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The energy contributions of the inhomogeneous electron gas in the vicinity of grain boundaries in

s-p metals are investigated theoretically. Because there are typically of the order of 10 to 10 atoms

per unit cell in grain-boundary problems, the method of choice typically involves the use of pair
potentials, which derive from perturbation theory on a homogeneous electron gas. Since grain
boundaries in metals are localized electronic defects, we formulated the problem in terms of pertur-
bation theory on an inhomogeneous electron gas. In that case, we found that the zeroth- and first-
order perturbation terms are significant and depend on the local geometric structure of the bound-

ary, unlike the pair-potential approach. Reasonable results were obtained for energies computed to
second order for model boundaries in aluminum. A simple, accurate approximation was found for
the zeroth- and first-order terms. The sum of the second-order and Ewald-like terms can also be ap-
proximated in a pair-potential-like form which depends on the average of the electron densities seen

by the atoms in the pair. This suggests a viable approach for computing the grain-boundary struc-
ture and energy which is presumably more accurate than the usual pair-potential method.

I. INTRODUCTION

The determination of the nature and properties of grain
boundaries in metals has been a long-standing problem in
materials science. ' Grain boundaries can exert a pro-
found effect upon mechanical, chemical, and electronic
properties. For example, boundaries affect the motion of
dislocations and hence influence mechanical strength.
Fast-diffusion short circuiting occurs along grain bound-
aries causing diffusional creep. Chemical segregation
occurs at boundaries promoting intergranular corrosion
and brittleness. Coercivity in magnetic materials has been
observed to depend on grain size.

How does one calculate the structure and energetics of
grain boundaries~ Because actual grain boundaries con-
tain of the order of 10 to 10 atoms per unit cell, this
question has not been seriously addressed via first-
principles solid-state methods. Rather, the method of
choice has been, of necessity, that of pair potentials (see,
e.g. , Refs. 6—12). Recently, we and others have developed
self-consistent methods for computing total energies from
first principles for simple defects in transition' and s-p
metals. "

In the following, we would like to present the first cal-
culation of grain-boundary energies to go beyond the usu-
al pair-potential approximation. That is, electron-density
profiles in the boundary and corresponding electronic to-
tal energies are computed self-consistently for a model
grain boundary appropriate to simple metals such as
aluminum. An unexpected finding was that these elec-
tronic contributions can be accurately computed via a
simple procedure. This suggests that a new method may
be viable for determining structures and energies of de
fects like grains boundaries in s-p metals.

In Sec. II we first discuss a perturbation expansion for
computing grain-boundary energies in s-p metals beyond
the pair-potential approximation. Then we introduce a
model grain boundary in aluminum which is designed to
allow a simple estimate of the size of electronic contribu-
tions to grain-boundary energies. In Sec. III this estimate
is carried out and results are given. The discovery of a
simple, accurate approximation for computing electronic
contributions to grain-boundary energies is discussed.
The success of this approximation scheme allows us to
suggest, in Sec. IV, a new method for computing struc-
tures and energies of grain boundaries. Concluding re-
marks are found in Sec. V.

II. MODEL AND FORMALISM

EG = F (n, ) + —,
' g' Vg (n, ),

I, E'

(2.2)

The total energy EG of an s-p metal with grain bound-
ary can be written as

EG ——EE„,ig+Eo [n, ]+Ei [n„5V,]+E2 [n„5V,]+
(2.1)

where the asterisks are added because the perturbation is
done on a homogeneous electron gas, n, is the electron
density of the homogeneous unperturbed system, EE„,~~ is
the Ewald electrostatic energy, " the subscripts of E' in-
dicate successively higher orders of the perturbation 5V„
and 5V, is the difference between an array of pseudopo-
tentials for a crystal with grain boundary and the poten-
tial of the unperturbed (homogeneous) system. These
pseudopotentials may be nonlocal or local. If one ter-
minates the expansion at E2 [n, ;5V, ] one finds that"
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where Vli (n, ) is a pairwise interaction between sites 1 and
1', the prime on the summation excludes the 1=1' term,
and E(n, ) is a structure-independent energy.

