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%'e study the acoustic and electronic properties of one-dimensional quasicrystals. Both numerical

(nonperturbative) and analytical (perturbative) results are shown. The phonon and electronic spectra
exhibit a self-similar hierarchy of gaps and many localized states in the gaps. %e study quasi-

periodic structures with any number of layers and several types of boundary conditions. %'e discuss

the connection between our phonon model and recent experiments on quasiperiodic GaAs-AlAs su-

perlattices. %e predict the existence of many gap states localized at the surfaces.

Schechtman et al. ' obtained the electron-diffraction
pattern of A16Mn and other metallic alloys which show
the unusual property of extended icosahedral near-
neighbor bond orientational order. However, sharp dif-
fraction peaks can be obtained not only from periodicity
but from more general quasiperiodic (QP) structures
which can have any type of point symmetry including
fivefold. i 4 In this paper we report nonperturbative nu-

merically exact results concerning acoustic and electronic
spectra, specific heat, and the behavior of normal modes
for a one-dimensional' (1D) quasicrystal (QC). Standard
descriptions in the theory of excitations of ordered and
disordered systems are used„ i.e., the harmonic lattice and
a tight-binding model. Also, an alternative analytical per-
turbative approach is outlined and its consistency with the
results obtained using the previous straightforward
method is shown. Moreover, we point out the relation be-
tween our lattice dynamics model and the remarkable re-
cent experiments, by Merlin et al. , on QP GaAs-A1As su-

perlattices. '
The system studied here is the 1D analog of the Pen-

rose lattice and the icosahedral QC. The positions of
the atoms in a 1D QP chain are given by
x„=n+[nlv, +P, j/ri+P2, where P& and Pz are real and

[y] denotes the greatest integer less than y. Choosing
~i ——ri ——~=(1+v 5)/2=2cos(m/5) we get the 1D ana-

log of the Penrose lattice and the icosahedral QC, i.e., a
QP sequence of long (L) and short (S) spacings (Fibonac-
ci lattice). This definition is equivalent to prescriptions
based on a substitution law and projection techniques. *

A standard %vay to study the acoustic properties of a
lattice is to consider a nearest-neighbor harmonic chain.
This model is represented by an equation of motion

Q~

dt
n, n+ l~n +1+ n, n —I~n —I

—(k„„+i+k„„ i)u„,

where u„ is the displacement of the nth atom
(n =I, . . . , N) from its equilibrium position x„, and

k„„+iare the strengths of the harmonic couplings to the
neighboring atoms. All masses are assumed to be identi-
cal and their value is absorbed in the definition of the
strength constants. The QP sequence of two different dis-
tances between atoms includes a QP sequence of two dif-
ferent coupling constants Xi and Ks. We have arbitrari-

ly chosen Kt ——1 and Ks ——1.6180 for Figs. 1 and 2. The
qualitative results obtained do not depend on this choice.
In order to complete the specification of the model,
fixed-end boundary conditions are imposed, i.e.,
uo ——uiv+i ——0. Other types of boundary conditions will

be discussed below.
Assuming a monochromatic time dependence,

u„~exp( icot), in —Eq. (1), the stationary equation of
motion is obtained. By diagonalizing it, we obtained the
eigenfrequencies and normal modes with N as large as
10946. Figure 1 shows the N frequencies co„as a func-
tion of n, the mode number. A hierarchy of gaps can
readily be seen. We have found' that the states in the
bands exhibit a power law decay over the length of the
system and that there are many isolated states in the gaps
corresponding to phonons exponentially localized at the
surfaces (see Fig. 2). The phonon spectrum in Fig. 1 has a
Cantor-set-like structure in the short-wavelength regime. '

.

