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Mobility in a quasi-one-dimensional semiconductor: An analytical approach
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The electron mobility in a quasi-one-dimensional semiconductor is theoretically investigated when

the scattering is due to ionized donors in an approximation where {i) the envelope wave function is

assumed to be constant inside a cylindrical wire and zero outside and {ii) the finite-temperature ef-

fect is taken into account in the static dielectric function. It is shown that for the one-band case {in-

traband scattering only) this leads to an entirely analytical formula for the mobility at low tempera-

ture, for both uniform and modulation doping. For modulation doping, the theoretical mobility is

much larger than that obtained in a two-dimensional semiconductor for comparable buffer-layer

thicknesses. The main differences between the one- and the two-band cases {intraband and inter-

band scattering) are pointed out. The localization effect is also briefly discussed.

I. INTRODUCTION

The problems related to mobility in semiconductors
have drastically changed since it became possible to place
donors outside of the region where electrons can move.
This occurs in so-called two-dimensional semiconductors
(2D SC), where the electrons can move within a "plane"
whose thickness is of the order of some tens or hundreds
of angstroms and where donor location can a priori be ar-
bitrarily fixed. ' For example a buffer layer can be insert-
ed between electrons and donors.

When donors and electrons are in the same region of
space in a 2D SC the mobility is essentially unaltered
compared to the situation of a bulk semiconductor. How-
ever, the existence of modulation doping and more partic-
ularly of a buffer layer changes this aspect of the problem
and indeed increases the maximum mobility by a consid-
erable amount. If the electrons are confined in a wire as
described in Ref. 2, one obtains what may be called a
one-dimensional senuconductor (1D SC). Some features
of the 2D SC and more particularly the effects of modula-
tion doping are preserved. This type of wire made up of a
square section of GaAs, 200&&200 angstroms, embedded
in Ga~ „Al„As was first proposed by Sakaki ' who car-
ried out a calculation of mobility in approximations
which will be reviewed below. Several papers which deal
with various problems related to 1D SC have recently
been published, illustrating an increasing interest in 1D
SC.

A calculation of the 1D SC mobility limited by ionized
donors has been reported for zero temperature by Sakaki.
That limit is in fact quite realistic at low temperature in
the best 2D SC samples. In his model Sakaki assumed
that (i) the electrons are exactly in the center of the wire,
meaning that the (square of the) envelope function is
merely a Dirac function, (ii) all the donors are located at
the same distance from the center of the wire, and (iii) the
dielectric function is equal to the background dielectric
constant.

The purpose of the present paper is essentially the
same, but our approximations are completely different.
We use a model where (i) the envelope function describes
fairly well the electronic distribution in a wire of finite
section and is sufficiently simple to allow analytical calcu-
lation, (ii) donors are arbitrarily distributed which means
that by analogy to 20 SC the doping can be either uni-
form or modulated, and (iii) the dependence on the wave
vector of the dielectric function is explicit. It is well
known that the one-dimensional dielectric function
diverges when the wave vector is equal to twice the Fermi
wave vector, which is precisely the wave vector of in-
terest. We shall thus be obliged to perform a calculation
at finite temperature, at least for the part where the
dielectric function is needed. Nevertheless we shall see
that this model leads to an analytical formulation of the
mobility in 1D SC.

The outline of this paper is as follows. In Sec. II A we
present the general framework of the paper and in Sec.
IIB we specify the consequences of the approximations.
The explicit calculation is performed in Sec. III. The nu-
merical results (mainly given in several figures) are
presented for the case of interest in Sec. IV. A discussion
is given in Sec. V, where problems related to interband
scattering and localization are tackled. Section VI is de-
voted to concluding remarks. Some details about the
dielectric function are given in the Appendix.

II. GENERAL FRAME%'ORK

A. Mobility formulation in a one-dimensional semiconductor

VA'thin the effective mass approximation, which is as-
sumed to be valid throughout this piper, the mobility can
be written as

where m * is the effective mass ( m ' =0.067 a.u. in GaAs)

34 2394 1986 The American Physical Society



MOBILITY IN A QUASI-ONE-DIMENSIONAL SEMICONDUCTOR:

and ~ the relaxation time. In the following we consider a
degenerate electron gas with a Fermi level EF. Here the
only wave vectors of interest are the Fermi wave vectors
k~ and 2kF„which is the difference between the initial
wave vector and the final wave vector after any scattering
pl ocess.

