrAgo qCuo, (a =3.66 A} for propagation wave vectors (00$), (g'0), and
(gg'}, with frequency in arbitrary units. Acoustical (A} and optical (0) branches for longitudinal (L) and transverse (T) polsrizations
are so labdcd.
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TABLE I. Calculated elastic constants (in arbitrary units) for cubic PrAg& „Cu„ofdifferent x. The
lattice parameters C,

'a) and the corresponding binding-potential constants (o&~) used in the calculations
are listed in angstroms.

0
0.5
1

1

1

3.74
3.66
3.58
3.54
3.535

2.805
2.716
2.603
2.528
2.517

1.957
1.648
1.078
0.6365
0.5713

2.263
3.281
4.733
5.686
5.818

1.937
1.639
1.092
0.6741
0.6131

6.462
8.202

10.558
12.047
12.250

0

ing down from 3.58 A, as derived from linear extrapola-
tion of the experimental values of 3.74 and 3.66 A
for x =0 and 0.5, respectively. For each value of a, static
equilibrium of the cubic phase was achieved by minimiz-
ing the total binding energy in Eq. (3) with respect to o zii,
all other parameters being held fixed at their values for
x =0.5. The ozii values found for the different a's are
listed in Table I. In each case, with the binding potentials
so determined, we went on as before to calculate the pho-
non dispersion curves from the expressions in Appendix
B.

Our results for the TAi and TA2 (g0) branches, which
are of particular interest and also reveal the most signifi-
cant changes, are displayed in Fig. 6, labeled by the alter-
native values of a for x =1. Also shown are the corre-
sponding phonon branches calculated for a =3.66 A
(x =0.5) and a =3.74 A (x =0), whose crzii values are
included in Table I. It is immediately obvious from this
figure that as a decreases the maximum in the TAi
branch (originally noted in Fig. 5 as a subtle feature for
a =3.66 A) becomes increasingly conspicuous as the
branch rapidly softens at the M point, the softening going
essentially all the way to completion for a=3.535 A.
In fact, the entire TAi branch is descending, so that the
elastic constant C~, which equals the initial slope squared
(times the density p), is rapidly diminishing. Contrasting-
ly, the TA2 branch rises with decreasing a, though some
softening is starting to occur near the M point as a ap-
proaches 3.535 A. In this case, the initial slope squared
(times p) gives —,'(C» —Ciz) or C', whose values increase
monotonically with decreasing a.

Our numerical results for C44 and C' are listed in Table
I; also listed (in the same arbitrary units) are the Cii
values deduced from the initial slopes of the calculated
LA(00$) branches and the C,2 values obtained by combin-
ing C» and C'. The contrasting variations of C44 and C'
with a are clearly evident, as is an unexpectedly close
correspondence between the values of C~ and Ci2. That
the Cauchy relation (C~=Ci2) is nearly obeyed can be
traced to the fact that the off-diagonal elements of the
Dq~ and Dqz submatrices in Appendix 8 are relatively
weak, which implies that the interatomic forces are nearly
centrosymmetric. Interestingly, the experimental values
for C44 and Ci2 are quite close in both YZn (Ref. 15) and
CuZn (Ref. 16). However, in LaAg, ' CeAg, and PrAg,
which pertain more directly to our study but which show
the TA2 (C') mode lying well below rather than above the
TAi (C44) mode, Ci2 was found to be about twice C44.
Since the electron density-of-states mechanism suggested

for the softening of the TA2 mode in the latter com-
pounds is ignored in our calculations, it is not surprising
that our own results for PrAg (Fig. 6 and Table I for
a =3.74 A) display no obvious signs of any phonon
softening. It is only when the Ag in PrAg is progressively
replaced isoelectronically by Cu, resulting in a reduced
lattice parameter and an increased structural frustration,
that we find that a softening develops in the TAi mode,
especially at the M point.