There, every band has two gaps giving rise to three sub-
bands, each one of them having two gaps and so on. In
the long-wavelength case, the number of gaps and their
size tends to zero, and we recover the standard results for
periodic lattices. This is not surprising since long-
wavelength phonons (acoustic Goldstone modes) are not
sensitive to the detailed structure of the lattice. The
specific heat obtained in the present study does not differ
qualitatively from the periodic case. Let us recall that for
disordered systeins (unlike QP systeins which are not ran-
dom) the general conclusion of localization theory is that
acoustic waves are always localized in d & 2, regardless of
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FIG. 1. Phonon spectrum, u„versus mode number n, for a
harmonic 1D QP chain of 5000 atoms. Each dot (normal made
frequency) corresponds to a possible level for a single phonon.
The short-wavelength regime is self similar: every band is divid-

ed in three subbands and so on in a Cantor-set —htke fashion.
Only few gaps and isolated states in the gapa (represented by
dots) can be noticed here and in Fig. 3. A detailed and magni-
fied version of these figures show a large number of gaps and
isolated states in the gaps.

(c)

POSiTION ALONG CHAiN

the amount of disorder or the impurity concentration.
The Fibonacci superlattice, a heterostructure with QP

ordering of layers, is an experimental realization of the
lattice dynamics model proposed here, i.e., a QP sequence
of piceewise constant (not sine-like modulated} spring
strengths. The 1D QP sequence of A1As and GaAs (I.
and S in our notation) has a phonon-level density of
states, obtained through Raman scattering of longitudinal
acoustic phonons, which exhibits a hierarchy of gaps as
predicted by our calculations. The locations of the main
gaps in the experimental results and in our calculations
occur in a geometric progression with r as the common
ratio. Furthermore, and after our theoretical prediction,
Merlin et al."have recently found many isolated states in
gaps corresponding to surface phonons

For the study of the electronic properties, a stationary
tight-binding electron Inodel was used. The basic equa-
tion is

EQ„=e„g„+t„„~(g„+,+t„„

n = 1,2, . . . , N (2)

where e„and g„are, respectively, the site energy and the

FIG. 2. A few normal modes for a harmonic ID QP array of
100 atoms: {a) mode in which the two wave packets are equal
up to a scale factor, {b) extended state which exhibits three local
mirror symmetries, and {c)a localized phanon corresponding to
a state in a gap. The same kind of behavior is also obtained for
longer chains. For clarity, only results for small X are shown.

probability amplitude of an electron being at the nth site,
while the hopping transition amplitudes, t„„+,, form a
QP sequence of two transfer energies TL and Ts. Fixed-
end boundary conditions are imposed at both ends, i.e.,
$0=P~+, ——0. Several values for e„were studied. ' Here,
we will consider the simplest case where e„=O for all n

Figure 3 shows the electron energy spectrum obtained by
diagonalizing Eq. (2}. A self-similar hierarchy of gaps is
present. This property follows from the nonperiodic self-
similarity of the lattice. ' The stationary states and their
participation ratio (which indicates the degree of localiza-
tion of each state) were obtained'0 and their behavior is
somewhat similar to the normal modes shown in Fig. 2.
Isolated states in the gaps are exponentially localized;
meanwhile, the rest extend over the length of the system
decaying as a power law. The latter ones are not conven-
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FIG. 3. Electron energy spectrum for a tight bind-ing model with a QP sequence of two hopping transition amplitudes, Tl ——1 and

T~ ——2, for a chain with 1000 sites; n labels the stationary state with energy E„.

tional extended (Bloch) states. The number of eigenstates
contained in each band is equal to a Fibonacci number,
F„, i.e., F„=F„ i+E„2 for n &2 with Fo Fi ——1. ——
Each band with E„eigenstates splits in three subbands
containing F„2,E„3,and F„2states, respectively. Of
course, several of our results obtained in the context of
lattice dynamics are encountered again in our electronic
study. However, the Goldstone modes present in the pho-
non case are absent in the electronic study. In both the
phonon and electron spectra, the gap locations are labeled

by n =X (mr modl), where m is any integer. Gap size
generally decreases with increasing m. The larger the
value of

~
Ts —Tl

~
(

~
Es El

~
) is, the larg—er the size of

the main gaps beconM. In general, the results obtained in
the present work still remain valid when lattice size is
varied. A few of the previous features can be obtained
from very different studies (mostly using transfer-matrix
techniques) done on Harper's equation' and the diagonal
QP case. '3 The latter has been studied as a dynamical sys-
tem map using a recursion relation for transfer matrices.