Carlsson' calls situations for which Eq. (2.2) is ap-
propriate "constant-volume" problems for which only a
relatively small heterogeneity is found on a local scale.
An appropriate example might be the prediction of
phonon-dispersion curves. He labels situations where the
heterogeneity is substantial, such as at surfaces and vacan-
cies, as "bond-breaking" problems. He found bond-
breaking problems to be not well represented by a second-
order perturbation approximation.

What about grain boundaries'? An example of a grain
boundary is shown schematically in Fig. 1. This particu-
lar example shows a symmetric "tilt" boundary for which
one grain is rotated with respect to the other by the
misorientation angle 8 around the tilt axis which is nor-
mal to the plane of the figure. In general, of course, the
rotation axis, the misorientation angle, and also the in-
clination of the plane of the boundary can be varied arbi-
trarily. Electron micrographs of grain boundaries in

aluminum, for example, can be found in Ref. 12.
The heterogeneity is not so substantial as at a free sur-

face but is large enough that one might question whether
they fall in Carlsson's constant-volume situation. Indeed,
Wolf 's results suggest that they do not.

How would one go about improving upon Eq. (2.2)7
One way would be to include third- and higher-order per-
turbation terms in Eq. (2.1). That would make it neces-
sary to take into account three-, four-, and perhaps

0

0

0 0

0

FIGr. 1. An example of a grain boundary shown in cross sec-
tion. Two grains are intersecting at an angle, forming a tilt
boundary. The atoms in the core of the grain boundary are
joined by the hcavy lines. The edge of a plane through the
center of the grain boundary is sholem as the dashed line.

higher-particle interactions, a significant complica-
tion. ' An alternative approach would be to employ a
perturbation expansion on an inhomogeneous electron gas:

+G EE id++0[no(r)]+~i[&0(&)'» ]

+E2[no(r);5 V]+ . (2.3)

The electron density no(r) is a starting distribution
which is as close as is convenient to that of the crystal
ivirh grain boundary. That is, no(r) is an approximation
to the exact density distribution for the crystal with grain
boundary which is more easily computed than is the exact
solution. The potential 5V is the difference between an
array of pseudopotentials of the crystal with grain bound-

ary and the potential used to compute no(r). Again, these
pseudopotentials may be nonlocal or local. Because no(r)
is closer to the exact electron density than n, is, one
would expect Eq. (2.3) to be more accurate than Eq. (2.2)
when both expansions are truncated at the same order in
the perturbation. This kind of approach was used with
some success earlier by the authors' to compute bimetal-
lic adhesion energies. There it was found that one could
truncate the perturbation expansion Eq. (2.3) at

E, [no(r);5V] and still obtain reasonable accuracy. Note
that in Eq. (2.3) ED[no(r)] and E&[no(r);5V] will depend
on the local geometric structure of the boundary. This is
in contrast to Eo [n, ] and E; [n, ;5V, ] of Eq. (2.1) which
do not depend on structure.

In analogy with our bimetallic adhesion calculations,
we will assume that no can be taken to be only a function
of y, the coordinate perpendicular to the grain boundary.
Remember, this is not the actual electron density but a
one-dimensional approximation to it, taken as close as
possible to the exact density to aid convergence of the per-
turbation expansion, Eq. (2.3). We will use this to esti-
mate grain-boundary energies and their energy com-
ponents in aluminum.

Later, in Sec. IV, we will discuss a method for comput-
ing electronic contributions to grain-boundary energies
which will allow treatment of fully three-dimensional,
nonplanar starting electron-density distributions no(r).
This will presumably lead to higher accuracy in determin-
ing atomic positions.

