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Calculation of carrier capture time of a quantum well
in graded-index separate-confinement heterostructures
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The electron capture time into the quantum well of a graded-index separate-confinement hetero-

structure laser has been calculated at 77 and 300 K. The results (at 77 K) show oscillations between

several picoseconds and several tens of picoseconds with increasing quantum-well thickness, qualita-

tively similar to the behavior in simple separate-confinement structures. Quantitatively, the differ-

ence in capture times for optimal structures of each kind does not explain the lower threshold of the
graded-index structure.

I. INTRODUCTION

Recent experimental works' have demonstrated the
high performances of quantum-well lasers. Nevertheless,
all the physical mechanisms accounting for the quality of
these lasers are not yet well understood. One of the
reasons may be the efficient capture of carriers by the
quantum wells. Shichijo et al. and Tang et al. studied
the problem within a classical framework by considering
the Lo phonon scattering. More recently, arum et a1.
studied the quantum effects of the carrier capture by
semiconductor quantum wells. They reported strong os-
cillations of the capture time as a function of the well
width. These resonances originate from the binding of a
new bound state by the quantum well. Gobel et al.s and
Miyoshi et a/. performed time-resolved photolumines-
cence experiments and obtained carrier capture times of
0.05 and 2 ns, respectively. Christen et al., ' using time-
resolved cathodoluminescence, obtained 0.1 ps. More re-
cently, Mishima et al." observed strong dependence of
the excitation intensity dependence of photoluminescence
by the quantum-well length. Their results were interpret-
ed in terms of the carrier trapping efficiency under
resonant and off-resonant conditions.

We present here a calculation of the LO-
phonon —assisted capture time by a quantum well of the
carriers confined in the optical cavity of a graded-index
separate-confinement heterostructure (GRINSCH) laser
and discuss to what extent the results can help to explain
the improved performances observed in GRINSCH (low
threshold current).

II. CALCULATION OF THE CAPTURE TIME

We consider a GRINSCH structure as the one shown in
Fig. 1. In the effective mass approximation, the envelope

l

function of a state is %(r) =exp(iK r)g„(z), where K is a
wave vector describing the motion parallel to the epitaxial
layers, n the subband index. At high temperature, in high
quality samples, the interaction with polar optical pho-
nons prevails over any other scattering process. The prob-
ability for an electron of the barrier in the (n, K) state to
be scattered into the well state (n', K') by a phonon of
momentum (Q,q, ) (Q is the component of momentum
parallel to the layers), was first computed by Price z

X&x,K+@&«.K.
—E.K+~Lo»

Qe,
S+(n, K -n', K'}=QS „,F- &;b, (i,nK n', K'), (2)

f„„,(Q)= f dz f dz'g„(z)g„(z)S„(z')g„(z')

X (3)

g =e AcoLo/(20)(1/e„—1/eo),

1/(e AulkT

where A and Q are the area and volume of the sample,
respectively. e„and eo are the dielectric permittivity at
very high and very low frequencies. The sign + (respec-
tively, —} is for the emission (absorption) of a LO pho-
non. The total particle flow from the barrier to the well
can then be obtained by summing over all initial (barrier)
states and all final (well) states:

n (barrier) n'(Well)

9f d Kp(n, K)fb(E„,K) f d K'p(n', K')[1—f (E„,K')j f d Qp(Q)S +(n, K~n-', K'),
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FIG. 1. GRINSCH potential profile for the conduction band.
The dimensions are not to scale.

p(rt, K), p(n', K'), and p(Q) being the density of modes,
fb(n, K) and f (n', K'), the occupation probability,
respectively, in the barrier and in the well. As the total
number of carriers in the barrier is given by

N= g f 1 Ep(n, K)fb(E„,K),

the average time for a carrier to be trapped by the well is
~, =N/J, where J=J++J

The complete calculation and formula are given in Ap-
pendix A. Note that in formula (6), we somewhat arbi-
trarily consider as a "well state" any state whose subband
minimum is under the potential energy at the beginning of
the confining barrier, even if a carrier in such a state has a
noii-11cgligiblc probability of bc111g outside tlic well, cspc-
cially for shallow levels. Symmetrically, we count as
"barrier states" the first subband above the well which is
sometimes almost localized in the well, owing to the fun-
nel shape of the energy profile. This leads to some ar-
tifacts in the results, as mentioned below.

