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The EPR data for strained ruby have been reanalyzed using a model in which the mixing of five
excited multiplets into the ground state are considered. Consistent crystal-field superposition-model

parameters mere obtained. Tables of the necessary superposition-model "projection" coefficients for
both trigonally and tetragonally oriented coordinate systems are provided, making the application of
the model to similar systems straightforward. Using this model, the justification for the Muller and

Berlinger form of the superposition model for the Cr + ground state is investigated.

I. INTRODUCTION

The existing situation in regard to the correct
superposition-model treatment of the ground-state split-
ting of the Az ground multiplet of Cr + is in a state of
some confusion. As has been pointed out by Newman, '

and reiterated by Clare and Devine, ' it is incorrect to as-
sume that the effective spin operators for this state can be
transformed as R q vectors, because Az mixes with the
other L =3 states under arbitrary transformations. Hence
the superposition model of the spin Hamiltonian in the
form that has been developd for ions with I.=0 ground
states such as Mn +( S&&2) and Gd +( S7&z) and
Gd ( S7/2 ) (Ref. 4) is not apphcable. On the other hand,
Muller et al. ' claim considerable success with a model in
which just such assumptions are made. Even more puz-
zling is the fact that, although Clare and Devine used the
supposedly "correct" approach in applying the superposi-
tion model to the crystal field directly, they did not
achieve a very good understanding of the experimental re-
suIts for strained ruby. In particular, the consistency be-
tween their superposition-model analysis of the strain pa-
rameters and the static parameter D for this system is
very poor indeed, and their suggestion that this is due to
the operation of different mechanisms in the two cases is
unsatisfactory. Besides this, they obtained values of the
superposition-model parameters which are inconsistent
with those obtained from optical data.

TABLE I. Energy levels of Cr + in ruby and MgO obtained
using parameters 8, C, and d determined in Refs. 8 and 9. a
and b labels distinguish repeated irreducible representations of
the octahedral group. States omitted from the Clare and Devine
|'Ref. 2) analysis are starred. Energies are given in units of 10'
cm

A1203

Muller and Berlinger have suggested that the reason
for these inconsistencies is that Clare and Devine used a
too restricted set of excited states in their perturbation
formalism. This criticism is well founded, because several
of the omitted excited states lie no higher in energy than
those which were included (see Table I).

The present work aims to achieve three things. %e ex-
tend the Clare and Devine analysis to see whether a better
fit of the model parameters to the experimental data for
ruby can be obtained. This calculation is then used to
form the basis of a general approach to the super-
position-model analysis of ground-state splittings of Cr +

in a near cubic environment. Using this approach we fi-
nally examine why the model used by Muller et al.s'6 ap-
parently works so well.

II. CRYSTAL-FIELD CONTRIBUTIONS
TO THE Cr3+ A2 GROUND-STATE SPLITTING

Contributions to the crystal-field splitting of the Aq

ground state of Cr + arise from small admixtures of ex-
cited states with orbital degeneracy due to spin-orbit cou-
pling. In contrast to the case of ions with half-filled shell
ground states, the one-electron crystal field is not disad-
vantaged in this process vis-a-vis correlation (or two-
electron) contributions. It should therefore only be neces-
sary to consider the crystal-field and spin-orbit operators
in constructing the appropriate perturbation expressions.
In view of the fact that the previous formalism was in-
complete, our first concern will be to include all signifi-
cant admixtures into the ground state.

The unperturbed Hamiltonian contains, besides the ki-
netic energy and spherically symmetric one-electron
terms, the Coulomb repulsion represented by the Racah
parameters B,C and the cubic crystal field represented by
6=10Dq. The perturbing Hamiltonian takes the form

aTI
2

4T+

0
18.10
21.56
24.76
32.17
39.29

0
17.60
21.71
24.52
31.83
38.60

where the Ct (i) are tensor operators acting on electron i,
g is the spin-orbit coupling, and Bt' are the C3 crystal-
field parameters. It is presumed that the dominant cubic
crystal-field component has been subtracted out from the
8~, as it is included in the unperturbed Hamiltonian
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TABLE II. Nonzero third-order contributions to the ground-state splitting in ruby. For class I, contributions are of the form

X ( C
~

V„~ 'A ) i(AE 4E ).