Because for now we are assuming no to be only a func-
tion of y, we can form the pseudopotential used to com-
pute no(y) from a stepped-jellium model' ' by averaging
the atom density parallel to the boundary, forming a
homogeneous slab of volume-averaged atom density nq
for the core which is sandwiched within the host crystal-
line material of the grains of volume-averaged atom densi-
ty nH The boundar. y core is the region of material in
which the atomic coordination differs from that of the
perfect crystal. In general, this region has been found to
be quite narrow in metals and to have a density lower
than that of the perfect crystal. The lower density is due
primarily to the inability of the system to achieve efficient
atomic packing in the transition region between the crys-
tals adjoining the boundary. %'e will take values of boun-
dary width and n~/nH from experiment and the results of
previous model calculations. Direct observation by field
ion microscopy' and electron microscope lattice imag-
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ing shows that this width in the metals investigated is
narrow, i.e., less than about two nearest-neighbor dis-
tances wide (10—11 a.u. ). The length of relrods in re-

ciprocal space produced by grain-boundary diffraction '

indicates a width =13 a.u. However, this width refers to
the region near the boundary which is significantly
stressed by relaxations in the boundary and which is wider
than the width of the region of significantly lower density.
Measurements of fast grain-boundary "short-circuit" dif-
fusion indicate a width -6—13 a.u.

A considerable body of information indicates that the
introduction of a boundary produces an expansion normal
to the boundary plane, as mentioned earlier. Values of
nslnH are obtained by distributing this expansion uni-
formly over the boundary width taken to be 10 a.u. , as
discussed previously. Hard-sphere rigid-lattice models of
a variety of grain boundaries in Ref. 22 predict values of
nz/nH in the range 0.75—0.90. However, these values are
clearly too small since they do not allow for boundary re-
laxation. Values of nzlnH obtained from molecular stat-
ics calculations using pairwise interatomic potential
models indicate ns lnH ——0.88 as the average for a variety
of [110]tilt boundaries and nslnH —0.83 as the average
for a variety of [100] tilt boundaries24 in Al.
nslnH —0.90 is the estimated average for several [100]
twist boundaries in Al and ns/nH ——0.94 and 0.90 for a
variety of [100] twist boundaries in Cu and Ni, respec-
tively. Unfortunately, only a few experimental measure-
ments are available. The value ns/nH ——0.96 is obtained
from measurements on a X=3 tilt boundary parallel to
(121) in Al, niilnH 0 94 i—s—ob. tained for a X=11 tilt
boundary parallel to (113) In Au, and nzlnH ——0.83
—0.89 is estimated for a high angle [100] twist boun-
dary in Au.

Now let us return to a discussion of the calculational
method. The difference 5V between the actual atomic ar-
ray of pseudopotentials and the stepped-jellium starting
potential referred to above could be included in perturba-
tion theory for the total energy [Eq. (2.3)].

The electron density no(y} is determined from the self-
consistent solution of the Kahn-Sham2 equations of the
form (atomic units are used throughout the paper unless
noted otherwise)

d—
2 d

i+U.fr(nos) q"k'0»= i«' —kF'}q"k'0»

III. ELECTRONIC CONTRIBUTIONS
TO THE GRAIN-BOUNDARY ENERGY

The grain-boundary energy oG is given by

o'G (EG ——E, ) /2—, (3.2)

where A is the cross-sectional area of the grain-boundary
interface and E, is the total energy of perfect crystal.
Combining Eqs. (2.3) and (3.1) with (3.2) we find a kinetic
energy contribution to crG of —6596 erg/cm . The nega-
tive sign indicates that the electron kinetic energy is
lowered by the introduction of a grain boundary. This is
consistent with the volume-averaged electron density in
the boundary core being less than in the single crystal.
The value is also an order of magnitude larger than typi-
cal values of o G (see below). The exchange-correlation en-
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Having solved Eqs. (2.4}—(2.5} self-consistently for
no(y) (Fig. 2), we are now in a position to calculate total
energies for grain boundaries in aluminum. The electron
kinetic energy component of Eo[no(y)] in Eq. (2.3) is
given by

A g f dyI(k +k~+k, )!%k'(y)! i
k, k„,k

(cec}

+ [U,fi(no,'+ ao ) —U,ff(n;y) jno(y) I (3.1)