The electron energies are

(2)

with the corresponding wave functions:

i
n, k ) =

i g„(x,y)e' ) =
i
g„(p)e' ) .

z is parallel to the wire axis and k is the one-dimensional
wave vector. p=(x,y}. We take Eo——0 and assume that
Ep & E 1 so that EF Rk——F/2m '.

In the Born approximation the relaxation time i due to
ionized impurities scattering is inversely proportional to
the cross section, i.e., to

0, —p 0, F
(4)

where r and rd are the positions of the electron and of a
donor respectively: r= (x,y, z) = (p,z), rd ——(xd,yd, zd )

=(pd, zd ), p&
—(x&,pd ). Subscripts av denote the usual

average of impurities assumed to be randomly distributed.
e(k) is the dielectric function. Finally the mobility is

i
e(2kF)

i

1

A=Pc

with

p, =[nefi /16(m') ](4~co/ez)z

and

f= —(0, —kg O, kp)
av

where the linear donor density Nq is assumed to be equal
to the linear electron density X (no compensation) so that
Xd determines kz, and where ( ),„ indicates the average
over the distribution of donors.

In two- or three-dimensional semiconductors, an aver-
age over the angles between initial and final wave vector is
needed; since the dielectric function depends on the wave
vector, there is no way to separate the part due to the
Coulomb interaction and the part due to the screening in
the cross section. In 10 SC all this is much simpler, and

f ls dll'ectly pl'opoItloilal fo tile Cou10111b cross sectloil so
that it is easy to distinguish between what is due to
Coulomb interaction (f) and what is due to screening
[e(2k~ )].

More explicitly

g (p(e' g (p)e'"+@*)

=2 f d'S 0o(p)&o(e I p Cd I ), —

where K„(x) is the modified Bessel function of the second

kind of order n, s and

Nd d pd 2f f d'S (o(C )&o(2kF I p I—d I
)

Ad

A~ is the area of the section (normal to the wire) defining
the place where the donors are randomly distributed. In
Eq. (9) we have taken into account the possibility that the
electron density N can be different from the donor density
E~ (for example, if there is some compensation). Equa-
tions (5) and (9) summarize what is to be calculated when
only ionized donors play a part in the scattering (and
when only intraband scattering is taken into account
which is assumed up to Sec. V).

B. Approximations

In general, Eqs. (5) and (9) can be solved by a computer
only when the envelope function is known. The goal of
this paper being to calculate orders of magnitude, it is
equally useful to make approximations to obtain envelope
functions as to pursue the mobility calculation.

Approximations made by Sakaki (and recalled in the
Introduction) lead directly to (i)

~
go(r)

~

=5(r), (ii)

~ pq ~

=d =const, and (iii) e(2KF)=KG, where mao is the
background dielectric constant so that

p, =p, [mao/Ko(2k~d) ] (10)

which is Eq. (5) of Ref. 3.
Now we define our approximations.
(i} blaue functions General . features of the wave func-

tions are given in Fig. 1. The exact shape depends on the
dimensions and on the depth of the well defined by the
wire and by the surroundings. The wave function is
"flatter" when the electron density is larger because elec-
trons repel each other. In the end we take

0/ lRE
SEC T l GN

AND

WA V E FUNCTlQNS

1 electron e lect rons

SQUARE SE C TlQN

APPRQX I MAT 1 QN

FIG. 1. Qualitative explanation of the approximations used

in this paper. %e take a circular section for the wire which

gives a simpler cylindrical symmetry. The wave function is ap-
proximately constant inside and zero outside such a cylinder
when the electron density is sufficiently high. %'e take this ap-
proximation for all electron densities.
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(iii) Dielectric function At zer.o temperature, the dielec-
tric function is equal to eo(q, EF), given by

4e m' F(q) q+2kF
eo(q, EF)=etta+ ln

q q —2kF

with

(13)

l
go(p) l

=(irR ) 'I'(R —lp l
),

where Y'(x) is the step function. This function, also used

in Ref. 5, means that the square wire is approximated by a
cylindrical wire of radius E.. Furthermore, the approxi-
mation is likely better for high rather than low electron
density. We shall use it for all densities.