Class I
Type

4T 0 T2
2
Q T2

2(b)

b T2

bT2
0T2
bT2
2

ur1
4T

bTI
4T

4arl
2
g T2

4arl
bT2

7(a)

brl
iz T2

brl
bT2

which defines the basis states.
The low-lying states of Cr + in ruby and MgO are

shown in Table I. Following Macfarlane it is assumed
that the contributions from states above 40000 cm ' can
be neglected. There are perturbation contributions to the
ground-state splitting, as the spin-orbit operator must ap-
pear at least twice and the crystal-field operator at least
once. Clare and Devine distinguish two classes of contri-
butions [see their Eqs. (5) and (6)j, according to whether
the crystal field couples to the ground state directly,
denoted class II, or whether the crystal field acts between
degenerate excited states (as we assumed in Ref. 1), denot-
ed class I. The third-order mechanisms considered in this

paper are summarized in Table II.
The main problem in evaluating the matrix elements

arises from the doublet excitations, for it is not possible in
these cases to separate out the total spin part of the spin-
orbit operators as was done previously. ' This is because
the operator g,. 1;*s; is only proportional to I. S for ma-

trix elements within a given I.S term. In order to deter-
mine the spin-Hamiltonian parameters it is therefore
necessary to compare the perturbation contributions to the
ground-state matrix elements directly with the matrix ele-
ments of the spin Hamiltonian. Nevertheless, as we wish
to make comparisons with the previous formalism and to
obtain results that can be used for other Cr'+ systems, it
is convenient to express our results in terms of factors
multiplying the class I and II contributions already deter-
mined in Ref. 2. The details of this calculation are
described in Sec. III.

III. SUPERPOSITION MODEL
FOR THE Cr3+ 4A2 GROUND STATE

It is convenient to introduce the 4/4 energy matrices
(1,m) defined over the A2 quartet spin states, where

T is a "type" label as defined in Sec. II and I, m describes
the crystal-field component. In constructing these ma-
trices we shaB omit the energy denominators and the ener-

gy operator coefficients g, 81' [see Eq. (1)) from the
numerators of the perturbation expressions. The weighted
sum of these matrices is given by

hI h3 h5 0

h4 hZ 0 hS
A (1m)= gA (1,m)i'.

6 2 3

0 h6 —h4 hj

hk =hk(l, m), (2)

where the weighting factors wr are determined from ra-
tios of the previously omitted energy denominators. It is

clear from Table I that such ratios are effectively constant
for different oxygen-coordinated systems. The following
relations can be shown to hold:

hk(l, m)=( —1) hk(l, —m) (k =1,2),
hq(l, m)=( —1) hs(l, —m),

h6(l, m)=( —1) hs(1, —m) .

Values of the hk(l, m) coefficients have been calculated
for both trigonal and tetragonal coordinate systems and
are available on request from the authors. These results
show that all ten perturbation mechanisms considered in
this work give significant contributions to the spin Hamil-
tonian, except for 7(a) (defined in Table II). We therefore
expect our model to ~ive quite different results from those
of Clare and Devine.

Using the matrix form of the spin operators we may
write

A (I,m)= g (i (l,mj))S;S~
I,J

=—X aA"' (3)
g

where the Stevens's factors 8z —,'„,84=,Is, and the S~
'

are given by

S4"' —S,S,+S,S„, S,'"=S,S„+S„S,,
s',"=s„s,+s,s„.

Substituting the matrix elements Sz
' on the right-hand

side allows us to determine the coefficients a~ in terms of
the matrix elements of P (!,m). For future convenience
we now present these results for both the trigonal and
tetragonal coordinate alignments.

It is convenient to remove the trace of 4 to obtain a
traceless energy matrix A as this term does not contri-
bute to the ground-state splitting. For each I,m there are
only two nonzero hk in A which, in a trigonal coordi-
nate system, are related to the six a~ as follows.

(i) For m =0, +3:
1 Iai ——a2 ————,a& ———,(h2 —hi),

(ii) For m =1, 1+3:

h6
0) = —Q2 = ~ =l06,

2&3

as =ia4 ——hs/2~3 .
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(iii} For m = —1, —1+3:

ai = —a2=la6=h5/2v 3, a3=0,
a g = lag =h 4/2 t/3 .