~,(y)=, g f 'dk! q,'"(y)! '(k,' —k'),
4K

5E„,[no(y) ]
U.rr(no, ~}=$0(y)+

5no(y)

(2.4)

0 1 ! i I 1 ! i, } l i ! i !
-0.8 -0.4-0.2 0 0.2 0.4 0.8

p~sitign (nm}

with Poisson's equation

d'40(Z) = —4n [no(y) —n+(y)], (2.5)
dg

where E„,[no(y)] is the electronic exchange-correlation
energy, n+(y) is the stepped-jellium density distribution,
%k (y) are the doubly degenerate electron wave functions,[i)

and kF/2 is the Fermi energy.

FIG. 2. Self-consistent planar-averaged electron density plot-
ted as a function of position along a line perpendicular to a
grain boundary in aluminum (e.g., perpendicular to the dashed
line in Fig. 1). The electron density in the bulk of the grain is
ZnH, where Z is the valence of aluminum (=3) and n@ is the
volume-averaged atom density of single-crystal aluminum. The
boundary density nz ——0.9nH. The width of the grain (indicated
by the distance between steps in the figure) is taken to be 10
a.u, =0.53 nm.
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EG = VIIPaf (Pa)+—VHPHf (Pa» (3.3)

where VII is the volume of the boundary core, VH is the
volume of tile gfallis, pH =ZIIH, piI =Zllii, aIld

1/3

& l/3+ 3 (3 2)2/3&2/3P 4m.ZI
2 3 10

0 056n i
, , +g(k~5V~k)

+ 2 g ~S(q)
~

F(q) .
q (+0)

(3.4)

The first term on the right-hand side of Eq. (3.4) is due to
the Ewald term, EE„,~z. The factor P is close to 1.8 and
depends on the crystal structure. The second term is due
to the electron kinetic energy, the third to electron ex-
change„and the fourth to electron correlation. The fifth
and sixth terms are due to the first (Ei ) and second (E2)
order perturbation terms, respectively. %hen the Ash-
croft pseudopotential with a core radius r, is used, the
first-order perturbation term becomes 2Irnr, ' . Simple ex-
pressions can also be derived for other, nonlocal pseudo-
potentials if desired. The structure factor S(q) is given
by

S(q)=N ' g exp( iq RJ.), — . (3.5)

ergy density is evaluated in terms of the local electron

density, ' * and its contribution to oG is also large, 2980
erg/cm . The sign is also consj.stent with the electron

density in the core being lower than in the grain.
Clearly it would be important to include these energy

components in grain-boundary energy calculations. But it
is a tedious precursor indeed to have to solve Eqs.
(2.4)—(2.5) self-consistently in order to obtain these and
the other terms in Eq. (2.3).

Our results for no(y) in Fig. 2 suggest a different ap-
proach, however. Note first that the Friedel-like oscilla-
tions which were evident in the earlier adhesion calcula-
tions' are very weak here. This is presumably because
we have a relatively mild drop in planar-averaged electron
density in going through the grain boundary. Secondly,
while the boundary is only just over 5 A wide, the electron
density in the boundary is approximately equal to Zng
over much of the width, where Z= valence of Al (=3).
This is a manifestation of short screening lengths in met-
als. Thus, we have a localized electronic defect. This also
suggests a step-density approximation. That is, we ap-
proximate no(y) as a uniform density in the core equal to
Znii and as a uniform density in the grain equal to ZnH.
Not only does this bypass Eqs. (2.4)—(2.5), but also this
makes the computation of EG simple [Eq. (2.3)], because
the homogeneous electron gas energy density is a simple
functional" 3 of no. Thus in the step-density approx-
imation,

XH'(q) = —1
I

4m e(q)
(3.7)

and e(q) is the static dielectric function. ' " For this es-
timate of grain-boundary energy components we have
chosen to use the Ashcroft pseudopotential, where

4mZu""(q)= — cos(qr, ) . (3.8)