(ii) Donor distribution. Donor distributions which are
realized in 20 SC and which could be realized in 10 SC
are described in Fig. 2. It is not interesting to overly in-

crease the buffer-layer thickness, because beyond a thick-
ness of several hundred angstroms the donor energy levels

are below the Fermi level and donors cannot transfer their
electrons to the "plane" mentioned in the Introduction.
In the following we shall call Ul the case where the
donors are (randomly distributed) inside the (cylindrical)
wire, U2 the case where the donors are inside and outside
the wire up to a given distance (which we shall take as
twice the wire radius), M 1 the case where all the donors
are outside the wire (we shaH take donors at a distance be-
tween one and two times the radius), and M2 the case
where the donors are outside the wire but with a "buffer
layer" (we shall take donors between two and three times
the wire radius). For convenience we shall refer to cases
U 1 and U2 as uniform doping cases and M 1 and M2 as
modulated doping cases. Let d and de be the smallest
and the largest radius of the cylinder where donors are
randomly distributed: U 1, d =0 and dM ——R; U2,
d =0 and dl ——2R'„Ml, d =R and d~ ——2R; M2,
d =2R and de ——3R.

With the approximations (i) and (ii), f can be written as

d pd 2
2

= I (di d2) „Ri 0 F lp p~ I—PX(2k
M m

F(q)= I "'p 1 d'p'4(pro(p''o(q
I p p—'I )

In the approximation given by Eq. (11),

F(q)= I „d'p f,, „d'p'&0(q
l p p—'I)

2
[1—2Ei(qR)1 i(qR)],

(qR)
(15)

T

CQ EF
eT(q) = f dE eo(q, E) 4k' Tcosh

0 8
(16)

For q =2kF, er(q) is given by

4e'm* ~(2kF)
er(2kF ) =etta+ 2 S(EF/ktt T),

with

S(x)= —, dt ln
v t +v x/ 2 p x

cosh
t —v'x/2

(18)

which does not diverge any more. Making use of Eqs.
(12), (15), (17), and (18), Eq. (5) is written as

l
er(2kF )

l

P =Pe (19)

Briefiy, we take into account the finite temperature
only when this leads to drastic modifications of a given
quantity. In other words, if a quantity is finite at zero
temperature the alteration introduced by the finite tem-
perature is neglected.

where I„(x) is the modified Bessel function of the first
kind of order n In .any case, whatever the approximation
on the envelope function, the dielectric function diverges
for q =2kF at zero temperature so that we must look for
another approximation. The simplest one is to consider
the diele:trio function at nonzero temperature: eo(q, EF)
being the zero temperature dielectric function given by
Eq. (13), the dielectric function eT(q, Er) at finite tem-
perature T [which will be written er(q) for convenience)
1S

UN IFORM

0 OP ING

MOOULA T E. O

OOPING
III. EXPLICIT CALCULATION

Now we successively use the three approximations de-
fined above

(i) Calculation of scattering amplitude With the . ap-
proximation defined by Eq. (12) we have to calculate the
matrix element A (pd ) defined by

Q~

A(pd)= —, 0, —kF
1 I

O, kF

Eo 2kF P —Pd
d p (20)

0&~) (2R

U2

R&&g &2R

Ml

FIG. 2. Kinds of doping that can exist in a two-dimensional
semiconductor (20), in a one-dimensional semiconductor «;10),
and the corresponding approximation ( —10).

%'e have to distinguish between two situations: p~ &8
and pd & R. %'e write the corresponding results
A(pq &R) and A (pd &R), which are, respectively, equal
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3 (pd &R)= [1—aKi(a)Ii(a)]2

3 (pd & R }= —Ii(a)Ko(5),2

a=2kFR, 5=2kFd . (23)

It is useful to distinguish between two cases:

dM=R* f=fv '

R &dm &pu & dM f =fM .

(24)

(25)

(26)

(ii) Calculation of f. We have to calculate (with
N =Nd) After some algebraic manipulations, we get

'2

I 1 —4K)(a}Ii(a)+a K)(a)[Io(a)—I,(a)]j,
Q

(27)

2Ii(a) 5s)s [Ko(5M ) —K i (5))s )]—5 [Ko(5 ) —K i(5 )]
Q

(28)

with

5M 2kFdM, ——5 =2kFd (29)

T

Se~S(x}=ln x =ln(4. 535)x, (30)

where y is Euler's constant y =0.577. Equation (30) gives
back a well-known formula for the dielectric function in

{We note that the liinit of fs)s is equal to
[2I)(a)/a]'[Ko(2kFd)] when ds)s tends toward d,
which allows comparison with Eq. (10) if necessary. } fss
is useful for cases M 1 and M2 defined in approximation
(ii) of Sec. II 8, fU is useful for case U 1; both f~ and fU
are needed for case U2.