These equations then allow us to relate the perturbation
expressions directly to the coefficients of the spin Hamil-
tonian vnthout separating spin and orbital parts as in
Refs. 1 and 2. Hence both excited doublet and quartet
contributions can now be included. Table III summarizes
the results for a trigonal coordinate system and replaces
values of the projection coefficients given in Ref. 1 and
Table IV of Ref. 2.

In a tetragonal coordinate system both the values of the
elements of the matrix P (l,m} and the coefficients az,
(i (I,rnj)) have different numerical values. The relations
between the energy matrix elements and parameters az are
also rather different. We find for

~

m
~
=0,4:

1ai ——a2 ————,a3 —,(h2 —hi), a4 ——a5 ——a6 ——0,
foi' ni =+1,+3:

as ——(h3+h4)/2~3,

a4 i (h3———h4)/2~3,

a~ ——a2 ——a3 a6 0,
for m = —1„—3:

a &(l, —rn) = a5(l, rn), a—&(l, m) =a—4(l, m),

for Iri = +2:
a i

———a2 ——(hs+h6)/2v 3,
a6 i (hs —h6——)/2v 3,
a3 ——a4 ——a5 ——0,

and for m = —2:

ai(l, —2) = —az(l, —2}=ai(1,2),
a6(l, —2) = —a6(1,2) .

These relations allow us to determine the values of the
tetragonal (i(l,m)j) parameters from Eq. (3). These have
been tabulated and are available from the authors on re-
quest.

The energy matrix P introduced above can be written
as a linear expression of the P (l,m) with the omitted en-

ergy factors as coefficients:

gA (l, m)8tBt~ .
I, m

(4)

Comparison of these expressions gives
2

3aE, +8t +Bi~(i(l,m)j ), (5)

where

Blm Blm Bing (cilbic )

for the static crystal field, and

~1m
Br ——g e„„

„,, t}&pv

for the strain tensor e&„.
The coefficient (g/3 bE2)2 may be assumed to take the

value 9.802X10, using the energy &&2 ——18100 cm
quoted in Table I and the ruby spin-orbit parameter
/=170 cm '. (Clare and Devine used the MgO value
(=138 cm ' .)

The superposition model can then be applied to the Bl
of either form. The spin-strain coupling tensor G;J„„
( —=G~ in Voigt notation} is defined by

dv = X G~i~&r»
p, v

where e&„ is the (uniform) strain tensor. The spin Hamil-
tonian can be expressed in terms of a single-parameter D
for tetragonal, hexagonal, and trigonal distortions and in
terms of two parameters D,E for rnonoclinic distortions.
Remembering that different choices of axes are involved
(relative to the orientation of the cube) all of these cases
can be expressed in the form

Introducing a matrix representation of the spin operators
5; this 4&(4 energy matrix can also be expressed in spin-
Hamiltonian form as

P = g d~iS;Si .

TABLE III. Projection coefficients (i{i,rn)j ) ={9/Hi)a,i for all ten contributions using trigonally
orientated coordinates.

2,0
2,+1
2+2

—87.69
+51.02

71.32

—87.69
+51.02
—71.32

zz

175.38
0
0

JZ

0
—35.17i
+51.02i

0
+35.17

51.02

0
51.02i

+71.32i

4,0
4,+1
4,+2
4,+3
4,k4

109.65
+62.41
—31.22
+45.87

—123.86

109.65
+62 41

31.22
+46.17
123.86

—219.30
0
0

+91.74
0

0
—95.63i
+80.93i

0
+19.45i

0
+95.63

80.93
0

—19.45

0
62.41 i

+31.22i
0

+123.86
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A, =D[S, —,
'—S(S+1)]+E(S„—Sy )

= gd;;S;S,

so that d~ =E——,
' D, d~~ = —E——,

'
D, and d = —', D, the

off-diagonal elements being zero. Hence
2

y ei y b, —', (z(l, m)z) (6)

and

E= i(~~ —
riyy)
'2

vine. Their formulas are, however, not sufficiently gen-
eral to be used without modification in the present calcu-
lation. It is therefore convenient to record the expressions
for B8i /Be„„which have been evaluated using the
superposition-model equations for three ions at positions

PJ =ri, ri+120' as follows:
3

8i~ (R)=8((R) g Ki (Oipj ) . (&)
j=l

Table IV gives the differentials B8i /Be&„as coefficients
of the intrinsic parameters 8i for e„„=~@,e, and ey, .
The remaining differentials may then be determined from
the relationship

+Hi +bi —,
' [(x(l,m)x) —(y(l, m)y)] .