The exact nature of the M-point phonon softening re-
vealed by our calculations is readily established by setting
ez ——m/2 in the dispersion relation for the Ti(g'0) modes
given by Eq. (B18) of Appendix B. The roots of this
quadratic equation in co become simply

co, =8(ai+Pq+2a3)/mq, coo ——8ai/ms, (5)

for the TAi and TOi modes, respectively. ai, P2, and as
are interatomic force constants which depend on the spa-
tial derivatives of the pair-binding potentials, as specified
in Appendix B. As expected for the —,

'
—,'0 zone-boundary

I I I I I I I I I

0 0.1 0.2 0.3 0.4 0.5
&r) $ (M)

FIG. 6. Calculated phonon dispersion curves for TA& and
TA, (g'0) modes (shown by the solid and open circles, respec-
tively) for cubic PrAg~ „Cu„ofdifferent lattice parameters.
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00i
= 110

-Pr
QO Ag, Cu

FIG. 7. Atomic vibrational pattern for TA~ mode at the M
( 2 z 0) point in cubic PrAg& „Cu„. Alternating (110) planes of
Pr atoms are vibrating in opposite phases along (001).

point, the masses of Pr {m„)and Ag or Cu (mii) appear
separately in these eigenfrequency expressions, indicating
that the TAi and TOi modes involve, respectively, only
the motion of the heavier Pr or lighter Ag (Cu) atoms.
Specifically, in the TA~ mode which softens, the Pr atoms
in alternate (110)-type planes are vibrating in opposite
time phase along the (001) axis, while the Ag {Cu) atoms
are immobile, as shown in Fig. 7. (The same situation ob-
tains in the TO& mode but with the roles of the Pr and Ag
(Cu) atoms interchanged). Comparing Fig. 7 with the
same projection of the CsC1-type structure in Fig. 1, we
see that the internal static distortions of —,

'
—,'0 symmetry

that take the latter into the FeB-type structure have pre-
cisely the same pattern as the dynamic distortions of the
TAi (or TOi} mode at the M point. Thus, the dynamic
instability of cubic PrAgi „Cu„clearly expresses itself as
a precursor of the cubic-to-orthorhombic transformation
that occurs at sufficiently large x. Furthermore, our find-
ing that the TAi mode would soften completely (Fig. 6) if
this transformation did not already occur can be easily
understood from a quantitative consideration of Eq. (5}.
Our calculations show that as the cubic lattice parameter
a approaches 3.535 A the force constant Pz becomes
strongly negative and ultimately drives co, to zero. Since
Pz is proportional to aU»/aR at the Pr-Pr second-
neighbor separation distance (Ri), it follows from the
binding-potential picture in Fig. 4 that the softening of
the TA~ mode is directly related to the increase in the neg-
ative slope of U» at R2 which manifests the growing
structural frustration in PrAg, „Cu, with increasing x.

we find no significant change in the phonon spectrum. In
particular, the softening of the TA& mode at the M point
is seen to express itself almost the same as before. And
the reason for this is that the first- and second-nearest-
neighbor interactions are sufficient to produce the
structural frustration which underlies the phonon soften-
1ng.

Regarding any direct experimental verification of our
calculated results, the only attempt to date has been
through some ultrasonic measurements on polycrystalline
samples of PrAg and PrAg06Cu04. ' The sound velocity
for transverse polarization relative to that for longitudinal
polarization was found to be considerably smaller in the
latter compound, which is consistent with a weakening of
the elastic constant C~ pertinent to the TA~ mode with
increasing Cu concentration. However, these results are
fairly sensitive to any preferential orientation of the crys-
tallites in the samples, and the measurements should be
repeated with single crystals. Indeed„ if and when

PrAg, „Cu„crystals of sufficient size become available,
a more definitive test of our calculated phonon spectra
would be via inelastic neutron scattering experiments.
Meanwhile, our calculated results stand as a self-
consistent description of the lattice instability in cubic
PrAg& „Cu„, which was originally suggested by the
anomalously strong antiferroquadrupolar interactions in
this pseudobinary system.
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APPENDIX A

In the following listing for PrAg05Cuo 5, the Pr sites
are identified as A,B,C,D and the Ag and Cu sites as
a,b,c,d, in accordance with the labeling in Fig. 1. The
atomic neighbors in the orthorhombic phase are listed by
the number at each site, with reference to the correspond-
ing atomic shell in the cubic phase. Their positions are
specified as (x/a, y/b, z/c) in terms of the internal param-
eters, xz,zz, xii,zii, relative to the central Pr or Ag (Cu)
atom at (0,0,0), and are followed by their distances (in A)
from the central atom.