(iii) Dielectric function The .numerical integration of
Eq. (18) is straightforward. However, two approxima-
tions are very useful. In the first one, EF »kssT or
x)+1:

metal at 10% temperature. '

In the second approximation EF «ks T or x «1:
S(x)=1.346@x (31)

Indeed it can be shown that Eq. (30) is valid for
x &0.638, and Eq. (31) for x &0.638 [see the Appendix
where the accuracy of Eqs. (30) and (31) is discussed].

This last remark shows that with the set of Eqs. (15),
(17), (27), (28), (30), and (31), Eq. (19) now provides an
analytical result whatever the case of interest. For exam-
ple, in the modulated case, which is the most interesting
since it gives the largest mobility, and for the case which
is the likely situation, where T =4.2 K, N =10 cm
ER 14 meV, i.e., ——EF »kss T, where Eqs. {28)and (30) are
valid, one has

2
4e'm 'R 2[1—Kl (a)I){a)] 8e "EF

86+ 2
ln

m62 a 8

2I(a) 5))s[Ko(5M) —Ki(5ss)] —5' [Ko(5' ) —Ki(5 )]
A

(32)

IV. NUMERICAL RESULTS

We have to calculate eT(2kF) and f. To give some ex-
plicit examples we have taken 8 =50 A and 8 =100 A
with T =4.2 K. %C have chosen to study the mobility as
a function of the electron density X for 10
cm '«X «10 cm ', which is the range of interest. The
variation of the dielectric function with electron density is
glvcn ln Flg. 3. As ln 20 Sc,' thc hlghcr thc clcctl.on f)PR)(N) f(R)(pN) (33)

density the lower the dielectric function for wave vector
equal to 2kF.

Figure 4 gives the variation of fU and f))s as a function
of electron density. We can note that for a given
geometry, i.e., once the donor distribution is known, f (fU

or fl) depends only on the product kFR, i.e., on NR:
f=f(NR). Now if we write f=f'"'(N), we sm that
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(d —2)/2
F

@=cd &oo+
F 0

(35)

TABLE I, Ratio of the mobilities for a Fermi level just below

(p& ) and just above (p& ) the bottom of' the second conduction

subband in a semiconductor of dimension d. (See discussion in

the text). Cq the constant of proportionality (p =Cq8oo' ) is tak-

en equal to unity for clarity. Eo and E& are, respectively, the

energies of the bottom of the first (n =0) and of the second

( n = 1) conduction subband. EF is the Fermi level.

8~——Boo(E~) gives the intraband (0~0) scattering rate awhile

DoI ——Do&(E~) gives the interband (0~1) scattering rate, both

of them for E~ ——E&.

d pE &E =p» pEF&F. , =p& P&~P&

where to simplify the notation we have written Boo and

Doi instead of 800(EF) and Doi(EF). Cd depends on the
dimension d of the semiconductor of interest. The results

are summarized Table I. This shows that the mobility
collapses when EF——E& in 1D SC, contrary to the 2D SC
ease. This results merely from the density of states
behavior. Of course any source of broadening will prevent
the mobility from becoming equal to zero. For instance
in our calculation we have assumed that the electron dis-

tribution can be described by Fermi-Dirac statistics re-

duced to a step function. This is certainly not the case for
the electrons in the second subband n =1, and this is suf-
ficient to give a broadening. Indeed the main result is
that the mobility in 1D SC will be be much more sensitive
to the position of the Ferini level with respect to Ei than
in 2D SC.

We can also wonder about the influence of some imper-
fections on the mobility. Many kinds of imperfection can
be considered but to give a likely example here we shall

look at an "imperfect" case M2, i.e., a case where a weak

percentage of donors are randomly distributed inside the
wire as in the U1 case. The calculation is similar to the
U2 case. Let us consider the case where N =Nd ——10
cm ' with pNq donors inside the wire: If p =0%, we are
in the M2 case and p, =5X10 cm /Vs, if p =100% we

are in the U 1 case and p =2)& 10 cm2/V s. If p =10%,
the mobility is p =2 X 10 cm /V s and if p = 1%,p is as
low as 2&(10 cmi/Vs which shows the significant infiu-

ence of imperfe:tions. However, the above considerations
must be taken with caution. Up to now all the donors
have been assumed ionized. This is true for donors out-
side the wire. If there are only a few donors inside the

10'
10'
10

1 cm
10 pm

100 A

wire (and no donors outside} these donors will keep their
electrons and will be neutral. In the case of interest here
(say p =1%), it is not obvious whether the few donors in-
side the wire will be ionized or not and in any case the
possible ionization will be due to screening of electrons
which originate from donors outside the wire which
makes the cross section weaker. Under such conditions,
donors inside the wire will have little influence on the mo-
bility. It is beyond the scope of this paper to investigate
the influence of such donors, but we must keep in mind
that mobility limitation due to imperfections as described
here may not be as drastic as one might think at first
sight.