The scaling index is uniform (nonuniform) for the elec-
tron (phonon) spectrum as can easily be appreciated from
Fig. 3 (1). The scaling properties of the wave functions,
however, constitute a more difficult problem. %'e have
proved, ' ' based on a novel renormalization-group ap-
proach, that the envelope of the wave functions exhibits a
power-law decay for all states, except for the isolated

states in the gaps, which have an exponentially decaying
envelope. For some of the former ones, the wave-function
scales as L, where L is the length of the system,

y =Inf 8nr, and f=
~
Ts ITL

~

.
Let us now concentrate on the important effect of sur-

faces and impurities on the spectra. Let N and Fk be the
number of particles in the chain and a Fibonacci number,
respectively. The four types of lattices considered in the
present work are (1) periodic boundary conditions (PBC)
and N =Fq, (2} PBC and E+Ek, (3) fixed ends for any
value of X, and (4) free ends for any value of N. Case (1)
does not exhibit any (localized) states in gaps, since it cor-
responds to a finite lattice without surfaces and with
bonds ordered in a QP sequence. The Fibonacci rule,
L~LS and S~L, produces QP chains with X=Fk
only. Case (2) shows states localized at the joining point
of the chain since there the bonds are joined in forbidden
ways (e.g., S—S or L L L) breaking th—e p—erfect QP or-
der. A forbidden connection behaves as an impurity and
impurities tend to form localized states. Cases (3}and (4)
do have surfaces and they effectively act as impurities.
The large number of (localized) states in the gaps are sur-
face states, and they have recently been observed experi-
mentally. " Superlattices are finite, they do have surfaces
and the number of layers is not restricted to be a Fibonac-
ci number. Therefore, the appropriate cases from the ex-
perimental point of view are neither (1), studied in Ref. 3,
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FIG. 4. The frequency shift dc@(q}displayed in Eq. (3}plotted as a function of the normalized mode number q. The locations and

sizes of the gags in the spectrum shown in Fig. 1 correspond to the locations and sizes Of the peaks in ~~(q),

nor (2) but (3). Figures 1 through 3 refer to case (3).
The general features of the results obtained above con-

cerning the gap structure of the phonon and electron spec-
tra can also be obtained using perturbation theory, where
the small parameter here is

~
Es EL,

~
( (

T—s —Tl
~

) for
the phonon (electron) case. For example, in the case of
the lattice dynamics described by Eq. (1}, it can be
shown' using degenerate perturbation theory among the
time reversed modes that the frequency spectrum is given

by ra-+(q) =coo(q)+dkco(q), where roc(q) is the unperturbed
frequency and where bc@(q} is given by

In conclusion, we have obtained and studied some of
the features of the phonon and electron spectra, and nor-
mal modes for a finite one-dimensional quasicrystal. The
calculations reported here are based on a realistic QP sys-
tem which (like the Fibonacci superlattice) is finite, has a
number of layers not restricted to be a Fibonacci number,
and has surfaces. This system exhibits an interesting lo-
calization problem even in one dimension. We find many
isolated states in the gaps corresponding to exponentially
localized phonon and electron surface states. A longer
discussion will be given in forthcoming publications. 'c'

hru(q) ~ sin(nq)N ' g k„„+&e ' e (3)

In Fig. &, A~(q) is plotted. The positions and sizes of
the peaks in bc@(q) correspond to the positions and sizes
of the gags in the spectrum shown in Fig. l. In particu]ar,
the locations of the peaks in Eq. (3) are given by q =mr
(modl), where m is any integer. ' Clearly, this alternative
approach is not as general as ihe previous nonperturbative
exact numerical solutions which are valid for any values
of the harmonic couphng strengths (EL,Ks) and hopping
transition amplitudes (TL, Ts). However, in their com-
mon region of validity, both are totally consistent.
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