3 b,Ez

In Eqs. (6) and (7)

B8,
8I

(m =0, +3),
BE'

B8i
(m =+1,+2, +4),

bi =8i —8i (cubic)

Ro
=8((RO) K& (a) —QKi (a: cubic)

B8i +
2i '

(m =1,4),BE'
where the coordination factors

' 1/2

B8I,+m

B&xy

B8i,+
~ +2i ' '(m =2),

B6

KP(8,$)=
2l +1

I"i (&,P), =0 (m=0, +3),
&xx

and a labels the ligands.
The nonzero cubic sums in the above expression take

the form

QK4 ——, (trigo——nal frame),

(tetragonal frame),

g K4 —— (tetragonal frame),
vVO

2

~/70g K4 ——— (trigonal frame) .
3

Clare and Devine give a simple demonstration that the
coefficients d;~ only transform as a tensor for operations
R which satisfy R

I
~i) =+

I
A2)' i.e., operations in the

octahedral group. This makes it clear why the superposi-
tion model cannot be applied directly to the spin Hamil-
tonian, but does not seem to be in accord with their subse-
quent statement that the "d;~ do transform as a Cartesian
tensor under rotations of the coordinate frame. " The
point is that in such a rotation of coordinates the A2 state
is merely reexpressed in terms of the new coordinates,
whereas the use of the superposition model requires the
identification of A2 states defied in terms of several dif-
ferent coordinate systems. Hence it is consistent to treat
d;J. as a Cartesian tensor provided that the description of
A 2 is also transformed accordingly.

B8i +
+i ' (m=14),

BEy~

. B8I, +l1l
+i '

(m =2),
BE'yg

~l, m =0 (m=0, +3) .
Ging

A superposition-model fit has been carried out to fit the
intrinsic parameters 82(RO) and 84(RO) for a fixed
ligand distance Ro and the power-law exponents t2 and t4
defined by

Ro
8i(R) =8)(RO)

In this fit the coordination angles and distances were
corrected for the displacemept of the Cr + position from
the Al + position of 0.0325 A as determined by McCauley
and Gibbs. ' Clare and Devine have shown that the fit-
ted values of the parameters are not sensitive to this as-
sumption.

The use of crystal-field parameters (rather than spin-
Hamiltonian parameters), in the fits is advantageous in
that we have some prior expectations regarding their
values. In general it is expected that

82 ~84 &0

The superposition model for the orbit-lattice coupling
of Cr + ions in ruby has been discussed by Clare and De-

t4& t2 ~0,
where the first inequality is due to the dominance of the
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TABLE V. Least-squares fits of superposition-inodel parameters to D and G~ of Cr +:A1203 with corrected values of the coeffi-
cients (i(l, m)j ) (trigonal frame). D is given in cm; G~ in cm /(unit strain). N is the weighted sum of square deviations. Note
that our fitted values of Bz and 84 [fit (iii)] correspond to the crystal-field parameter values u'=1270 cm ' aud u =1440 cm
Parentheses indicate error margins; square brackets are used to indicate that parameter values are fixed.

D
611

Gi4

652

S,y(10' cm-')
t2

a, y(10' cm-')
t4

'Reference 11.

—0.192(1)
3.98(8)

—1.57(8 }

5.65(7)
1.526(35)

—0.263(19)
—0.44(6)
—1.45(8)
—1.47(6)

0,0(2)
0.0(3)

Stedman'

—0.177
2.34

—1.30
2.76
1.365

—0.240
—0.06
—0.61
—0.49
—0.30

0.15

[2.02]
[3]
[1.17]
[8 6]
2576

Fit (i)

—0.168
4.17

—1.88
5.12
1.941

—0.227
—0.06
—1.45
—1.36
—0.29

0.14
3.86(4)
0.6(2)
[1.17]
[8.6]
274

Fit (ii}

—0.183
4.13

—1.67
5.18
1.653

—0.247
—0.11
—1.83
—1.73
—0.26

0.16
4.04(4)
1.3(2)