Since Ei depends on U""(q) as q 0 and F2 on q values
at the reciprocal-lattice vectors, the same value of core ra-
dius may not be appropriate for these two terms. Here
r, =1.12 a.u. was obtained from fits to Fermi-surface
data. We found that r,'=1.221 a.u. yields a minimum in
the total energy of the Al crystal at the experimental lat-
tice constant (see also Ref. 32). For this estimate we com-
pute the local energy density associated with the Ewald
term via a fcc structure, so that" /3=1. 79175. The local
lattice constant of the fcc structure is chosen to reflect the
local atom density (niI or nII in the step-density approxi-
mation). For consistency, the same structure is used for
the local energy of the second-order perturbation term.
Because this assumes a higher degree of commensuration
than exists in the actual boundary, this presumably un-
derestimates the grain-boundary energy somewhat but will
perhaps suffice for an estimate. Again, in Sec. IV we will
indicate how one might treat more general, inhomogene-
ous structures.

As a test of the accuracy of our model for bulk proper-
ties, we computed the bulk modulus. Our calculated
value of 0.661 N/m compares reasonably well with an
experimental value for aluminum of 0.722 X 10" N/m .

We can now test Eq. (3.3) by comparing values of elec-
tron kinetic and exchange-correlation energies obtained
from it with the values we obtained earlier by solving Eqs.
(2.3)—(2.5) and (3.1) and (3.2). One can see from Table I
that Eq. (3.3) yields quite accurate answers.

TABLE I. Electron kinetic and exchange-correlation energy
contributions to the Al grain-boundary energy. The grain-
boundary core width is 10 a.u. The results are given for two
volume-averaged boundary densities nq. The quantity nH is the
volume-averaged atom density of crystalline Al. The self-
consistent method refers to the solution of Eqs. (2.3)—(2.5) and
(3.1) and (3.2), while the step-density method to Eqs. (3.2}—{3.4).

Boundary Energy components (erg jcm )

densities Exchange
n~/nH Method Kinetic correlation

dopotentials (see, e.g., Ref. 31). For a local pseudopoten-
tial, it has the form'

(3.6)

where the sum is over the X atoms of the unit ceil. For
a crystalline, Bravais lattice, S(q) =5q Ic, K being
a reciprocal-lattice vector. The energy-wave-number
characteristic E(q) has been evaluated for nonlocal pseu-

0.9
0.9

0.73
0.73

Self-consistent
Step density

Self-consistent
Step density

—15497
—149 68

2980
3005
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FIG. 3. Grain-boundary energy in aluminum as a function of
the ratio of the volume-averaged atom density in the boundary,

n8, to the volume-averaged atom density in the host crystal, nH.

The grain-boundary energy oG was approximated as via Eqs.
(3.2) and {3.3). The width of the boundary is 10 a.u.

One might wonder if Eq. (3.3) would have such accura-
cy throughout the physically reasonable range of na/nH.
From the discussion above Eq. (2A) of the expected range
of niilnH, one might expect that nii/nH ——0.73 to be just
below the lower limit of the range. Thus we repeated that
calculation for 0.73, and the results are shown in Table I.
While both kinetic and exchange-correlation energies have
increased in size and the absolute error has increased cor-
respondingly, the latter is nevertheless smaller than 3.5%.

This accuracy allows us to use Eqs. (3.3) and (3.2) to
easily estimate crG as a function of nq/nH The res.ult is
shown in Fig. 3. For the range of 0.83 & n8/nH &0.94, we

find 51 erg/cm &400 erg/cm . These results are con-
sistent with measurements of average-grain-boundary en-

ergies in aluminum of 324 erg/cm at 450'C and 340
erg/cm at 380'C. The estimate d0 G /d T = —0.12

erg/cm 'C implies that 0 G =-411 erg/cm at 0 K.