Although it is not the goal of our paper, another prob-
lem we have to look at is the question of localization. The
simplest criterion for knowing whether localization plays
a part or not is found by calculating kF! where l is the
mean free path and comparing it to unity. '" If kFl »1
then localization is negligible and within our model our
results are correct, otherwise our calculation has to be
modified. Results are given in Table II for N=kz-106
cm '. It is clear in a "perfect" 1D SC (p,„~,~p,b, —10
cm /Vs, kFl »1) that there will be a huge mobility and
in the contrary case (p,„~,»» p, i,„„kFl = 1) there will be a
strong localization.

Another point of interest is to evaluate how good the
approximation is which we have used for the dielectric
function. This has no obvious answer. Fortunately a so-

phisticated calculation was recently carried out by Das
Sarma and Wu-yan Lai who took into account the influ-

ence of both flnite temperature and collisional broadening
on the dielectric function. It is easy to convince oneself
that the quantity of interest is nr(q, O)/no, where m.(q, O) is
the static polarizability in the presence of collisional
broadening I' and at finite temperature T and no the same

quantity for q =0 with T = I =0 in the notation of Ref. 7

TABLE II. Order of magnitude of the mobility of the mean
free path I and of the quantity k~1 for a linear electronic density
%=10 cm ', which corresponds to a Fermi wave k~-10
cm ' for a wire of radius R =100 A. If the mobility is of the
order of the theoretical maximum mobility (see Fig. 6) or even

10 weaker, the localization is negligible ( k+I g~ 1). This
remains true as long as the mobility is larger than 10' cm'/V s.

p (cm2/V s)

1i'2

&OO+ Ol
F 0

~oo++ol

DOI1+0
&oo

DOI1+1
&oo

m(q, O) I dE lil
$2q 2

2'

' 1/2
fi q

2@i
1/2

' 2P7l

Dol E —Ep
X 4kB Tcosh

B
(36}
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in our approximation where only finite-temperature ef-
fects are taken into account. The net result is given in

Fig. 7. It is foreseeable that the static polarizability of
Ref. 7 is smaller than that used in the present paper;
however, the difference is too small to change the order of
magnitude of the mobility. This is particularly true for
%=10 cm ' where the dielectric function is near the
background dielectric constant.

Throughout this paper we have assume that the tem-
perature is equal to zero except for the dielectric constant
for which we have assumed T =4.2 K. It is clear that for
ks T «EF the mobility will not change if we take into ac-

count the slight broadening around the Fermi level due to
the finite temperature. This will be the case for %=106
cm ', E~-14 meV, and k&T =4.2 K=0.3 meV. How-
ever, for N=10 cm ', E+=0.14 meV and in this case
our approximation becomes poor and can only give an or-
der of magnitude. In other words in Figs. 5 and 6 the re-
sults are much better for high (N =10 cm ') than for
low (N =10' cm ') density. (Anyhow in this last case
the mobility is not very high and, due to localization, the
calculation becomes questionable as discussed above. )

Nevertheless we note that N =10' cm ' corresponds to a
very low elo:tron density and the cases of interest will
probably be around N =10 cm ' (as in 2D SC, where
the range of interest is around X=10' cm }. This
means that in pratical cases our calculation need not be al-
tered.

Lastly, it is necessary to know the range of validity of
our one-band approximation: this range depends on the
energy difference Eoi between the first (n =0) and the

second (n =1) conduction subband. For an infinite well,

Eoi ——42 meV, if the wire section is 200X200 A (as in
Ref. 2) and if there is only one electron in the well.