[1.17]
3.4{5}
138

Fit (iii)
Total = rank 2 + rank 4

—0.189= —0. 115—0.074
4.14=3.64+0.50

—1.67 = —1.33—0.34
5.18=4.71+0.47
1.648 =1.320+0.328

—0.237= —0.217—0.020
—0.11= —Q. 11+0.00
—1.82= —1.84+0.02
—1.73 = —1.75+0.02
—0.26= —0. 15—0. 11

0.15=0.16—0.01
3.97(10)
1.24(20)
1.41(30)
2.9{6)

138

combined overlap, covalency, and electrostatic crystal-
field contributions, and the second follows from the ex-
pectation that the interaction strength decreases with
ligand distance. In the present case, our expectations are
even more specific as Stedman" has analyzed the optical
spectrum using the superposition model.

Table V shows the results of fitting the superposition
model simultaneously to the static and strain data. The
measured values of the parameters are compared with
those calculated using Stedman's values (u'=840 cm
u =830 crn ') (Ref. 11) of the crystal-field parameters
determined from optical data, and parameters fitted under
several different sets of constraints. It will be seen that
the rank 4 contributions (shown separately for the final
fit) are not negligible as compared to the rank 2 contribu-
tions, especially in those cases where the G~ parameters
are well determined experimentally.

The major result of this calculation is to show that both
static and strain parameters can be fitted successfully by
the same set of superposition-model parameters. The
main differences between this set and that originally
determined by Stedman is that the rank 2 parameters are
twice as large and the power-law exponents ti are much
smaller.

It is also of interest to compare our parameter values
with those obtained by Clare and Devine. Their fitted
values of the superposition-model parameters were

82 ——(9.1+0.5) & 10 cm

84 ——(4.7+2))&10 cm

t2 ———7.6+0.5,
t4 ——0.9+1.0 .

All of these values deviate too far from the optical spec-
troscopic value" to be realistic and, in particular, the
large negative value of t2 is unphysical.

If we wish to use the parameters determined for ruby to
predict results for other systems it is necessary to keep the
following in mind.

(i) The ionicity of 0 varies from crystal to crystal,
and this may be expected to affect the values of the intrin-
sic parameters.

(ii) The tt values determined for this system are "effec-
tive" in that no explicit allowance for local distortion ef-
fects has been made.

(iii) The effect of inner elasticity' on the strain results
has been ignored in defining G~ in terms of uniform
strain and hence in our superposition-model analysis. It is
possible, therefore, that the parameters (especially the tt )

estimated on the assumption of uniform strain, may not
be reliable. Note that inner elasticity and the local distor-
tion at a substituted ion are quite independent phenomena.

Hence the parameters determined for ruby may not be
directly applicable to other systems containing Cr + ions.
In particular, as the Cr + ion is larger than the Al + ion,
the differences between two Cr +-0 spacings is expect-
ed to be less than that of the Al +-0 spacing in the
undistorted crystal. This will have the effect of reducing
the values of both the fitted exponents tt by the same fac
tor. This is in good agreement with the values quoted in
Table V, where the ratios between values obtained in this
work and by Stedman" are all in the region of 2.5.

V. THE MULLER AND BERLENCrER MQDEL

Muller and Berlinger extended the application of the
superposition model to the ground-state splitting of S-
state ions (such as Fe +) to describe the splitting of the
Aq ground state of Cr +. We shall henceforth refer to

this as the MB model. As explained previously, this ex-
tension is technically incorrect, as the effective spin opera-
tors do noi transform as 8 3 tensors and arbitrary rota-
tions do not therefore preserve I 3 ranks. The practical
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TABLE VI. Comparison of measured and predicted strain parameters for octahedral Cr'+ systems,
based on the parameters determined for ruby. Measured values &vere obtained by Muller and Berlinger
(Ref. 5). Errors in the predicted values are due to the uncertainties associated with fitted values of 8~
and t, . 6 is given in cm /(unit strain).

0.6+0.6
4.2+0.6

Cr'+.MgO
Predicted

0.84+0.35
4.34+0.20

Measured

1.13%0.03
4.73+0.07

Cr'+ *SrTiO3
Predicted

0.77+0.32
4.20+0. 19

consequences of this have been demonstrated in preceding
sections where the second-rank coefficients G~ of the
strain spin Hamiltonian have been shown to have rank 4
as well as rank 2 contributions.