The components of the grain-boundary energy are
shown in Fig. 4. We see immediately that each of the
components is much larger than the total grain-boundary
energy crG. The energy contributions from the usual ap-
proach, Eqs. (2.1) and (2.2), are distributed over the vari-
ous orders of the perturbation in a different manner than
in Eq. (2.3), the present method. Because no(y) is closer
to the exact n (r) than is n„ the lower-order terms in Eq.
(2.3) (and Fig. 4) effectively contain contributions from
higher-order terms in Eq. (2.1). It is this sort of an effect
that led to useful results in adhesion calculations' with
the exclusion of terms of order higher than Ei [no(r);5 V].
As noted earlier, E and E& in principle depend on the
boundary structure, while Eo and E

&
do not.

In Fig. 4 it is clear that the second-order (E2) energy is
much smaller than the first-order (E, ) energy. However,
it is not small relative to the total grain-boundary energy
o G. This was not true for face-dependent-surface energies
of aluminum, i and was presumably not true for the sur-
face energy and bimetallic adhesive energy calculations
discussed earlier. '~ Why is that? In a grain boundary we
find a fundamentally different situation than we have in
cleavage in the sense that the grain-boundary core is a re-
gion in space whose average atomic density is different
from that of the crystal. That is, in creating the grain
boundary we have in the core a segment of the solid
whose energy density is different from the crystal. As the
core region thickens, it can be thought of as having a
"bulk" energy density and an energy density associated
with the interface between the core and the host crystal.
On the other hand, in cleavage the corresponding inter-
face is between crystal and vacuum, and so in cleavage
there is no corresponding bulk or core energy density. In
fact this basic difference affects all the energy com-
ponents.

Now Eq. (3.3} is appropriate for estimating electron
contributions to the grain-boundary energy and, in fact,
the total grain-boundary energy is given rvith reasonable

Ewa ld

Exchange-Correlation

Grain-Boundary
Energy Components 0

(104 erg/cm2)

~ ~
~ ~

~y
pit

~ ~
~ ~

~ 0

~ ~
4

~ ~

Total = 0~
2nd Order

ea~r,'s
~ ~

Kinetic ~
~ ~

~P
~ 0

~ ~

~ ~

1st Order

I I I I

O.ZO O.Z5 O.80 O.85 O.90 0.9».00
Relative Atom Density, nB/n„

FKx. 4. Grain-boundary energy components in aluminum as a function of the ratio of the volume-averaged boundary atom density
ns to the volume-averaged atom density in the host crystal, nH See Eqs. (2.3), (3.3.), and (3.34). The width of the boundary is 10 a.u.
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accuracy. Certain improvements suggest themselves,
however. As indicated in Table I, Eq. (3.3) is an excellent
approximation for kinetic and exchange-correlation com-
ponents. The EE„,]d and E2 terms are nonlocal in nature
and require further consideration. An approximation like
Eq. (3.3) is adequate for EE„,id and E2 for interactions
within the core or within the crystallite but treats interac-
tion across the interface between the core and the crystal-
lite in an average way which does not accurately account
for detailed geometry effects in the interface which are
important if one is interested in computing atomic posi-
tions via energy minimization. The generalization of Eq.
(3.3) to go beyond that model in order to determine
grain-boundary structure is straightforward and intro-
duced in the next section.

IV. NQNLOCAL EFFECTS

From the preceding discussion it would seem desirable
for computing atomic positions in the interface to go
beyond Eq. (3.3), particularly for the parts of the EE„,id
and E2 components associated with interactions across
the interface. We first write the second-order energy term
in the following form, where for simplicity of presenta-
tion we have assumed a local perturbation 5V(r):

l
&[noj=f(no) ——g Vii{no}.

Z
(4.4)

Here f(no) is given by Eq. (3.4) and is evaluated for any
single-crystal structure which is convenient. The term
—(1/Z) gi, V, i {np) must be evaluated for the same crys-

tal structure used for f (no).
Equation (4.4) is based on a local, homogeneous-density

approximation to a[no(r)] as suggested by the accuracies
exhibited in Table I. That is, it is computed via Eq. (4.4)
for a homogeneous system. The purpose of writing a[no]
as a difference between a total energy density [f( np)] and
a pair-energy density is to include the structure-
independent term which arises when writing Ez in terms
of a pair potential. The remainder of the total energy
is in the form of a nonlocal, pairlike term.