For Pr at central site A:

Although our phonon-dispersion calculations are based
on simple Lennard-Jones —like binding potentials, they
succeed in establishing the probable nature of the lattice
instability in cubic PrAg& „Cu„. That our results are in-
sensitive to all but a few essential details of the calcula-
tions is borne out by the fact that when we ignore the in-
teractions between third nearest neighbors (as well as
those previously neglected between more distant atoms)

a (2) (xq +xi' ——,, —,,zq —zii+ —,)
I 1 1

b (2) (xq+xii, —,',z~+zii —1)
1c (1) (xg —xii ——, ,O,z„+zii ——, )

c (1) (xq —xii ——,,O,z~+zii ——,)
1 3

d (1) (xq —xi', O,zq —zip+1)
d (1) (xq —xii, O,z~ —z~)

3.17

3.11

3.06
4.92
3.05
3.10

Cubic phase, 8 Ag or Cu atoms at 3'~ a/2=3. 17 A
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8 (1)
8 (1)
D (2)

D (2)

A (2)
8 (2)
C (2)

C (2)

C (2}

C (2)

Cubic phase, 6 Pr atoms at a =3.66 A

(T,0,2zg ——, )
1 1

( ——,,0,2' ——, )
1 1

(2xg ——,, ——,, —, )
1 1 1

1 1 1
(2xq ——, , ——,, ——, )

3.90
3.90
3.87

3.87

{0,0,1)

(0,1,0)
(2xg, ——,',2zg )

(2xg, ——,,2zg —1)1

(2xg —1,——,', 2zg )

(2xg —1, ——,,2zg —1)1

5.77
4.73
3.87

549
5.50
6.74

Cubic phase, 12 Pr atoms at 2'~ a=5.18 A

where a is the cubic lattice parameter and n„,n„,n, are re-
duced Cartesian coordinates. The corresponding Fourier
transforms all contain the trigonometric function,

g(n„ny, n, ) =2cosfa (n„k„+nyky+n, k, )], (82)

1 1 1 1 1 1

2~ 2& 2 s 2s 2& 2 (83)

The 3X3 matrix coefficients of the Fourier transforms,
g(n, ny, n, }i, are real and symmetric, and their elements
are

where k„ky, k, are wave-vector components.
Starting with the construction of D„z, we need only

consider the first nearest neighbors, for which

Rl ——3'~ a/2 and

1 1 1 1

(nx&ny&nR)l ( 2 & 2 & 2 }& { I & 2 &T}

For Ag or Cu at central site a,
Cubic phase, 8 Pr atoms at 3'/ a/2=3. 17 A

A (2)

8 (2)

C (1)

C (1)
D (1)
D (1)

1 1 1

( —Xg —XZ+ I, I, —Zg +ZS —
I )

1
( xg xs& I &zg+zz 1)

1(xg —xs —T,O,zg +zz ——, }
1 3(x~ —xa —I 0»~+za —I )

(xg —xz, O, —zg +zs —1)
(xg —xz, O, —zg+zs)

3.17

3.11

3.06
4.92
3.05
3.10
0

Cubic phase, 6 Ag or Cu atoms at u =3.66 A

( —,',0,2' ——,
'

) 3.88

( ——,',0,2' ——,
'

) 3.88

(—2xz, —,,2' —1) 2.91
(—2xz, —,',2zs —2) 4.80

b (1)

b (1)

d (2)

d (2}

Cubic phase, 12 Ag or Cu atoms at 2'~la=5. 18 A

a (2} (0,0,1)

b (2) (0,1,0)
d (2) ( —2x, +-,', —,', —,'}

d (2) ( —2xz ——,', —,', —,
'

)

d (2} (—2xz ——,', —,', ——,
'

)

5.77
4.73
4.90
4.90
5.59

5.59

In the above, for tile orthorhombic phase, wg have the fol-
lowing: a =7.34 A, b =4.73 A, c=5.77 A; xz ——0.179,
zg ——0.136, xg ——0.034& zg ——0.641