The questions that remain to be answered are„why the
MB model works so well and whether the deductions of
Muller and Berlingers and Muller, Berlinger, and Albers, 6

concerning the structure of the systems they investigated,
would also hold in a technically "correct" model?

A comparison between measured and predicted strain
results, using previously derived values of the super-
position-model parameters, for Cr + in MgO and SrTiO&
is given in Table VI. It will be immediately apparent that
the experimental data are reasonably consistent with the
model developed in using approximately determined pa-
rameters and extrapolating to different systems. Why,
then, does the MB model seem to work so well? Basically
this seems to be due to the fact that the first attempts to
test any parametrization must be carried out without
much idea as to what values of the parameters can reason-
ably be expected, so that any values are likely to be ac-
cepted.

We begin with the superposition-model expressions for
the strain parameters G~ and Gti for cubic systems:

'2

G44 —— [9.89982+(0 0559tg+. 3 379)Bg]. (10)
3AE

(according to Muller and Berlinger ),

Gii = —2(Gii+3Gii)
2

[0.1343t,B,+(1.390', —0.149)8,j
3 EE2

2

=1.39t48g
2

'

(13)

(according to Muller and Berlinger ), where the tilde has
been inserted to distinguish the power-law exponent used
in Ref. 5 from ours. The stable values of G~ may thus be
interpreted as being due to the effective independence of
this parameter on the exponents tz and t4 as well as the
absence of cancellations. Comparison with the above
equations shows that the ratio

1.39t4, 84=0.140 t4
G4g 9.899(82 lBg ) +3.379 Bi

(14)

is interpreted in the MB model as ——', r2. Our formalism
thus predicts definitely that this ratio is small and positive
while such a ratio leads to a small negatiue t2 in the MB
model. The small and sometimes negative values of tz
which appear, for example, in the case of the Gd +

ground-state splitting, are the result of strongly cancelling
contributions to the spin-Hamiltonian parameters. We see
no reason to expect such effects in the "A i ground state of
Cr +. It appears from the above equations that the small
negative t2 values obtained in the MB model are an ar-
tifact of the model.

The more recent work of Miiller et al. uses the Miiller
and Berlinger model to determine the position of the
Cr'+ ion in the orthorhombic phase of BaTiOi. The in-
terest in this system arose from earlier work on
Fe +:BaTiOi (Ref. 13), where it was found that the Fe +
ions are significantly displaced from that of the Ti + ion
they replace, in the sense that the Fe + ions are more
"centered" with respect to the surrounding oxygen ions
than the Ti + ions. Because of the problems encountered
in determining reliable values of the t& from ruby data, we
have used Stedman's" superposition model to determine
the superposition-model values of the spin-Hamiltonian
parameters D and F. from Eqs. (6) and (7). Our results
(for the two alternative sites) are given in Table VII. They
suggest that the conclusions obtained in Ref. 6 are correct:
the Cr + ion, just like Fe +, is centered with respect to
the surrounding ligands.

TABLE VII. Predicted and experimental values of the spin-Hamiltonian parameters for
Cr3+:BaTiO3 (orthorhombic phase).

D (10 cm ')
E (10 cm ')

Experimental
PI edlcted
{centered)

Predicted
(Ti + position)

1336
196
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We have shown that the inclusion of a larger number of
excited states results in a superposition model for the lev-
els of the Az ground multiplet of Cr + in ruby which
provides satisfactory agreement with both the static and
strain data using the same parameters. This model has
been formulated for both trigonally and tetragonally
orientated coordinate systems in order to make it general-
ly useful. The calculated projection coefficients
(i(l,m)j) are insensitive to the small changes in energy
levels expected for systems with octahedral oxygen coordi-
nation. At the same time it has been emphasized that the
values of the superposition-model parameters obtained for
ruby may not simply be used to predict results for other
systems.

The success of the MB model ' has been explained as a
consequence of the stability of the ratio 84l82, together
with the acceptance of small negative values of their pa-
rarneters t2 as being realistic. In our reinterpretation of
the experimental data, parameter values are obtained
which are reasonably consistent with optical values. "
This has provided an important additional check on our
results.
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