Several comments are in order. First, Eqs. (4.3) and
(4.4) retain the local, "bulk" energy contribution to F2
coming from the core atom density being lower than that
in the crystallite. This was also in the expression, Eq.
(3.3), as discussed in Sec. III. Secondly, the pairlike term

n
Vii

II 2

Eg[np(r);5V(r)]= —,
' J dr, I dr25V(ri)5V{r2)

XX [np(r};ri, r2],

{4.1)

n (ri)+n (r2)
&'"[no{r»'ri r2] =-&H"

2
I ri —rz

I
(4.2)

That is, the response function for the inhomogeneous sys-
tem is approximated by that of a homogeneous system at
the average of the densities (rn&) and (nr~). This same
approximation was also found to yield reasonable results
for metal surface energies. 3s 4'

T»s suggests that the contribution to E2[no(r);5V(r)]
of, say, atoms 1 and 2 can be written in terms of a
pair-potential-like term evaluated at the density
[n (ri)+n (r2)]/2.

That 1s, oIlc might pres UHle thc following expression
would be more accurate than Eq. (3.3):

EG = I np(r)e[np(r)]dr+ —,
' g' Vii, (4.3)

where X"'[no(r);r„rz] is a (nonlocal) response function
for an inhomogeneous solid of electron-density distribu-
tion np(r). As an example of such a response function, in
Ref. 39 one is given for a jellium surface. Because here
we must deal with the order of 10 to 10 atoms per unit

cell, we must look for a relatively simple means of ap-
proximating Eq. (4.1). Chakravarty et al. found that
the following approximation led to accurate results for the
hydrogen molecule;

is more complicated than the usual pair interaction be-

cause of the density dependence. However, density-

dependent pair potentials are well known and the added
effort is trivial. Third, np(r) could be obtained from a
linear superposition of atomic electron-density distribu-
tions. It would be preferable to use atomic densities com-
puted from pseudopotentials for this because of their
relatively smooth nature. Note, we would find

n p r F n 0 r d r to be structure dependent, unlike

Ep[n, ] and Ei [n, ;5V, ] of Eq. (2.1}. This structure
dependence comes from doing perturbation theory on an

inhomogeneous electron gas no(r) An even . simpler
though presumably less accurate no(r) would be the step-
density distribution discussed above Eq. (3.3). Even with

the step-density approximation, Eq. (4.3) would be expect-
ed to be more accurate than Eq. (3.3) because Eq. (4.3) al-

lows direct incorporation of the actual three-dimensional
geometric structure of the boundary.

The energies a[no] are easily tabulated" as a function
of (homogeneous) density no, and this needs to be done
only once for each metal. Then for each (three-
dimensional) grain-boundary structure,

no re, no r dr

ls simply determined from the tabulation Thus the

grain boundary energy FG may be determined from Eq.
4,
'4.3) for each structure with little more effort than that re-

quired for the usual pair-potential calculation.
The pair term in Eq. (4.3) is given in terms of the pseu-

dopotcntlal by

ac qVll'{nii') +
p dg F(g, nii )8111(kRii ), (4.5)

~g' & O Ag

~h~~~ Rii'—=
I Ri Ri 1»«ii =—(ni+—ni )/2. For a local

pseudopotential, F(q) is given by Eq. (3.6). plots of
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Vtt (ntt ) as a function of Rtt for various choices of pseu-
dopotential and density can be found in numerous refer-
ences (see, e.g., Ref. 32).

That completes the description of our approach based
on perturbation theory of a nonuniform electron gas.
Now, we would like to make a few comments. First, this
is the first time to our knowledge that electronic energies
associated with a localized electronic defect such as a
grain boundary have been computed beyond the usual
pair-potential approximation. Secondly, empirical pair
potentials have been used for grain-boundary-structure
calculations, and one might wonder how empirical infor-
mation might enter here. For a given structure, the total
energy in the preceding equations is determined once one
specifies the pseudopotential. Thus empirical information
must enter via the pseudopotential, rather than entering
via a pair potential. So empirical information can be used
as in other methods if desired.