III. RESULTS

We consider the injected electrons as thermalized in the
confining layers with a Boltzmann distribution (this point
is discussed in Appendix A}. The electron effective mass
used is 0.07mo, where mo is the free-electron mass. In
Fig. 2 we plot the electron capture time r, versus the
quantum-well (QW) width L. The conduction-band
discontinuity at the abrupt interface, hE, is 150 meV
(corresponding to an Al concentration of about 0.2}. The
barrier is graded resulting in a built in electric field of 0.1

meV/A [Fig. 2(a)]. Finally, all the calculations were per-
formed for a carrier temperature of 77 K [Fig. 2(a)] or
300 K [Fig. 2(b)]. In Fig. 2(a) we have also plotted
(dashed line) the results for a QW with horizontal barrier
[equivalent to a separated confined structure (SCH)] with
the same parameters (electron effective mass of 0.07mo,
x =0.2, T =77 K) and a total thickness structure of 1

P1Tl.
For the GRINSCH, starting from very narrow wells,

we first see a decrease of the r, as the (unique) bound
state gets deeper into the well. It reaches its minimum
value when it is separated from the lowest barrier state
Ebi by about 1k')LO ( 36 IllcV). Bcyoild this poiilt, tllc
energy difference of the two levels increases, allowing only
processes involving final states with k&&0, and the cap-
ture becomes less efficient. In competition with this ef-
fect is the better confinement of E(, &

in a wide well, which
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FIG. 2. Electron capture times ~, versus the quantum-mell
thickness L for a GRINSCH [(a), solid and dotted lines] and a
SCH [(a), dashed line] for an electron temperature of 77 K and
for a GRINSCH (b) at 300 K. The parameters used are as fol-
lows: electron effective mass of 0.07m 0, hE, = 150 meV,
I" =0.1 meV/A (for the GRINSCH) and a total structure
length of 1 pm (for the SCH). The dotted parts of the
GRINSCH curve in (a) correspond to L values for which either
the topmost bound state has a probability smaller than 60% to
be found in the we11 or the first barrier state has a probability
larger than 30% to be found in the well.

favors a lot the capture (better overlap) and causes ~, to
decrease again.

This drop stops when Eb2 becomes the second bound
state (L-70 A). Although the appearance of a new
bound state should favor the carrier capture, the latter is
in fact hainpered by the loss of a well localized quasicon-
tinuum state. Furthermore, the separation between initial
and final levels is much lower than ficoLo, allowing only
capture from high transverse momentum initial states.
The net result is an abrupt increase of the capture time. If
we keep increasing L, r, decreases again and the whole
cycle is repeated. It is important to observe that the
abrupt variation of r, when the well accepts a new bound
state is not a real physical effect. This variation has its
origin in our definition of bound and barrier states and of
their occupation. In fact, when the topmost bound state is
near the top of the QW (or the bottom barrier state is lo-
calized in the well), a more complex situation occurs and
the abrupt variation should be smoothed. Our model can-
not describe this situation and more sophisticated calcula-
tions would have to be performed, either by Monte-Carlo
simulations or by refining the model, e.g. , by considering
three populations in interaction {the well states, Es(, and
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the barrier states other than Ebi). To give an idea of the
limits of validity of the calculations we have drawn in
dotted line on Fig. 2(a) the part of the curve for which the
topmost bound state has a probability lower than 60% in
the well or the first barrier state is more than 30%%uo in the
well.

We have included in our calculations the contribution
to the capture into all the bound states. However, as for
the QW with a horizontal barrier, only the topmost
bound state is important. The SCH results (dashed line)
show almost the same structures. However, we cannot
compare directly the GRINSCH and SCH capture time
since the last is directly proportional to the total structure
length and it is not obvious what is the equivalent value
which should be taken for a determined value of F for the
GRINSCH.

The results obtained at 300 K with the same parameters
[Fig. 2(b)] show similar structures. The oscillations are
weaker since we have more populated levels. Also, the
capture is a little slower since the more effective levels for
the capture (smaller energy) are less populated than for a
temperature of 77 K.

We do not show a computation we made for T =77 K
and F=0.08 meV/A (all the other parameters being the
same) since the resulting curve appears to be almost paral-
lel to that of Fig. 2(a).

In Fig. 3 we show the carrier capture time for a QW of
100 A width as a function of the inverse of the quasielec-
tric field F, all the other parameters being the same as in
Fig. 2(a). We observe a rapidly decreasing r, for increas-
ing F for small values of F. This is because of the in-
creased confinement of the quasicontinuum states. For
actual F values, the energy separation between the top-
most bound state and the first quasicontinuum state is al-
most constant. The predominant effect is the increase of
the confinement of the barrier state which saturates for
values of F between 0.05 and 0.1 meV/A. Other effects
may appear for larger values of F, but these values do not
correspond to experimental situations.