APPENDIX 8

1. Dynamical matrix

The submatrices, D„z, D~, and Dzs, that form the
dynamical matrix of the cubic CsCl-type structure as
shown in Eq. (4), were constructed following standard
procedures. ' ' Consistent with our binding-potential
analysis, consideration of the atomic pair interactions was
restricted to first, second, and tturd nearest neighbors,
wllose posltloils are speclflled by

Ri, Rz& ol Rg= +a(nR&ny&nE) &

Gli =GZ2=G3I =ai

Glz ——G2i 4n n——yPi,

Gqq ——GI2 ——4n„n, Pi,
GII=GII=4nRn Pi

(84)

vrhere m& and mq are the atomic masses.
Similar steps are taken in constructing g~ but with

respect to second- and third-nearest-neighbor A-A pairs.
For the second neighbors, R I ——a and

(n„,ny, n„)I——(1,0,0), (0, 1,0), (0,0, 1) . (87)

The Fourier-transform matrices, J(n„,ny, n, )2, are diago-
nal, their elements being

Jll n„az+(ny——+n, )PI &

JZ2 nyaz+(nR——+n„}p2,

Jqq n,ai+(n„+——)np , Z

(88)

in which the force constants depend on the derivatives of
the potential Uzz at RI as follows:

a2=(U~~ }II, &2=(U~/R)Z, .

For the third neighbors, R I
——2'~2a and

(n, ny, n, )I ——(1,1,0), (1,0, 1), (0, 1,1),
(1,1,0), (1,0, 1), (0, 1, 1) .

{89)

(810)

The Fourier-transform matrices, E(n„,ny, n, }3, are real
and symmetric, and their elements are

in which the force constants, al and pi, depend on the
spatial derivatives of the pair potential U„s at R i as fol-
lows:

a, = ,
' (U„"z+—2U„'s/R)„,,

Pi= I (U~s U~s/R4, —

where U"=dzU/dR2 and U'=dU/dR Then, b. y a sum-
mation over the (n„,ny, n, }I values in (83), we obtain

Dgs ——(mgmz) ' yg( „n, ny, ,n)g( „n, ny, ,n) I,
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Ki 1
——n, (a3 —P3) +P3,

Kzz ——ny (a3 —p3)+ p3,2

K33 ——n, (a3 —P3)+P3,

K» ——K» n——,~„(a3 P—3),

Kz3 K——3z n——„n,(a3 p—3),

K, 3 K3—1———n, n„(~3—P3),

~3=-,'(U„-„+U„„/Z)„,, P, =(U„„/~)„3. (812)

Then, by the following summations over the (n„,n„,n, )z

values in (87) and the (n„n~, n, )3 values in (810) plus a
self-energy term involving ai in (85},we obtain

Dzz ——mq
' g J(n„,n~, n, )g(n„,n~, n, )z

+ g K(nx~nz~nz)A(nx~ny~n'i)3+SaiI

(813)

where 1 is the 3)& 3 identity matrix.
In principle, for the CsC1-type structure, podia is com-

pletely analogous to Dzz. However, since the potential
Uazi is neghgibly small in the Present case of interest, Daa
reduces down to the self-energy term, i.e.,

in which the force constants depend on the derivatives of
U~ at R3 as follows:

[a 1 +b3sin Hz+ (2ci —cz )sin (2Hz)](co —a z )

—azai —(dicos Hz —dzsin Hz) =0 .2 2 '2 2=

For T 1 (g'0),

co —[a 1+b4sin Hz+czsin (28z)](co —az)

(B17)

For Tz(gO),

—azco —(dicos Hp) =0 . (818)

co [a 1 +b3sin 8z+czsiil (28z)](co —az )

—1 —1a
&

——8m& a&, a2 ——8m& a&,

bi ——4m' '(az+4a3),

bz =4m~ '(Pz+2&3+2P3}

b3 ——4m' '(az+pz+2a3+2p3),

b4 ——Sm~ '(pz+2a3),

b3 ——4m' '(az+2Pz),
—1 —1ci =4m' Q3, cz =4m' p3,

di ——8(m„mzi) '
a&, dz ——8(mzmzi) '

Pi .