Finally, it is perhaps useful to compare our Eq. (4.3)
with the more standard approaches. See, e.g. , Ref. 10.
The usual approximation is to write the energy as

Eo-PV+ —,
' —g' Vtt,

1,1'
(4.6)

where I' is described as a Cauchy pressure. On comparing
Eq. (4.6) to Eq. (4.3), one sees that they are of similar
form with PV in the earlier expression [Eq. (4.6)] being re-
placed by

tlo I'E P1O f r

in our Eq. (4.3) and with the pair potential Vtt being re-
placed by the pairlike term Vii (n0 ) One c.ould derive the
PV term as follows. Assume that the boundary region is
homogeneous and do an expansion of the energy of the
boundary region in powers of the volume, keeping only
the linear term. Then the pressure P is obtained from a
volume derivative of the energy of a homogeneous system.
This could be considered as a linear approximation to our
Eq. (4.3), with the following limitations. F~rst, Vtt must
be determined from the same pseudopotential [Eq. (4.5)]
used to obtain P and the site-site density dependence nti
suppressed. Secondly, to avoid double counting in the
computation of P, the pair interaction energy for a homo-
geneous system should be subtracted from the energy [as
we did in Eq. (4.4)] prior to taking the volume derivative.
Finally, our Eq. (4.3) is derived from perturbation theory
on an inhomogeneous electron gas, while Eq. (4.6)
presumes the unperturbed electron gas to be homogene-
ous. Since a grain boundary in a metal is a local electron-
ic defect, an inhomogeneous starting electron-density dis-
tribution which rnimics the local defect would be expected
to be closer to the exact density distribution than would a
homogeneous starting density distribution. Thus one
would expect Eq. (4.3) to have greater accuracy than Eq.
(4.6).

&. SUMMARY

We formulated the total energy of an s-p metal with a
grain boundary in terms of a perturbation theory on an in-
homogeneous electron gas. This is to be contrasted with
the usual pair-potential approach which is derived from
perturbation theory on a homogeneous electron gas. Since
a metallic grain boundary is a localized electronic defect,
greater accuracy can be expected from a starting electron-
ic distribution which is locally inhomogeneous.

It turns out that grain-boundary energies can in fact be
computed in this way without resorting to the usual pair-
potential approximation. The unperturbed electron-
density distribution was first obtained from a fully self-
consistent, quantum-mechanical calculation using a
stepped-jellium model in analogy with our earlier' bi-
metallic adhesion calculations. We found that unlike the
usual pair-potential calculation, the zeroth- and first-order
perturbation terms were significant and depended on local
geometry in the boundary. %e discovered a simple and
accurate approximation for the energy components. With
it, one can write the electronic energy density at a point in
the boundary in terms of the electronic energy density of a
homogeneous metal whose atom density is the same as the
local atom density. We used this approximation to com-
pute all of the energy components for the model boundary
as a function of the boundary atom density. It was clear
from those results that all components of these electronic
contributions are large over a broad range of boundary
densities.

The success of this approximation suggested a way to
compute energies and structures of grain boundaries. The
energy components of the grain boundary energy are ob-
tained from the sum of an integral of a local energy densi-
ty and a pairlike term. This energy density is determined
from the energy density of a homogeneous metal whose
atom density is the same as the kcal atom density at each
point in the boundary. Since homogeneous-metal-energy
densities are quite easy to obtain as a function of atom
density and can be tabulated, this part of the calculation is
simple. The rest of the total energy is due to the pairlike
interaction which is comparable in difficulty to the usual
pair-potential calculation.

Thus we have a procedure in which the grain boundary
is treated as a localized electronic defect from the outset.
It will be interesting to find out how much improvement
in computed grain boundary energies and structures en-
sues.
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