Note that in the range of current lasers (0.04 to 0.2
meV/A), r, is approximatively proportional to 1/F. As
the density of states of a symmetrical triangular well also
varies as I/F (see, e.g., Ref. 6), this means that the injec-
tion current (J-N!r, ) does not depend strongly on the
slope F. This result is very similar to what happens in

rectangular SCH where both ~, and E are about propor-
tional to the width of the optical confinement layer.

I&. CONCLUSIONS

We have calculated the carrier capture time by a QW in
a GRINSCH structure. Strong oscillations were observed
as a function of L, whose amplitude dix:reases at high
temperature. These oscillations have similar origin as
those reported for the quantum well with a horizontal
barrier. The GRINSCH structure presents new aspects
for the carrier capture time because of the confinement of
the quasicontinuum states. Unlike its dependence on the
well width, the capture time does not vary very much
with the geometry of the confinement layers (slope for a
GRINSCH).

Furthermore, it can be seen from simple rate equations
that the populations in the barrier X and the well no are
given approximately by X=t,nolt and I =no(1+1, /
tb)lt in the stationary case. Here, I is the injected
current, t, the capture time, tb the lifetime of a carrier in
the barrier (by radiative or nonradiative recombination),
and r„ the lifetime in the well. As the threshold for posi-
tive gain depends directly on no and on the optical con-
finement factor, a laser with a given optical confinement
is the better the lower t, /tb. However, this effect is rather
weak so the capture time is not a crucial parameter for the
optimization of the laser threshold current. For that pur-
pose the optical confinement factor and the relation be-
tween the number of carriers in the well and the Fermi
level' are much more relevant.
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APPENDIX A: CALCULATION
FOR A GRINSCH AND A SCH

The quantities p(n, K),p(n', K) and p(Q) are equal to

10

]/F [A,lmeV~

20

FIG. 3. Electron capture time versus the inverse of the
quasielectric field of a GRINSCH vnth a quantum-mell thick-
ness of 100 A. All the other parameters are the salne as those in
Fig. 2(a).

p( n, K)=p(n', K)=A /(2m ),

p(Q) =&/(4ir') .

We use a parabolic band approximation

E„K E„+A K /(2m), ——

E„x E„+Pi (E') /(2m) . ——

Noting that

(A3)

(A4)
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5( E„~+ficoLo —E„K)=(m /i}i Q)&((m /& Q)(E„+i}ioiLo—E„)+Q/2+K Q/Q) (AS)

+=—(Aginm/4~m )(n + '+—')—g g f d Q f„„(Q)/Q f d &[1—f (E„,«)]fk(E„,&)
n n'

yg(m/X Q)(E„+r „—E„)+Q/2+K q/Q) .

The sum over K can be split into a sum over the components parallel and perpendicular to Q,

f Q' ' = f Q Q 'f '(Q) f t[ f&(»'&+&)]fb( rex=~ zsig)iz'+a -z')+gn) '

(A6)

In the following we shall assume that fb can be taken as a Maxwellian distribution and that f„ is much smaller than 1

(which means that there are few electrons in the conduction band). These conditions are not so good in the standard
working conditions of lasers, but an accurate calculation requires a good knowledge of the position of the Fermi level in
the structure which depends dramatically on all the technological and physical parameters of the laser (length of the
chip, internal losses, etc.). Then the integral in Eq. (A7) can be explicitly calculated,

f dKt(l f~)fk-—f exp[ —(fr'/2mkT)(I(:~}+I(:z)]dEj (&2rrm——kT/fi)e (AS)

Dividing J- by the number of particles in the barrier (calculated with the same assumptions), one gets

1/r; = g f dQ Q 'f„„(Q)exp[(—iri /SmkT)(Q+8 +/Q) ]-
2 2rrkT/m 5

where

8+ =(2m/fi )(E» +RcoLo E)— (A10)

( g ) g e
—klkrg y e EikT— (Al 1)

E„—E„+RcoLo»A Q /2m-R K /2m .

For a SCH, the levels are very close to each other so that one can use a continuous approximation for the integration

I/r; = [g Q(nz+ —,
' + —,

' )/(4m&aT)] g rr„, (A12)

One can see from this formula that almost all the contribution will come from scattering into the shallowest level of
the well, as the exponential factor in the last integral will become very small as soon as

With

o.„= 'exp —A' 8mkT 4 + +9+-/ (A13)
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