With these as coefficients, the phonon dispersion relations
for the longitudinal (L) and transverse (T) branches are as
follows.

For L (00$),

co —(ai+az+b, sin 8, )co +az(a, +b, )sin 81——0 . (815)

For T(00(),

co —(ai+az+bzsin 8&)co +az(a~+bz)sin Ht ——0, (816)

where 8, =n g = —,
' ak.

For L(g'0),

DID ——ma '(Sail } . (814) —azcoz —(d)cos Hz+dzsin Hp) =0,
where Hz ——mg= —,

' ak/2'~ .
For L(g'g),

2. Phonon dispersion

From the dynamical matrix D composed of D&13, Dzz,
and Da~ as indicated in Eq. (4), eigensolutions were ob-
tained for the phonon dispersions in the principal cubic
directions of propagation. The dispersion relations are all
quadratic in co, the roots corresponding to the acoustical
and optical branches. In terms of the various force con-
stants and the atomic masses, we define

co —[ai+b3sin 83+(4ci —cz)sin (283)](co —az)

—azco —(dicos 83—2dzsin 83) cos 83 ——0 .

For T(g'g),

co —[a 1 +b3sin 83+ (c 1 +2cz )sin (283)](co —az )

(B20)

—aztec —(dicos 83+dzslll Hp) cos 83=0, (B21)

where 83 ng= —,
' ak/——3'~ .

~%'. Assmus, R. Takke, R. Sommer, and B. Luthi, J. Phys. C
11, L575 {1978).

&K.. K.norr, B. Renker, %'. Assmus, B. Luthi, R. Takke, and H.
J. Lauter, Z. Phys. 8 39, 151 (1980).

3R. Takke, N. Dolezal, W. Assmus, and B. Luthi, J. Magn.
Magn. Mater. 23, 247 {1981).

4M. Giraud, P. Morin, J. Rouchy, D. Schmitt, and E. du
Tremolet de Lacheisserie, J. Magn. Magn. Mater. 37, 83
(1983).

5J. Maetz, M. Mullner, H. Jex, %'. Assmus, and R. Takke, Z.
Phys. B 37, 39 (1980).

68. Ihrig and %'. Lohmann, J. Phys. F 7, 1957 (1977).
~K. Yagasaki„Y. U~atoko, Y. Kadena, H. Fujii, and T.

Okamoto, J. Phys. F 15, 651 (198S).
ST. O. Brun, J. S. Kouvel, and G. H. Lander, Phys. Rev. 8 13,

5007 (1976).
P. Morin and D. Schmitt, Phys. Rev. B 26, 3891 {1982).

'OG. A. Gehring and K. A. Gehring, Rep. Prog. Phys. 38, 1



34 BINDING-POTENTIAL MODELING OF THE STRUCTURAI. . . .

(1975).
J. A. Gotaas, J. S. Kouvel, T. O. Brun, and J. %. Cable, J.
Magn. Magn. Mater. 36„208 (1983).

~2J. A. Gotaas, J. S. Kouvel, and T. O. Brun, Phys. Rev. 8 32,
4519 (1985).
J. %'. Garland {private communication).

' T. O. Brun, J. E. Robinson, S. Susman, D. F. R. Mildner, R.
Dejus, and K. Skold, Solid State Ionics 9-10, 485 (1983).

'5T. S. Prevender, S. K. Sinha, and J. F. Smith, Phys. Rev. 8 6,
4438 (1972).

'6G. Gilat and G. Dolling, Phys. Rev. 138, A1053 (1965).
~7S. Rolandson and G. Raunio, Phys. Rev. B 4, 4617 (1971).
~SI. Abu-Aljarayesh, D. M. Hwang, and J. S. Kouvel, Bull. Am.

Phys. Soc. 29, 321 (1984).
~9G. L. Squires, in Inelastic Scattering ofNeutrons in Solids and

Liquids {International Atomic Energy Agency, Vienna, 1963),
Vol. II, p. 71.

2oA. A. Maradudin, iu Dynarnica/ Properties of Solids, edited by
G. K. Horton and A. A. Maradudin (North-Holland, Amster-
dam, 1974), Vol. 1.