(Eoi ——50 meV for a cylindrical wire of radius 8 =100
A}. For N =10 cm ', which is the maximum density
considered in this paper. E~ is equal to only 14 meV, well
below 42 meV: the one-band approximation seems fully
justified. However, the reality is more complex. The Fer-
mi level EF and the linear density N are related by
A= 14(N/10 ), where EF is in meV and N is in cm
The critical density N' for which Ez 4—2—meV is
X'=1.7&&10 cm ' which is larger but not very much
larger than 10 cm '. Furthermore, due to both the finite
depth of the well and to the influence of the electronic
density the energy levels will be closer than in the case
considered just above [as in 2D SC (Ref. 1)]. In these con-
ditions the critical density will be lower than 1.7&(10
cm ' and could be of the order of %=10 cm '. Only
detailed calculations taking into account the exact shape
of the well can give accurate results. For a wire of square
section 100X100 A (or a cylindrical wire of radius
R =50 A), all the energies must be multiplied by four and
the critical density will be always much larger than 10
cm

Before concluding, we wish to discuss briefly the paper
by Lee and Vassel In this paper the authors treat im-
purity scattering as well as phonon scattering from low to
room temperature. To make a useful comparison with
our paper we will concentrate on impurity scattering at
low temperature. The main difference are the following:
(i} the square of the wave function is approximated by a 5
functio~ [more precisely, 5(

~ p ~

—R/2); see Eq. (25} of
Ref. 15] and (ii) they use a Thomas-Fermi approximation
for the dielectric function. As pointed out by the authors
themselves, "this approximation is incorrect particularly
at very low temperature. " This last point is the main
difference between their approach and ours where the Lin-
dhard function was used.
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We have shown that reasonable approximations lead to
an analytical formulation of the mobility in 1D SC. The
main approximation is the use of cylindrical symmetry
which cannot alter the order of magnitude of the results
for samples such described in Ref. 2. It is likely that in
the future the main problem will not be to improve our
model but to take into account the almost unavoidable im-
perfections of real samples to obtain a more realistic mo-
bility. However, there is a problem which has not been
tackled above and cannot be set aside, the limitation due
to scattering by phonons. If the mobility is not overly
high, say 10 cm /Vs, phonons play no part and at low
temperature scattering is only due to ionized impurities as
in 2D SC.' But for very high mobility it is clear that it is
not possible to neglect scattering by phonons. This prob-
lem will be investigated in a forthcoming publication.

FIG. 7. Solid lines, which give the static polarizability func-
tion of the one-dimensional electron gas, are extracted from Fig.
l(b) of Ref. 7. I is the broadening, in units of EF. The dotted
line gives the same quantity in our approximation where the
broadening is not taken into account.

~CK.NQ% LEDGMENTS

I thank D. Calecki for useful discussion about Sakaki's
paper, Y. Ayant for hints about Bessel functions, N. T.



34 MOBILITY IN A QUASI-ONE-DIMENSIONAL SEMICONDUCTOR:

Thang, A. Ghazali, and J. Serre for illuminating remarks
about dielectric constant„h. Sirat and P. Averbuch who
introduced me to localization problems and Le Si Dang,
R. Romestain, and R. L. Cone for a critical reading of the
manuscript.

APPENDIX: SOME REMARKS ABOUT
THE DIELECTRIC FUNCTION

First we wish to justify the approximation given in Eqs.
(30) and (31) for S(EF/k&T) defined in Eqs. (17) and (18),
which gives the nonzero temperature dielectric function.
For EF p&kii T the approximation defined by Eq. (30) is
obtained by a simple calculation. For EF ggk~T, we ob-
tain

' 1/2

S(x)= — I du[v ucosh u] ',

xi&I�

. (Al)
0

Numerically, this last equation gives back Eq. (31).
The problem is now to look at what happens if we are

not in one of the two above limits. For this we plot the
two curves defined by Eqs. (30) and (31). These two
curves intersect for EF/k&T =0.656 as shown in Fig. 8,
where S(E~/kii T), numerically calculated, is also plotted.
Even at the intersection point the ratio between the true
value of S(EF/k&T) and the approximations of Eq. (30)
or (31) is only equal to 1.058. Indeed the approximations
are the worst not at the intersection point but at x =1.5
for which the same ratio is equal to 0.941. This shows
that these approximations are well justified.

We are now able to give the linuts of the mobility when
the electronic density is very small or very large (for

EF k~T

FIG. 8. Solid line give numerical values of S(x),
x =EFlksT [See. Eq (18)]. The dotted line and dashed line

give, respectively, the values of the functions defined by Eqs.
(30) and (31), which intersect for EF/kq T =0.656.

N =Ed and neglecting interband scattering). For
EF ~~kii T we obtain

eaGa ~ 'f f=fU
P '

2 2 2 32(5 —a)
eiiG(5sr —5 )a e, if f =fM

and for EF «k, T,

a, lf f=fU
a (lna), if f =fM

We thus find the results for the two limiting cases given
without demonstration in Sec. V.
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